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Derivation of the 1D Heat Equation 
 

Consider a cylindrical rod of uniform cross sectional area (Ac). This rod is insulated 

on its lateral surface, which means there is only heat transfer along the major axis of 

the rod. Designate a coordinate system at one end with at x=0 and denote the entire 

length as L. Let the temperature function, u, be dependent upon the position and time 

(e.g., u=u(x,t)). Now we look at a differential element along this rod with length ∆x, 

from x0 to x0+∆x.  

Newton’s Law of Cooling states that the quantity of heat flux, Q”, flowing across a 

point x0 per unit time is proportional to the temperature gradient at x0: 

€ 

Q"(x0)∝
du(x0,t)
dx

= ux (x0,t)  

We can add a proportionality constant and we get: 

€ 

Q"(x0) = cux (x0,t)  

 The unit of heat flux, Q” is Watt/m2. If the cross-sectional area (Ac) is constant, we 

can expand this to: 

€ 

Q(x0) = −kAcux (x0,t)  

 In the above formula, Q is given in units of Watts (W). Recall that 1 W = 1 Joule/sec, 

where Joule is a measure of energy, work, or heat. We often put a negative sign for 

convention’s sake, and we denote k as the thermal conductivity of a material. 

Materials with higher thermal conductivities provide low resistances to heat transfer 

and as a result have higher heat fluxes across them (i.e. metals). Thermal conductors 

have high thermal conductivities and thermal insulators have low thermal 

conductivities.  

Now we look at the heat loss from x0 to x0+∆x per unit time: 



€ 

H =Qx0
−Qx0 +Δx = kAc[ux (x0 + Δx, t) − ux (x0,t)] 

If we were to conduct this experiment, we would find that the average change in 

temperature ∆u is proportional to the total quantity of heat introduced H*∆t, and 

inversely proportional to the mass of the object. The proportionality constant is, by 

convention, given as 1/s, where s is the specific heat of the material.  

We therefore, have:  

€ 

Δu =
HΔt
sm  

where s is the specific heat of the substance. Specific heat is essentially the energy 

required to increase the temperature of a unit mass of a substance by 1°C. Now 

substituting this into the former equation, we get: 

€ 

Δu
Δt

=
kAc[ux (x0 + Δx,t) − ux (x0,t)]

sm  

We know: 

m = density * volume = density * area * length 

Mathematically, we can write this as : 

€ 

m = ρV = ρAcΔx  

And so we get: 

€ 

Δu
Δt

=
kAc[ux (x0 + Δx,t) − ux (x0,t)]

s(ρAcΔx)
Δu
Δt

=
k
ρs
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
[ux (x0 + Δx, t) − ux (x0,t)]

Δx
 

Taking the limit as ∆x  0 and ∆t  0, we get: 

€ 

Ut =
k
ρs
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Uxx  



The term (

€ 

k
ρs

) is often called the thermal diffusivity of a material and is denoted as 

c2. We also note that k, s, and rho are all material properties and are all positive in 

value. Therefore, we now have the 1D heat equation: 

€ 

Ut = c 2Uxx  

Note that this is the homogeneous form of the equation; if there is heat added or 

removed from the rod, the equation becomes 

€ 

Ut = c 2Uxx + f (x,t). The function 

f(x,t) represents the heat source or sink density. We have seen problems where we 

have to solve the 1D heat equation with some prescribed conditions.  

For instance, we can say that the ends of the rod, x=0 and x=L are kept at 

temperatures T0 and T1, respectively and that the initial temperature distribution of the 

rod is f(x). Now this translates to boundary conditions of u(0,t)=T0 and u(L,t)=T1, 

while the initial condition is u(x,0) = f(x). We have seen how to solve this by using 

separation of variables.  

The derivations are similar in 2D and 3D, and the forms of homogeneous equations 

are similar as well: 

€ 

2D :Ut = c 2(Uxx +Uyy )

3D :Ut = c 2(Uxx +Uyy +Uzz)  

  


