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1. ABBREVIATIONS

ODE = ordinary differential equation
PDE = partial differential equation

LHS = left hand side

RHS = right hand side

w.r.t = with respect to

= = implies

[0 = end of proof

LHS := RHS means that the LHS is defined by the RHS.
nd (e.g. 1d, 2d, ...) = n dimensional

DO = differential operator

iff = if and only if

A C B = Aisasubset of B

A CC B = A is compactly contained in B
) = domain in R", unless stated otherwise

2. NOTATION

Unless stated otherwise, the following notation will be used throughout.

80
81
86
91
94
95
97
99
101
101
113
117
129
130
140
142
145
150
151
159
165

2.1. Basic notation. We denote by {2}, rectangular coordinates in R". For problems involving
a time variable ¢, we denote (t,z) € R x R", and let {z#}]}_ be rectangular coordinates in R x R",

where ¥ := t. Latin indices range from 1 to n and Greek indices from 0 to n. Naturally, when we
say coordinates in R™ it could be in a subset R™ etc. Sometimes we write R!*” to emphasize to

spacetime structure R x R™, but for many general discussions we simply write R".
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Repeated indices, with one index up and one down, are summed over their range. E.g.:

=1
2.2. Multi-index notation. We denote:
0 0
ST % = ot
Definition 2.1. A vector of the form a = (ay, ..., o), where each o, p =0, ..., n is a non-negative
integer, is called a multi-index of order |a| :== ap + ... + .
We similarly write @« = (a1,...,p) when t is not present, and also sometimes write & =
(a1, ..., ), calling @ a spatial multi-index.
Given a multi-index «, denote
ol
D%y = Y ,
A(zV)d(z)or...0(zm)on
where u = u(t,z',...,2"). If k is a non-negative integer,

Dy = {D% | |a| = k},

|DPul:= [ |Douf?
|a|=k

We can identify Du with the gradient of u and D?u with the Hessian of u. These definitions have
a natural interpretation when u = u(x!,...,2™) (so the multi-indices are spatial).

Let a, 8 be multi-indices. Define
al := aplaq!...an!,
J}a — ($0)ao(xl)oc1m($n)an’

a < 8 means oy < 3,, where p=0,...,n,

(;) = 5'(;!—)’ where (8 < a,

(2)-5

e (2]

o=k

Then we have:
Multi-nomial theorem:

Product rule:

D (w) =Y (g) DPuD* Py

BLa
Taylor’s formula:

1
u(z) = — D u(0)2” + O(|z|F+1)
|| <k
where we recall the big-oh notation:
f=0(g) as z — x9
if there exists a constant C' > 0 such that

|f(@)| < Clg(=)]|
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for all x sufficiently close to xg. Many times zg is clear from the context and we write simply
f=0().

Remark 2.2. Many times we will provide a definition, introduce a concept, etc., that has a natural
generalization to a context studied later on. In these cases, such natural generalizations will be
taken for granted.

3. INTRODUCTION

PDEs are essentially a generalization of ODEs for functions of several variables.

Definition 3.1. Let © be an open set in R”. We denote by C*°(2,R™) the set of all infinitely
many times differentiable (i.e., smooth) maps u :  — R™. We put C* := C*°(£,R) (although
we can abuse notation and write C°°(£2) for C*°(Q,R™) if R™ is clear from the context). We also
extend the notation to C*°(Q,C™) etc.

Definition 3.2. Let 2 C R™ be an open set. A differential operator P on 2 is a map P : U —
C*(Q2), where U C C*>(Q2), of the form

(Pu)(z) = P(D*u(z), D*u(z), .. Du(z), u(z), ),
where z € Q,u € U, and P is a function
PR xR" ' x .. xR"xRxQ—>R.

The number k£ above is called the order of the operator. We often identify P with P and say “the
differential operator P.”

Remark 3.3.

e In the above definition, it is implicitly assumed that the first entry in P is not trivial, so
that the order of P is well defined. Otherwise, we could take, say, the first order operator

Pu = O,u and think of it as the second order operator Pu = 0 - 9?u + 0,u, etc.

e P might in fact be defined only on a subset of C*°(Q), e.g., Pu = &%u is not defined on

constants. Situations like this will typically be clear from the context.

e We can generalize the above to C*° (2, R™).

e Differential operators will naturally extend to more general function spaces we will introduce
later on.

Example 3.4. Take Q = R%. Then

Pu = 9%u + 8§u + u?
is a second-order DO. To identify the function P, denote coordinates in R? x R?2 x R x 0 by
= (px:mpmyapy%pyy:pmapyvpy-xay): SO P(Z) = Dz +pyy +p2'

Observe that the definition of a DO takes all entries into account, ignoring, e.g., Ozyu = Oy u
ete.

Definition 3.5. Let P be a DO of order k. P is called

e linear, if it has the form
(Pu)(z) = ) aa(z)Du(z),
|| <K

for some functions a,.
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e semi-linear, if it has the form
(Pu)(z) = Z ao(z)D(x) + ag(D* tu(z), ..., Du(z), u(z), x),
|a|=k

for some ag.
e quasi-linear if it has the form

(Pu)(x) = Z aa(DF*u(z), ..., Du(x), ) Du(z) + ag(D* tu(z), ..., Du(z), u(x), ).
|a|=k
e P is fully nonlinear if it depends nonlinearly on derivatives of order k.

Examples will be given below.

Definition 3.6. Let Q C R" be an open set and P a DO of order k in {2. An equation of the form
Pu=20

for an unknown function u is called a k* order PDE in Q. The PDE is quasi-linear, etc., according
to the character of P. In the linear case, we also consider the situation where a function f: Q@ — R
is given, and call the PDE Pu = f inhomogeneous and Pu = 0 homogeneous. A solution to a
PDE is a function u : 2 — R that satisfies the equation Pu = 0.

Similarly, we can define systems of PDEs (we abuse terminology and sometimes call a system of
PDEs “a” PDE).

Given a PDE, we are typically interested in questions of the form

e Does a solution exist?
e If solutions exist, are they unique?
e If solutions exist, what are their properties?

4. EXAMPLES OF PDEs

Laplace’s equation:
Au =0,

where A := 8(?7?)2 + 8(272)2 + ...+ %i)g is the Laplacian operator.

Helmholtz’s equation:
Au+du=0

Linear transport equation: ‘
ou+0'0u=0

Heat or diffusion equation:

ou—Au=0
Schrédinger’s equation:
10w+ Au=0
Wave equation:
Ou=0
where (0 = —0? + A is the D’Alembertian or wave operator.

Eikonal equation:
|Du| =1
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Minimal surface equation:
D
div <“1) =0
(14 [Duf?)2

O+ udzu =0

Burgers’ equation:

Maxwell’s equations:
OFE —curlB=0

OB + curlE =0
divB=divE =0
Euler’s equations for incompressible fluids:
Ou+ (u-V)u=—Vp,
divu =0,

__ .1 0
u-V=u'55.

Navier-Stokes equations for incompressible fluids:
ou+ (u- V)u=—Vp+ Au,
divu =0
Euler’s equations for compressible fluids:
Op + div(pu) =0
1
u+ (u-V)u= —;Vp
p=p(p)
Vacuum Einstein’s equations:
, 1
Rlcaﬁ - iRgaﬁ + Agaﬁ =0,

where ¢ is a Lorentzian metric, Ric is the Ricci curvature of g, R the scalar curvature of g, and A
is a constant (the cosmological constant).

Matter Einstein’s equations:
) 1
Rlcaﬁ - iRgaﬁ + Agaﬁ = Taﬁ

where T;,3 is the energy-momentum tensor containing information about matter fields (e.g., elec-
tromagnetic fields).

5. LAPLACE’S AND POISSON’S EQUATION

We are going to study Laplace’s equation

Au =0,
and its non-homogeneous version, Poisson’s equation
Au=f

Definition 5.1. A function satisfying Laplace’s equation is called a harmonic function.



Disconzi 7

5.1. Fundamental solution. To solve Au = f, we first consider Au = 0 and try the Ansatz

u(z) = v(r),

r = |z|. Computing,

duule) =/ (r) -,
7t 2 zt 2
oBu(o) =) -+ o) (5 - )

and summing:
-1
Au ="+ Lv'(r) (n = dimension)
r
Thus Au = 0 gives a ODE for v with solution
Alnr+ B, n=2,
v(r) = A
rn—Q + B7 n 2 3’
A, B constants. This motivates the definition:

Definition 5.2. The function

1
s-Inlz|, n=2,
[(z) := { o 1

n(2—n)wy |z|"=2>

n >3,
is called the fundamental solution to Laplace’s equation. Above, w,, = volume of B;(0) in
R™.
Note that o o
DI'(z)| < ——, |D*[(z)| < —
D) < iy IDT@) <
where above and throughout we adopt the following:
Notation 5.3. We use C' > 0 to denote a generic constant (depending on fixed data in a given
problem) that can vary line-by-line. Unless stated otherwise, @ C R™ is an open set.

Definition 5.4. Let Q C R” be an open set. We denote by C*(€2) the space of k-times continuously
differentiable functions in €2 and by C¥(2) the space of those u € C*(Q) with compact support.

Theorem 5.5. Let f € C%(R"). Set

Then:
(i) u e C*(R™),
(ii) Au= f in R™.

Proof. Note that u is well defined (I'dy ~ r2~"r"~1dr). Changing variables:
u(w) = | TS -y,
SO

u(z + he;) —u

: (x) :/Rnr(y
—>/F(y)

)<f($+h€i —Z) —f(x—y)>dy

af
o (x —y)dy as h — 0
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since the difference quotient converges uniformly to 9; f. Similarly, we obtain D?u, whose continuity
follows from that of D?f.

Fix a small € > 0 and write
Bu= [ T@ASa-pdr+ [ @A - )y
(0) R™\ Be(0)
=11 + Is.

e2llne
11 £ CID e | |r<y>|dys0{ez‘ Y

(0
Note that A, f(x —y) = Ay f(z —y). Thus, integrating by parts:
of
I = —/ VI(y) - Vyflz —y)dy + / Iy) 5, (@ —y)do(y)
R\ B¢ (0) 9B.(0) v
= Iz1 + I29.
Ino = 0ase—0, ['(y) ~ loge, 7", do ~ €L, By parts again:
or
b= [ arefe-pi- [ Py,
R7\ B,(0) 0B.(0) OV
Note that A'(y) = 0 away from y = 0.
or 1 vy -1

il =Vl =" y=
8v(y) (y)-v nony " g

1 1
121 = /336(0) Wf(x — y)da(y) = m /836(:10) f(y)dg(y)

— f(z) ase—0

Remark 5.6. Note that u above is not unique (need boundary conditions at o).
5.2. Properties of harmonic functions.

Theorem 5.7. (Mean-value formulas). If u € C?(Q) is harmonic, then

: 1
) = oaB, @) /8Br(x) 147 = ol B, @) /Br(@ "

for any ball B.(x) CC Q.

Proof. Changing variables z = (y?)
1 / 1 /
nwprn—1 u(y)do(y) = u(z +rz)do(z) =: f(r
nwn™ 1t Jop, () ()do(y) nwn Jag. () ( )do(z) (1)
PO = [ Vatatre) o) = [ St T doty)
e . o - - . .
9Br(0) nwn™ 1 Jop, (@) r

Note that v = L2

r

_ 1 1/ Oy L 1/ Audy =
nwnr™ "t JaB, (z) OV nwpr™" (@)
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zﬁf&%=ﬂ®=hmléBUu@de=uw)

r—0 nwnT”*1
For the other equality:

/ udy = / / udodt = wyr"u(x).
By(x) 0 JoB.(z)

Note that faBr(w) udo = u(z)nw, 1.

g

Theorem 5.8. (Converse of the mean value). If u € C?(Q) satisfies

1
u(x) = 1/ udo
nwnt™ " B, (2)

for B,(xz) CC Q, then u is harmonic.

Proof. Tt Au(x) # 0, then Au > 0 in some B,.(z) contradicting f'(r) = 0.
(|

Recall that a mollifier can be constructed as

1
Ae 1-l=2 x| < 1,
p(x) =
@) {O, |z| > 1

where A is a constant such that [p, ¢ = 1.

Then, supp(¢) C B1(0) and ¢ € C*(R").
For € > 0, we put

1 =z

pe(x) = 6790(;

)
$0 @ € C°(R™), supp(¢pe) C Be(0), and [ ¢ = 1. If u € LL (), the function
Ue 1= Pe * U
(the regularization of u) is defined in
Q¢ = {x € Q] dist(x,00) > €}

and u. € C*®(£). Moreover, ue — u a.e., ue — u in C (), L2 (Q) if u € CV(Q), LZ(Q),1 <
p < 00.

Theorem 5.9. Harmonic functions are C*°.

Proof. Let u be harmonic in €2 and put ue := u * .. Then, by the mean value property:

1 T —
ue(x) = / pe(z —y)uly)dy = — @ 7 uly)
Q € JB(x) €
= in gp(r>/ udodr = u(f)/ cp(T)nwnrnldr
€ Jo €/ JOB(x) € 0 €

=wq@@%@=mm

Note that nw,r" ! = faB,,(o) do.
O

Remark 5.10. One can show that harmonic functions are, in fact, analytic.
Using the mean value formula, we can derive decay estimates (as |z| — oo) for harmonic func-
tions, leading to:
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Theorem 5.11. (Liouville’s Theorem). If u : R"™ — R is harmonic and bounded, then it is
constant.

Proof. Exercise.
O

Theorem 5.12. (Mazximum principle). Suppose that u € C*(Q) N C%(Q) is harmonic in €,

where Q s bounded. Then mazx u = mag u. Moreover, if Q is connected and u(xg) = maz u for
Q Q
some xqg € (), then u is constant.

Proof. The first claim is implied by the second, which we prove. Say u(xo) = M = max u and let
Q

r be such that 0 < r < dist(zg, 09).

By mean value,

1
M = u(zo) = —~ 7,n/B()UdySM,

so u = M in B,(zp). Thus, {z € Qu(x) = M} is open and closed in €.

Remark 5.13. We need the boundedness assumption, e.g., u(z,y) = y in Ri.
Remark 5.14. Changing u — —u, we also get the minimum principle.

Corollary 5.15. There exists at most one C?(Q) N C°(Q) solution to
Au = f in €,
u=g on 0S)
with f € C°(2),g € C°(99).

Exercise: Look up Harnack inequality for A.

5.3. Green’s function. The Green function is the analogue of the fundamental solution in the
case of a boundary-value problem, i.e., a PDE plus a boundary condition.

In this section, we assume € to be bounded and with a C'-boundary. We are interested in
Au= fin Q,
u = g on 02

where f and g are given.

Given a C2%(Q) function u, we have (Green’s identity):

[ Ay —2) - Ty — ) Su(y)dy
O\Be(z)

B / (“(y)ai(y —z) =Ty — =) Ou (y))do(y)
A(Q\Be(x)) Iy e

Observe the following facts:
e AJT(y—2)=0in Q\ Be(z).
° f@BE(g;) I'(y — 2)%do(y) — 0 as e — 0.

o faBe(:p) u(y)g%(y —z)do(y) — —u(x) as € — 0.
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Thus,

ou

we) = [ T a)dutiy+ [ st gw—adot) - [ T-a) 3 0o

o0

Replacing Au = f, u = g on 012, we get a formula for u except or the term in %ﬁ. To eliminate

this term, suppose that for each x, r* solves
Ar® =0in Q,
r* =T(y —x) on 0N.
Then, the function
G(z,y) =T(z—y) —r"(y)
satisfies AyG = 0 for = # y and G = 0 on 0.

Repeating the above with I' — G

_ 9G(z,y)
uw) = [ Gpsutdy+ | ) Z5 aoty) 6.1)

Definition 5.16. The function G above is called the Green’s function for the domain €.

From the above we have

Theorem 5.17. Representation Formula. If u € C?*(Q) solves
Au= f in Q,
u =g on Of.
where Q is bounded, f € C°(2), and g € C°(09), then u is given by (5.1).
Proposition 5.18.
G(z,y) =Gy, z),z #y
Proof. Set (x # y)
f(z2) =G(=,2), g(z) =Gy,2)

The goal is to show f(y) = g(x). We have Af(z) =0for z # x, Ag(z) =0forz #y,and f =0=g
on 0. Let U :=Q\ (Be(x) U Be(y)). Then, by Green’s identity:

of g / 99 ., Of
-2 hde = 2L g)do. 2
/836(30)( Ov g ov do aB. ( ov Ov g)do (5:2)

Since g is smooth near z:

/ @fda —0ase—0
8B.(z)

ov
Also
of / l'(z — x) / or®(z)
——gdo = ———g(2)do(z) + g(z)do(z) — g(x) as e — 0.
TR B e CLOR B C O RN
So, the LHS of (5.2) — g(z). Similarly, the RHS of (5.2) — f(y). O
Remark 5.19. In the language of distributions, I" solves
AT’ =6, in R
and G solves
AG = 0, in €,

G =0 on 09.
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5.4. Explicit formulas. We have not shown how to find the function r* for the construction of
G (we shall see later). However, for some special domains, it is possible to construct G “directly.”

The case R’!. In this case, one can verify

G(r,y) =T(y —x) —T'(y — 7),

where Z is the reflection of x, i.e.,

In particular,

TR iy 1R

nwn Jory |z —y["
solves
Ay =0 in R,
u = g on R,

for g € CO(R"~1) N L>®(R"~!). The function
2™ 1
nawn |z =yl

k(z,y) =

is called Poisson’s kernel for R} .
(Here, €2 is not bounded as in our assumptions above, but one can check that this G still works.)

The case B,(0). In this case,

G(z,y) =T(y —x) = T(|z|(y — 7)),

where T = # is the inversion through 9B, (0). In particular,

u(w) = =12 mZ/ L dy
nwnr g, ) lr —yl"

Au =0 in B,(0),
u =g on 0B,(0),

solves

if g € C°(0B,(0)). The function

r? —|z|? 1

nwpr |z —yl?

K,(l‘, y) =

is called Poisson’s kernel for B,.(0).

6. THE HEAT EQUATION

We now study the heat equation
Ou—Au=20

and its non-homogenous version

ou — Au = f.
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6.1. Fundamental solution. The heat equation has the scaling invariance u(t,x) — u(\%t, \z),

||

i.e., if u solves the (homogenous) heat equation, so does v(t, z) = u(A?t, \z). Thus, the ratios ;

plays a role in the heat equation and suggests the Ansatz

u(t, z) = ;u@)

solutions of this form satisfy u(t, z) = Au(At, \z), A > 0. Plugging our Ansatz into the equation
=2 Ap(y) + Bt~y Vo(y) + at~ @ Du(y) = 0,
where y = 5. Setting 8 = % gives

1
Av + iy'Vv(y)—i-av:O.

Assuming now v to be radial, v(y) = o(r),
n—1

~/
v+ 5

1
17'+§7“77’+a1720
Setting v = 5 :

1
() + 5 (") = 0.

We can now solve this ODE and find, assuming 0,7 — 0 as r — oo,

2

o(r) = Ae” 7.
Reverting back to u, we are led to:
Definition 6.1. The function
1 7ﬁ n
It z) = 7(4”)%6 i, t>0,z € R,

0, t<0,zeR"
is called the fundamental solution to the heat equation.

One readily verifies that
/ [(t,z)de =1, t>0 (6.1)

6.2. The initial-value problem. We are interested in the initial-value problem, a.k.a. Cauchy
problem, for the heat equation:

Ou — Au=01n (0,00) x R",
u=gon {t=0} xR",
where g is given (the initial data).
Theorem 6.2. Let g € CO(R™) N L=°(R"). Set

1 lz—y[?

u(t,x) = e & g(y)dy, t>0,xe€R".

Then:
(i) uw € C*((0,00) x R™)
(i) 0w — Au =0 in (0,00) x R"
(iii) uw=g on {t = 0} x R™ in the sense that  lim  wu(t,x) = g(xg) for each xy € R™.

(t,x)t;)o(o,mo)
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=) . : PR
Proof. For each € > 0, f%%e_T is C*° with uniformly bounded derivatives in [e,00) x R™ and the
derivatives of the fundamental solution are integrable, so u € C*°((0,00) x R™). Also:

Opu(t, z) — Au(t,z) = / (O (t,x —y) — AT (t,z — y))g(y)dy = 0.

n

To show (iii), let € > 0 and § > 0 be such that
l9(y) — g(zo)| < €if |y — zo| < 0.

ut.2) — g(eo)l = | [ Tlt.o = )(g(0) - gla))dy] (using (6.1)

IN

/ L(t,z —y)lg(y) — g(xo)| + / L(t,z —y)lg(y) — g(zo)|dy
Bs(zo) R™\ Bs (o)

=11 + I5.
For |z — zg| < g, we have

Ilge/ [(t,z —y)dy < e.
Bs(zo)
For I, we have |z — x| < § and |y — x| > § so

5
Iy—rvo!S\y—$\+\w—wo\§\y—w\+5

—x
<ly—al+ PPy <oty .
C _lz—y?
h<2glimnyy [y
t2 JR"\Bjs(x0)
w2 oo ,
< gﬂ ely 16?‘ dy = Cn’/ e_TQTn_ldT.
t2 JR\Bs(20) t2 Js
The RHS— 0 as t — 0". Thus, choose t small such that RHS < e. O

Remark 6.3.

e y € C' : the heat equation regularizes the data.

o If g > 0,+# 0, localized then u(t,z) > 0 for all z,¢ > 0 : co—speed of propagation
6.3. The non-homogenous problem. We now consider

Ou — Au = f in (0,00) x R",
u=0on{t=0} xR",
where f is given. We can reduce this to a solution of the homogenous problem. Let us denote by
C2(I x R"™), I = interval, the space of functions that C! is the ¢ variable and C? is the x-variable.
Theorem 6.4. Let f € C?([0,00,] x R™) have compact support. For each s > 0, let us be the
solution to the Cauchy problem given by the previous theorem
Oyus — Aug =0 in (s,00) x R",
us = f(s,-) in {t =0} x R™.

Set u(t,z) := fg us(t,x)ds. Then
(i) u € C?((0,00) x R™)
(i) 0w — Au = f in (0,00) x R™.
(iii) ( lim )u(t,:z:) =0 for each o € R™.
t

7x)t;)0(07x0
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Proof. We can write

t 1 le—yl?
ta)=[ —— i dyd
e = [y | s

// (s,y)f(t — s,z —y)dyds

Since f has compact support and I'(s,y) is smooth for s near s = t, ¢t > 0, we can differentiate:

Opu(t, x) = /0 /n [(s,y)0f(t — s,z — y)dyds + /R" L(t,y)f(0,x — y)dy.

)= [ [ P02 s - s

we see that both dyu, D2u are continuous.
Compute

t
ou(t.a)=duft.a) = [ /;Iwayx@f@axy>A%ﬂtaxy»@m8+A;I%awf«xxwdy

/ /n / / ( —0:=4 )f(t_svz—y)>dyds+/nF(Ly)f(oaw—y)dy = [} +Io+13.

L] < (J0ufllz= + \D2f||m)/0 /R T(s,y)dyds < Ce.

Similarly

By parts
t
I = / /n I(s,y)(—=0s — Ay) f(t — s, — y)dyds
t
— [ [ (2X) = ATt - 5.2~ s

- [ T - gy
=I5

+/nF(e,y)f(t—e,x—y)dy, SO

h+h=/1%wVW%w—w@

— /n I'(e,z —y)f(t — e y)dy.

This is the same integral as in the previous theorem with t — €,g — f(t —¢,-), so € — 0T gives

f(t,x).
O

Remark 6.5. The strategy of solving a non-homogeneous problem by reducing it to a homogeneous
one applies to many other PDEs and is known as Duhamel’s principle.
Remark 6.6. There is no uniqueness in a strict sense, in fact
Ou—Au=01in (0,7) x R",
u=0on {t =0} xR",
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has co-many solutions. Uniqueness does hold, however, if one imposes suitable growth u ~ elzl?,

The heat equation admits further properties that are reminiscent of Laplace’s equation, such as a
mean value property and a maximum principle.

7. THE WAVE EQUATION
We study the Cauchy problem for the wave equation:
Ou = —9%u + Au = 0 in (0,00) x R"
u=gon {t=0} xR"
Ouw=hon {t =0} xR"
7.1. 1d: Dirichlet’s formula. In 1d,
—0?u + 02u = 0.
Set a:=x+t, §:=x—t and put
u(t,z) = v(a, B).
Then,
O}u = 02v — 20,050 + 0%11
ou = 02v — 20,050 + Ojv
So, Ou = —40,0sv = 0. Thus, J,v is a function only of o, dyv(e, ) = f(a), so
v(a, 8) = F(a) + G(8)

for some F,G.

We see that if u is a C? solution, then there exist F, G such that
u(t,z) = F(z+1t) + Gz —t)

Reciprocally, given C? F,G the above is a solution of the wave equation. G and F are called
forward and backward waves (G moves the graph to the right, F' to the left).

Observe that

Solving for F' and G:

Since u(t,x) = F(x +t) + G(x — t):
T T — z+t
e

—t

which is known as D’Alembert’s formula.

Theorem 7.1. Let g € C*(R),h € CY(R). Then, there exists a unique u € C*([0,00) x R) that
solves the Cauchy problem for the 1d wave equation with data g, h.
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Proof. Define u by D’Alembert’s formula. We easily verify the properties stated in the theorem.
O

Definition 7.2. The lines x + ¢t = constant and x — ¢t = constant are called the characteristics
(or characteristic curves) of the 1d wave equation.

7.2. Domains of dependence of regions of influence. Suppose h = 0 and g(z) = 0 for
x ¢ [a,b]. Since g(z + t) and g(x — t) are constant along the lines = + ¢ = constant and x — ¢t =
constant, respectively, we see that u(t, z) # 0 only possibly for (¢, z) that lie in the region determined
by the region lying between the characteristics emanating from a and b as indicated in the figure:

r+t=a xz+t=0> r—t=a x—t=0»

@

FIGURE 1. Domain of Dependence and the Characteristic Curves

Notation 7.3. Although we ordered the coordinates as (t,x), we will often draw the (¢, z) plane
with the z-axis on the horizontal.

Suppose now that g = 0 and that h(x) = 0 for x ¢ [a,b]. Then f;:t h(y)dy = 0 whenever we
have [x —t,z +t]Na,b] =0, ie., if  +t < a or x —t > b. Therefore, u(t,x) # 0 possibly only in
the region {z +t > a} N {z —t < b}, as depicted in the figure:

r+t=a r—t=2»b

FIGURE 2. Domain of Influence
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For general g and h, we can therefore precisely track how the values of u(t, ) are influenced by
the values of the initial conditions. It follows that the values of the data on an interval [a, b] can
only affect the values of u(t, x) for (t,z) € {x+t > a}N{x—t < b}. This reflects the fact that waves
travel at a finite speed. The region {x+t > a}N{x—t < b} is called domain of influence of [a, ].

Consider now a point (tg,z¢) and u(tg, zp). Let D be the triangle with vertex (to, o) determined
by x+t=x9+tg, x —t = x9 + tg, and t = O:

I T X
T =xg — to T =z + 1o
FIGURE 3. Domain of Dependence
Then,
g(xo +to) + glzo —tg) | 1 [ToFt0
ulto, o) = LI H ol —to) L[,
2 2 Jawo—to

and we see that u(tg, z¢) is completely determined by the values of the initial data on the interval
[xo — to, xo + to]. The region D is called the (past) domain of dependence of (¢, z).

(Characteristics, domains of dependence/influence are important concepts that will be general-
ized). Contrast the domain of dependence property with the heat equation.

8. THE WAVE EQUATION IN R"
Here we will study the Cauchy problem for the wave equation in R", i.e.,
Ou =0 in [0,00) x R",
u=wupon {t =0} x R",

Ou = uy on {t =0} x R",
where [0 := —9? + A is called the D’Alembertian (or the wave operator) and ug,u; : R® — R are
given.
The initial conditions can also be stated as:

U<O,$) = U,(](-TJ), atu(0,$> = U1<1'), reR"

Definition 8.1. The sets

Gto.wo := {(t,z) € (—00,400) x R" } |z — xo| < |t — tol},
G o = {(t,2) € (—00, +00) X R™ | |& — zo| < t — to},
Gio.zp := 1(t, @) € (=00, +00) x R" } |l — xo| < tg —t},
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are called, respectively, the light-cone, future light-cone, and past light-cone with vertex
at (to, o). The sets

Kto@“o = gto,mo N {t > O}a
KF = g;;’mo N {t >0},

to,To

K wo = g;m Nn{t >0},

are called, respectively, the light-cone, future light-cone, and past light-cone for positive
time with vertex at (tp,zp). We often omit “for positive time” and refer to the sets K as light-
cones. We also refer to a part of a cone, e.g, for 0 < ¢t < T, as the truncated (future, past)
light-cone.

g(to@o)

FI1GURE 4. Light Cone

+
g(toﬂfo)

(to, zo)

Ficure 5. Future Light Cone
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(to, o)

g(_toyxo)
FiGure 6. Past Light Cone
(t07 130)
]C(_to,fco)
t=0

FIGURE 7. Truncated Past Light Cone

Lemma 8.2. (differentiation of moving regions). Let Q(1) C R™ be a family of bounded domains
with smooth boundary depending smoothly on the parameter 7. Let v be the velocity of the moving
boundary OU(7) and v the unit outer normal to ON(7). If f = f(1,x) is smooth, then

d/ fdx = 8de:1:+/ fv-vdo
dr Q(r) Q(7) o0(r)

Proof. Change of variables.
O

Theorem 8.3. (finite propagation speed). Let u € C?([0,00) x R™) be a solution to the Cauchy

problem for the wave equation. If ug = u; = 0 on {t = 0} X By,(z0), then u = 0 within K o00)-
(Thus, the solution at (to,zo) depends on the data on By, (xo) and the cone Ko z0) 8 also called a

domain of dependence).

Proof. Define the "energy”,

1
B(t) = / (D)2 + [Vul?)dz, 0 < t < to.
2 Biy—t(w0)
Then,
— = (Opudiu + Vu - Vowu)dr + = ((Opu)* + [Vul*)v - vdo
dt Bi,—t(x0) OB¢,—t(z0)

The points on the boundary move inward orthogonally to the spheres 0By,—t(xo) and with a linear
speed in ¢, thus v = —v.
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(to, o)

Btoft’ (UL()) , t' >t

Btoft(wo)

FiGURE 9. Moving Boundaries

Integrating by parts:

/ Vu - Voyudx = —/ Audyudz + / @ﬁtudo’.
By, —+(z0) B, —t(z0) OBy, —+(z0) ov

Thus,
dEb
dt Bto—t(ﬂco) N——

1

(02u — Au)dux + / %&tuda — = / ((Ou)? + |Vul*)do
8Bt0_t(xg) aV 2 aBtO_t(CEo)

ou 1 1
= — o — = (Opu)? — =|Vu|})do
L (o 50 = 519l

1 1
< / (VaulBru] — ~(B)? — L |Vul?)do = 0,
aBto_t(CCo) 2 2

which implies the result.
O

The name, energy, above comes from the fact that E(t) := & [, ((9pu)? 4+ |Vu[?)dz indeed rep-
resents the total energy of the system at time ¢, %(6?,511)2 corresponding to the (local) kinetic energy

and 3|Vu|? the (local) potential energy. Restoring all units we can check that E in fact has units
of energy.
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Alternatively, one could imagine “discovering” the energy as follows. Multiply the wave equation
—02u + Au = 0 by dyu and integrate over R™:

/ (—Opudiu + duAu)dr = 0

Integrating the last term by parts, fRn OrulAudr = — fRn 0¢Vu - Vudx, where we assume that u
decays fast enough as |x| — oo so there are no boundary terms. Thus,

0= / (Opud?u + OuVu - Vu)dr = ;8,5/ ((Opu)? + |Vu|?)dz,
n R

ie.,

B(t) = /n((é?tu)Z +|Vul)dz

is conserved.

Remark 8.4. Inspired by the above, it is customary to call “energy” any quantity that is quadratic
on derivatives of the solution, integrated over a region, even if they do not have a direct physical
meaning. Such energies are typically obtained by multiplying the equation by a suitable term and
integrating by parts, as above, and they play a key role in the study of certain PDEs.

Notation 8.5. Henceforth, we assume that n > 2. Set

1

Ut z;r) = m /a&(x)u(t’y)da(y)’
1

Uo(w;r) = Vol(0B,(x)) /anr-(iv) uo(t, y)do(y),
1

Ui(z;r) := m /BBT(x) u1(t,y)do(y),

which are spherical averages over 0B,.(z).

Proposition 8.6. (Euler-Poisson-Darbouz equation). Let v € C™([0,00) x R™), m > 2, be a
solution to the Cauchy problem for the wave equation. For fized x € R™, consider U = U (t,x;r) as
a function of t and r. Then, U € C™([0,00)x[0,00)) and U satisfies the Euler-Poisson-Darboux
equation:

n—1

0*U — 92U —

0yU =0 in (0,00) x (0,00),
U="Uy on {t =0} x (0,00),
U = Uy on {t =0} x (0,00).

Proof. Differentiability with respect to ¢ is immediate, as is the differentiability w.r.t. r for » > 0.

Arguing as in the proof of the mean value formula for Laplace’s equation:

T 1
arU(t,.T77") = Em /Br(m) Au(t,y)dy

This implies lim, _,o+ 0,U(t, x;r) = 0. Next,

1 1
63U t,x;r —/ Ault,y)dy
( ) nvol(B,(x)) Bu(z) (t.9)

+;&<WM;U%)AmmAMuw@+ZWM;@%&<LMMAMLw@>
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But 8r<fBr(x) Au(t,y)dy) = faBT(x) Au(t,y)do(y), and recall that vol(B,(z)) = w,r", so

T 1 1 1
n vol(B,(z)

nw,r"1 " vol(0B,(x))’

)
o () ~ 20 he) ot = sy

SO
1

2 - (Lo U _ u o
orUttzm) (n 1) vol(B,(z)) /Br(;r)A ¢ y)dy+vol(33r(iv)) /a&(x)A (t:9)do(y).

This implies that lim, o+ 02U (t,z;7) = L Au(t, 2).

Proceeding this way we compute all derivatives of U w.r.t. r and conclude that U € C™(]0,00) x
[0,00)). Returning to the expression for 0,U:

T 1 r 1
o, U = / Au = / 2.
nvol(B(z)) /B, (x) nvol(B,(z)) Jp, @) '

n 1
8,(r"10,U) = ar<’” / a%) - ar( / 82u>
( ) nvol(Br(2)) /B, (2) t NWn J B, (x) !

n—1

1 / 9 r / 9
nwn Jop,@) - vol(@By(x)) Jop, ()
1
=197 < / u) =" 19U
"\ vol(0B,(x)) Jop, () !

O (r"1o,.U) = (n — 1)r"20,U + r" 192U,
=rn=192U

Thus,

On the other hand:

which gives the result.
O

8.1. Reflection method. We will use the function U(¢, x; r) to reduce the higher dimensional wave
equation to the 1d wave equation, for which D’Alembert’s formula is available, in the variables ¢ and
r. However, U(t,x;r) is defined only for r > 0, whereas D’Alembert’s formula is for —oco < r < oo.
Thus, we first consider:

Utp — Uge = 0 In (07 OO) X (07 OO),

u=wug on {t =0} x (0,00),
Oru = ug on {t =0} x (0,00),
u=0on (0,00) x {z =0},
where uo(0) = u1(0) = 0. Consider odd extensions, where ¢ > 0:
i {uO@:), P20 L {u1<x>, x>0,
—ug(—z), * <0, —uy(z), z <O0.
A solution to the problem on (0, 00,) x (0,00) is obtained by solving
it — figy = 0 in (0, 00) x R,
=1 on {t =0} xR,
i = @1 on {t = 0} x R,
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and restricting to (0, oo,

(0,00) where @ = u. (D’Alembert’s formula implies that @ will be odd,
thus satisfying a(t, O) if @

) X
0, if 7y and @y are odd, i.e., if ug and uy vanish at z = 0.)

D’Alembert’s formula gives
1 1 x4+t
it o) =y +0) + (e~ 1) + 5 [ @)y,
r—t

Consider now ¢ > 0 and z > 0, so that 4(t,x) = u(t,x). Then, z+t > 0 so that ag(z+1t) = ug(z+1).
If + > t, then the integration variable y satisfies y > 0, since y € [v — t,x + t]. In this case
u1(y) = w1 (y). Thus,
1 1 T+t
uta) = (e +0) +ualo =) +5 [ )y
o

for z > ¢. If 0 <z <t, then tg(x —t) = —up(—(xr —t)) and

[ awi= [ wwas [T anwa=- [ wews [T oo
= /O ui(y)dy + /OIH uy (y)dy = /Ht u1(y)dy.

—x+t —z+t
Thus,
1 1 x+t
u(t.) = 5o+ 8) —uolt ~ ) + 5 [ wrl)dy
2 2 —x+t
for0<z<t.
Summarizing:
%(uo(m—&-)—l—uox—t f‘”t ui(y)dy, *>t>0,
u(t,z) = 7 T+t
Tuo(z +1t) —uo(t — ) + 5 [* g U1

1(y)dy, 0<z<t.
) =

Note that u is not C? except if u”(0) = 0. Note also that u(t,0

This solution can be understood as follows: for x > ¢ > 0, finite propagation speed implies that the
solution “does not see” the boundary. For 0 < x < t, the waves traveling to the left are reflections
on the boundary where u = 0.

FIGURE 10. Reflection Across the t-axis
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8.2. Solution for n = 3: Kirchhoff’s formula. Set U = rU, Uy = Uy, Uy = rU;, where
U, Uy, Uy are as above. Then,
. 3—-1
O = ro?U = r<aZU + r&U)
= r0?U + 20,U
= 02(rU) = 02U,
so U solves the 1d wave equation on (0,00,) x (0,00) with initial conditions U(0,7) = Up(r),

Q.U (0,r) = Uy (r).

By the reflection method discussed above, we have

~ ~ ~ T+t ~
U(t,x;r) = %(Uo(r +t)—=Up(t—7r)) + ;/ » Ui(y)dy

for 0 < r < t, where we used the notation Uy(r +t) and U, (y) for Up(x;r +t), Ui (z;5).

From the definition of U and U and the above formula:

1
t,x) = lim ————— t,y)d
U( 7'77) r—1>%1+ vol(@Br(a:)) /QBT(m) 'LL( 7y) O'(y)
= lim U(¢, z;7)
r—0t
r—0t+ r
10yt +7) =Tt —7) /W -
= lim — lim — .
7‘—1>I(€l+ 2 r +r—l>%1+ 2r Ji_, Uiy)dy
Note that ~ ~ R R
t — t— t+2r)— t ~
iy ot +7r) —Uolt—r) .~ Uolt+2r) UO():U(’](t)
r—0t 2r r—0t 2r
and
1 t+r ~
lim — =
Tim o [ Gy =T

(this equality is simply lim,_,o+ m fBr(x) f(y)dy = f(x) for n =1). So,

u(t, z) = U)(t) + Uy (t)
Invoking the definition of Uy and U;:

0 t t
ult,z) = 5 (Vol(aBt(:r)) /a&(x) “O(y)d“(y)) T ol(0B(2)) /aBt(@ w(y)doly)-

Making the change of variables z = #3% (recall that we are treating the n = 3 case, so in the

calculations that follow n = 3, but we write n for the sake of a cleaner notation):

1 1
TTBE o PO = it o0

1

= uo(z + t2)t" Ydo(z
nwptn—! /831(0) ol ) (2)

_ ! / uo(x + tz)do(z).
dB1(0)

NWp,
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Then,

;(M /8 o uo(y)da(y)> _ niﬂ;( /6 R —i—tz)da(z))

_ 1 / Vuo(x + tz) - zdo(z).
831(0)

NWp,

Changing variables back to y, i.e., y =  + tz and recalling that do(y) = t" ldo(2):
(oo /| ) = o | y
= == w(y)do(y) | = —5—— Vuo(y) - do(y).
ot VOl(aBt(m)) B¢ (z) ( ) ( ) vol(c‘?Bt(m)) Bt (z) ( ) ( t ) ( )

Using this in the above expression for u(¢,x) :

1
ult,z) = ——— uo(y) + tui(y))do
() = TG o, (100 0 ) )

1
B oy T 0O

which is known as Kirchhoff’s formula.

Theorem 8.7. Let ug € C3(R3) and uy € C*(R3). Then, there exists a unique u € C?([0, 00) x R?)
that is a solution to the Cauchy problem for the wave equation in the three spatial dimensions.
Moreover, u is given by Kirchhoff’s formula.

Proof. Define u by Kirchhoff’s formula. By construction it is a solution with the stated regularity.
Uniqueness follow from the finite speed propagation property.
O

8.3. Solution for n = 2: Poisson’s formula. We now consider u € C?([0,0) x R?) a solution
to the wave equation for n = 2. Then

otz 22, 23) = u(t, 2t 2?)

is a solution for the wave equation in n = 3 dimensions with data vo(z!, 22, 2%) := u(z!, 2?) and

vi(xt, 22, 23) := ui (2!, 2%). Let us write = (2!, 2?) and Z(x',22,0). Thus, from the n = 3 case:

u(t,z) = v(t,x) 0 < ! / v d_> + ¢ / v1da
’ = I =\ T3 am = g T /aD /= g,
0t \Vol(0By(Z)) Jop, ) vol(0B(Z)) Jopz)

where B;(z) = ball in R? with center Z and radius ¢, do = volume element on dB;(z). We now
rewrite this formula with integrals involving only variables in R2.

The integral over 9B;(Z) can be written as

[ P .
B (z) dB; (z) dB; (%)

where OB, (%) and dB; (z) are, respectively, the upper and lower hemispheres of 9B;(7).

The upper cap 0B, (z) is parametrized by

f(y): t2—|y—$|2, y:(ylny) EBt(x)a xr = (xlax2)7
where Byi(x) is the ball of radius ¢ and center z in R?. Recalling the formula for integrals along a
surface given by a graph:

! ! /B VTV,

- do — —
vol(0By(Z)) /35‘;;(50) W8T = e
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where we used that vo(x!, 22, 23) = ug(

zl x

2). This last fact also implies that

/_ Uod&—/_ voda,
0B (z) OBy (z)

vg(ml,x2,x3)

FIGURE 11. 3D Ball

Thus,
! do = 2 2
vol(9B,(z)) /BBt(a:) 08T e /Bt(x) uo(y) V1 + [V F(y)P dy
_ b / o w®
2rt Bi() m
In the last step we used
ly — =f? 2

L+ |V =1+

2—ly—z?  2—ly—af?

Similarly,
t _ 1 u1(y)
_ v1do = —
VOl(aBt(j)) /(9315(33) ! 27 By(x) 2 — ‘y - 1/"2
Hence,
o1 1
u(t,x)z(/ 2u0(3/) 2dy>+/ 2u1(y) _
N2 J,(@) /1 — |y — 2 27 Jpua) VB —ly —
2 2
= 18<t/ uo(y) dy) + 1t/ ul—(y)dy'
20t VO](Bt($)) By () 2 — |y — gj|2 2 VO](Bt(fL‘)) Bi(z) A /12 — |y — x‘Q
Changing variables 7 = z in the first integral (so dy = t?dz)
3( 2 / uo(y) p ) B 8( t / uo(:c+tz)dz>
ot WM&@DIMﬂMﬂ—@i}Fy 0t \vol(B1(0)) Jp,0) /1 — |22
B 1 / ug(z + t2) » t / Vug(z +tz) - 2
vol(B1(0)) /B, 0) /1~ |2]? vol(B1(0) J g, (o) /T— 22
t uo(y) t Vuo(y) - (y — ) ,

/Bt (z)

~ vol(By(z))

V2 =y — xf?

‘Lm>vﬁ—w—xP

Tt el(Bi(2)
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where in the last step we changed variables back to y. Hence,

1L (tw)+ )
ult, z) = 2 vol(By(x)) /Bt(ac) < V= y—af? >dy
1 1 tVuo(y)(y — x)d
/Bt(m)

* 2 vol(B,(x)) /12— [y — af? y

which is known as Poisson’s formula.

Theorem 8.8. Let ug € C3(R?) and uy € C*(R?). Then, there exists a unique u € C?([0, 00) x R?)
that is a solution to the Cauchy problem for the wave equation in two spatial dimensions. Moreover,
u is given by Poisson’s formula.

Proof. Define u by Poisson’s formula. By construction, it is a solution with the stated regularity.

Uniqueness follows from the finite-speed propagation property.
O

8.4. Solution for arbitrary n > 2. The above procedure can be generalized for any n > 2: for
n odd, we show that the suitably radial averages of u satisfies a 1d wave equation for r > 0 and
invoke the reflection principle; for n even, we view u as a solution in n + 1 dimensions, apply the
result for n odd, and then reduce back to n dimensions. The finite formulas are

n odd:
1010\ [ 2
)= 55 (121) (0B Sy )
+1<1a 733( > / d>
e - urao
By \ t O vol(0B4(2)) Jop,w)
where
Bpi=1-3-5---(n—2),
n evell.
_LooNT o wl)
ult, ) = = at<t 8t> (Vol(Bt@f)) /Bt@:) 752*|y*ﬂ”|2dy
1 /19\"% n u1(y) )
+—(-= W)
7“"<t 8t> <v01(Bt(fv>) /Btu) VE—Jy P
where

ri=2-4---(n—2)-n.

Remark 8.9. The method of using the solution in n 4+ 1 to obtain a solution in n dimensions for
n even is known as method of descent.

Remark 8.10. We already know that solutions to the wave equation at (¢g,xo) depend only on
the data on By,(x¢). For n > 3 odd, the above shows that the solution depends only on the data
on the boundary 0By, (o). This fact is known as the strong Huygens’ principle.
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8.5. The inhomogeneous wave equation. We now consider

Ou = fin (0,00) x R",
u=wugon {t =0} x R",
Opu = uy on {t =0} x R"

where f :[0,00) = R", up,u; : R® — R are given. f is called a source and this is known as the
inhomogeneous Cauchy problem for the wave equation. Since we already know how to solve the
problem when f = 0, by linearity it suffices to consider

Ou = f in (0,00) x R™,
u=0on {t =0} xR",
Oiu=0on {t =0} x R",

Let us(t, ) be the solution of

Ous =0 in (s,00) x R",
us =0on {t =s} x R",
Owus = fon {t =s} xR",

This problem is simply the Cauchy problem with data on ¢ = s instead of ¢ = 0, so the previous
solutions apply.

For t > 0, define:
t
u(t,x) = / us(t, s)ds.
0
Note that u(0,z) = 0. We have
Oyul(t, x)—ustac ot / Oyus(t, z)d

Since us(t,x) = 0 for t = s, the first term vanishes, so

¢
atu(t,x):/ Opus(t, x)ds.
0

Then, 0;u(0,x) = 0. Taking another derivative:

afu( x) = 8tust:v _ /8tusta:

Since dyus(t, :L‘){ = f(s,x)‘s:t = f(t,r) and O?us = Au:

s=t
t

Otu(t,x) = f(t,x) —i—/ Aug(t, z)ds
0

= f(t,z) + A/t us(t, x)ds
0
= f(t,z) + Au(t,z), ie.,

O*u — Au = f.

Therefore, we conclude that u satisfies the inhomogeneous wave equation with zero initial con-
ditions. We summarize this in the following theorem:
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Theorem 8.11. Let f € CIzI+1([0,00) x R™), where [5] is the integer part of 5. Let us be the
unique solution to:
Ous =0 in (s,00) x R™,

us =0 on {t = s} x R",
Owus = f on {t = s} x R",
and define u by
t
u(t,z) = / us(t, x)ds.
0

Then, u € C?([0,00) x R™) and is a solution to the Cauchy problem for the wave equation with
source [ and zero initial conditions.

Remark 8.12. The procedure of solving the inhomogeneous equation by solving a homogeneous
one with initial condition f, as seen in the case of the heat equation, is known as the Duhamel
principle.

9. SOBOLEV SPACES
We will now introduce and study properties of certain function spaces, called Sobolev spaces,
that are very useful for the study of PDEs.
Unless stated otherwise, in this section ) denotes a domain 2 C R™.
9.1. Weak derivatives.

Definition 9.1. Let u,v € L] () and « be a multi-index. We say that v is a a-weak partial
derivative v, and write D%u = v, if

/ uD%pdx = (—1)l°! / vodx
Q Q
for every p € C°(Q).

The intuition is that the integration by parts formula holds. Functions in C2°(€2) are often called
test functions. The space of functions whose all derivatives exist up to order k is denoted W*(Q).

1, -1<z<0,
z+1, 0<z <1,

0, —-l<x<0,
1, O0<zx<1,

Example 9.2. If v(z) = { is a weak-

then v'(z) = {

derivative.

/1 v(z)¢' (x)dx = /0 ¢ (x)dx + /Ol(a: +1)¢ (z)dz

-1 -1

1 1
— (0) - /0 p(@)dz — p(0) = - / o (@)p(a)da.

-1

1, —-1<z<0,

then, as we shall see, weak derivatives do not exist.
r+2, 0<x<l,

If, however, v(x) = {

Lemma 9.3. Weak derivatives, if they exist, are unique.

Proof. If v, w are weak derivatives of u, then

[arre =0l [ vp= (<1l [wp, [ plo—w) =0

for all test functions p,v = w a.e..
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Thus, weak and classical derivatives agree when the latter exists.

Lemma 9.4. Let u € L
€ <dist(z,00),

ZOC(Q) and suppose that D%u exists, where « is a multi-index. Then, if

(D%ue)(x) = (D%u)e(),

where (-)e is the regularization.

Proof.

Theorem 9.5. Let u,v € L}, (). Then, D = v iff there exists a sequence of C°°(Q) functions
up — u such that D%y, — wv.
Ljoe(Q) Ljoe(?)

Proof. If D*u = v, we take a sequence of regularizations suitably multiplied by cut-off functions

(ue € C™(Q)).

If up — w and D%y — v in L (), let p € CZ(Q

/vgo-/Daukcp |O‘|/ukD°‘ = 1)“|/ukD°‘<p,
K Q K

where k is a compact set such that supp(yp) C k C Q. Passing to the limit, we have the result.
O

Using this approximation property and the definition, we can prove a series of basic properties.

Theorem 9.6. We have
(i) D(uv) = uDv +vDu, ifu, v, uwv, uDv+vDu € W(Q).
(ii) D*DPu = DB D = DBy if u € WH(Q), |a| + |B| < k (More generally, if any two of
these weak derivatives exist, then they all exist and coincide.)
(iii) If u,v € WF(Q), so do linear combinations
(iv) u e Wk(Q) = ue WFQ), ' CQ,  open.
(v) ou € WF(Q) if u € WF(Q), » € CX(R), and the product rule holds.
(i) If ¥ : Q = Q' is a C' diffeomorphism, u € W(Q), then v := uvoy™t € W) and

diu(x) = axlﬁ v(y).
Proof. (ii), (iii), (iv) are trivial. (v) by induction on k. (i) and (vi) by approximation by smooth
functions. O

Theorem 9.7. (Chain rule). If » € C*(R), ¢/ € L®(R), u € W(Q), then 1 ou € W(Q) and
D(¢pou) =" (u)Du
Proof. Let ug, Duy — u, Duin Ll (). Fix x CC Q. Then,

/ () — p(w)] < [ |y / g —uf =0
/ 1 (i) D, — () Dl < )11 iy / Duy — Du| + / () — o ()| D
K K K

—0
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Up to a subsequence, uj, — u a.e. in x, so ¥'(ug) — ¥(u) a.e. in & since ¥ is C*. So L 1 (ur) —
' (u)||Du] — 0 by dominated convergence. Thus, ¥ (ug) — 1(u) and D(¢) o ug) = ¢’ (ug)Duy, —
Y/ (w)Du in LE (), so D(you) = 9'(u)Du by our characterization (which works for finitely many

loc

derivatives).
O
Recall that u™ = max{u, 0}, v~ = —min{u,0}, sou=ut —u™, Jul=u" +u".
Proposition 9.8. If u € W'(Q) then u™,u™, |u| € WY(Q), and
) ) >
Dut — DI'L ifu>0 Du — Ozfu._O,
0ifu<O —Du if u <0,
Du if uw > 0,
Dlu| =< 0 if u=0,
—Du if u < 0.
Proof. Fix € > 0 and set
u? + €2 %—e, u > 0,
o) = 4 ¢ )
0, u<0
so 1. € C1(R), ¥/(R) € L®(R). By the previous theorem,
L —Du, u>0,
D(the o) = Yl (u)Du = { (+ed)®
0, «<O0.
For ¢ € C(Q),
u
/@Z)e(u)Dd) = —/ ———Dwy
Q {u>0} (u? + €2)2
le —0 le —0
Juepe [ D= [ ooy Duv.
Q {u>0} Q
The remaining results follow from u~ = (—u)", |u| =u™ +u™.
O
Corollary 9.9. Let u € W(Q). Then Du =0 a.e. on any set where u is constant.
Proof. Du = Du™ — Du™.
U

The converse is also true: Du = 0, then 0 = (Du)e = Due = u, = constant = ¢.. ue — u is

L (Q); this convergence can only happen if the numerical sequence ¢, converges. So u = constant

loc
a.e..

We also have:
Lemma 9.10. Let ¢ be continuous and have piecewise continuous first derivatives with ' € L>®(R).
If u e WHQ), then fouec WL(Q) and

D@ﬂoz{¢Mwa ug L,

0, wel,

where L is the set of corner points of 1.
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Proof. By induction and translations we can reduce it to the case of one corner at the origin. If
1,109 € CHR) N L®(R) and ¥(u) = b1 (u), ¥(u) = o(u) for u > 0, u < 0, respectively, then
(u) =11 (ut) —1Pa(u~) and the result follows.

O

Thus, if u is weakly differentiable, so is u?, f(u), etc.

Notation 9.11. From now on, D will always denote weak derivatives unless explicitly said other-
wise.

9.2. Sobolev spaces and their basic properties.
Definition 9.12. Let 1 < p < 0o and k be an integer. We define the Sobolev space
WkP(Q) := {u:Q— R|D € LP(Q),|a| < k},

where D® are weak derivatives of u. We endow W*P(Q) with the norm

1
Z/|Do‘u\pd$>p
Q

memﬂww:(
|| <k

1
= Do, 00 ), 1<
Z ” U‘HLP(Q) ) =p < o0,

o<k

lullwroo = llullioe = D esssup|D?|
laf<k

= Z [ D%ul| oo (02)-
la|<k

If p = 2, we denote WH2(Q) = H*(Q) with the inner product

(u,v)g == Z DYuDvdx,

laj<k €
where again D are weak derivatives. The corresponding norm is denoted || - ||z. We also define
WEP(Q) := closure of C°(Q) in WFP(Q).

We also define W,"7(Q) in the usual way.
Remark 9.13.

o WOP(Q) = I¥(9)
° Wg’p(Q) = LP(Q) if 1 < p < oo since C°(Q) is dense in LP(Q) for 1 < p < oo.
e We have the embeddings

WP (Q) — WHP(Q) — LP(Q)

o u € Wf’p(ﬂ) iff there exists a sequence C°(Q) > ug, — u in W*P(Q). Thus, we think of
Wg’p(Q) as the set of u € W"P(Q) such that “D% = 0” on 9 for |a| < k — 1 (this will be
given a precise interpretation later on).

e We have obvious generalizations to C, vector-valued functions, etc.
e D% is a bounded operator from W*2(Q) to Wk=lelr(Q).

Example 9.14. Let Q = B;(0) and set

1
u(z) = E x # 0.
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Then, |Du(z)| = pifer. Let ¢ € C2(Q).

/ udjp = —/ Oiugp +/ upv',
Q\B.(0) O\ B (0) 9B.(0)

Assume [ < n — 1. Then,

; 1
upv'| < |l¢||L / — do  —0, e—>0.
’/835(0) @ 9Bc(0) El’_{f?
=€ w

If | <n —1, then Du € L'(Q) so

/u&w:—/&'w
Q Q

Also, m% € LP(Q) iff I+ 1)p < n. Thus, u € WP(Q) iff | < ™22,

Example 9.15. Let {a;} C Q = B1(0) be a dense countable subset. Put u(z) =) 1o, Q%Ix—ak]*l.
Forl <™, ne W1P(Q). Note that u is unbounded on each open set for 0 < [ < =R

Theorem 9.16. W*P(Q) is a Banach space. H*(Q) is a Hilbert space.

Proof. Obviously || - ||, is indeed a norm and |jul|x, = 0 iff u =0 a.e..

Let {ux} be a Cauchy sequence in W*P(Q2). Then {D%u;} is Cauchy in LP(Q) for each |a| < k, so
there exist functions wu, such that D%y — u, in LP(Q). Let ¢ € C°(Q),

/uDO‘gp = lim/ upD% = (—1)l lim/ D uyp = (—1) / Ua P,
Q Q Q Q

S0 Ug = D% and u € WFP(Q).
U

Theorem 9.17. W*P(Q) is separable if 1 < p < oo, and is uniformly conver and reflexive if
1<p<oo.

Proof. Let u(k,n) be the number of multi-indices « such that |«| < k, and for each « let Q, be a
copy of €, so the u(k,n) domains 2, are disjoint. Set

Qi = J Q.
|| <k
Given v € WH"P(Q), let v be the function on Q1) that coincides with D% in Q4. The map
I:Wwkr(Q) — LP(Q))u = v is an isometry. Because WkP(Q) is complete, the image X of I is a

closed subspace of LP(£2(). The result follows from WhP(Q) =T71(X).
g

9.3. Approximation by smooth functions. Given a subset A C R™ and a collection O of open
sets covering A, A C Uyecep U, recall that a (smooth) partition of unity of A subordinate to O is a
collection ¥ of C2°(R"™) functions v such that

(i) 0<y <15

(ii) If Kk CC A, all but finitely many 1) vanish identically on k;
(iii) For every 9 € W there exists a U € O such that supp(¢) C U,
(iv) For every x € A, >,y ¥(x) = 1.

It is a standard theorem in topology that smooth partitions of unit exist.

Proposition 9.18. Ifu € W*P(Q), 1 < p < oo, then uc — u in WZIZCP(Q) as € = 0, where u, is the
reqularization of u.
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Proof. This follows immediately from the properties of .. O

The previous proposition is a local approximation by smooth functions. The next theorem
improves this to a global approximation.

Theorem 9.19. C>®(Q) N W*P(Q) is dense in WHP(Q), 1< p < oo.
Proof. For j =1,2,... set

Q= {x € Q| |z| < j anddiv(z, Q) > 1}
J

and Q,1 = Qo = @ Set

Uj = Qi N R\ Q1)
Then O = {U;} covers . Let ¥ be a corresponding partition of unity and let ¢; be the sum of
the (finitely many) ¢» € ¥ whose supports are in U;. Then ¢; € C2°(U;) and

D aba) =1.
J=1

then (¢ju)c has support in
Vi = Q0N (R"\ Q_2) CC Q.

1
If0<€<m,

Qjt2

A

Q1

A

N

S

<.
| |~
—

<.
| [~
N

I
1

(1—2)(G-1)

>
1 ~ ~ ~ ~ ~ ~
GFDGFD - \
Uj = Q1 N (R \ Q1) =

11 1
JHL g2 T (D) (G+2)

S S
j=2  j=2

hd

Vi = Q2 N (R \ Q)
FIGURE 12. Visual Demonstration of €

And since 1;u € WFP(Q), we can choose (by previous local proposition) €; such that
€

1(5w)e; = iullep = [(bju)e; — bjullwrr,) < o5
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where € > 0 is given. Set
o0
Y= Z(wju)e]'
j=1
Then 1) € C*°(Q) since for any Q' CC Q only finitely many terms in the sum are non-zero. Now,
for x € ()

j+2 J+2
u(e) =Y Pi@)u(z), (@)=Y (i) ()
i=1 i=1
Therefore,
j+2

Ju— 1/’HW’W(QJ-) < Z [(iw)e, — diullep <€
i=1

and the result follows from the monotone convergence theorem. (Apply it to f; := xq;, Z| al<k | D (u—
»)|P to get

lu = Yllwre,) = llu = Pllwesq)
as j — o0.

One often sees Sobolev spaces defined as
WHFP(Q) := completion of C*(Q) with respect to the || - ||, norm.

We observe that W*P?(Q) ¢ WH5P(Q). For the set X := {u € C*(Q) | l|ullep < oo}, it is contained
in WHP(Q). Because WHP(Q) is complete, the identity map on X extends to an isometry between
WHP(Q) and the closure of X in W*P(Q). We identify W*P(Q) with this closure.

In view of the previous theorem, any element in W*P?(Q) is a limit point of a sequence of smooth
functions, i.e., any u € W*P(Q) belongs to the closure of C*(Q2) w.r.t. the || - ||x, norm. Thus,

WEP(Q) c WrP(Q), 1<p< oo

Hence
Wk’p(Q) = Wk’p(ﬁ)

This equivalence was first proven by Meyers and Serrin in ’64.

This theorem cannot be extended to p = oo:

Example 9.20. Q = (—1,1), u(z) = |z|. v/(z) = é—| for z # 0. If 0 < € < 3, there does not exist
a ¢ € C1(Q) such that [|¢' —v/|| () < €.

3! mv/\v
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The density C°°(Q) NWkP(Q) — WHP(Q) makes no assumption on 0. On the other hand, the
derivatives of the smooth functions approximating u € Wk, p(2) can become unbounded near 9.
We thus ask if it is possible to show that C*°(Q) N W*P(Q) is dense in W*P(Q) or, more generally,
if C™(Q) N WHP(Q) is dense in WHP(Q). Without further assumptions on 02, the answer is no.

Example 9.21. Q = {(z,y) € R?|0 < |z| < 1,0 < y < 1} (strictly speaking this is not a domain,
but the argument can be adapted to a domain).

______________________________

~

FiGUreE 13. Graph of €

1 >0
Put u(z,y) = {07 z< 0’

that [[u — Yll1p < e Let L = Qy, R = Q9, s0 Q@ = LUR. We have [l iy < [Wllerry <
& 11 = ¥llpir) < 11— ¢llor) < e Set ¢ = [y 9(x,y)dy. Since

/01 dw—//wydydwuwuy -
/ dx_//¢xydydx_// b V)dyde 41

—//Iw—1\dydx+1=—||¢—1\|L1(R)+1>—e+1
0 JO

We conclude that there must exist —1 < a < 0 and 0 < b < 1 such that p(a) < €,¢(b) > 1 —e.
Thus

Then, v € WHP(Q). Suppose that there exist ¢ € C1(Q) such

b
L-ce<ob) - o) = [ o< [ [0.0(w.9)ldady
a Q
1 1
< 20|08 (V)| Lo () = 2211029 — Owtul| o ()
1 1
< 24|y — ullwrpo) < 27€,
where we used % + % =1and Du=0. Thus 1 < (2+ 2%)6, which cannot be true for small € > 0.

The problem above is caused by the fact that 2 is on both sides of part of its boundary. The
following condition prevents this.

Definition 9.22. A domain (2 satisfies the segment condition if for every z € 92 there exists a
neighborhood U, and a nonzero vector y, such that if z € QN U,, then z +ty, € Q,0 <t < 1.
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FIGURE 14. Segment Condition I

Look at points z on 9€) and move a bit inside the domain along the segment z + ty,, we stay
inside the domain, and this is uniform on each U,.

0 2y
—1—ez
Q=0QUQ
e
oS}

FIGURE 15. Segment Condition II

No matter how small we fix U, and y,, for some z close to 9f) the line crosses 9f). (y, has to be
uniform on Uy).

If the segment condition is satisfied, then 92 must be n — 1 dimensional and € cannot lie on
both sides of 9Q. (for 9Q # 0).

Theorem 9.23. If () satisfies the segment condition, then the set of restrictions to 2 of functions in
C®(R™) is dense in WFP(Q), 1 < p < oco. In particular, C=(Q) is dense in WHP(Q), 1 < p < oo.

Proof. We begin with some reductions.
Let ¢ € C(R™) satisfy: ¢(x) = 1if x| < 1, ¢(x) = 0 if |z| > 2, [D(z)| < C for |a| < k.

Set 1pe(x) 1= 1(ex). Then, 1 (z) =1 for |z| < L, ¢(z) =0 for |z| > 2, |D¥(z)| < Celel < ¢ for
0 <e<1. If uec WkP(Q), then u, := vu € W*P(Q), has bounded support, and

|Du| < C Y DPuD*Pip. < C > DPu.
B<a B<a
Set Q¢ :={z € Q| |z] > 1},
= uellop = lu(l — )
——

=0,|z[<¢

kp = llu— ueHW’W(QE)



Disconzi 39

< Cllullwrr,) + Clluelwrr @y < Cllullwrr@y — 0
as € — 0. Thus, u can be approximated by functions with compact support (but not smooth at
this point).
We can thus assume that x := {z € Q ‘ u(z) # 0} has a bounded support. Set
F:=Fk\ U Uz,
€02

where U, are the sets in the definition of the segment condition. F'is compact and contained in €.
So, we can find Uy such that F' CC Uy CC 2 and among the U,’s finitely many Uy, ..., U; such that
k C UpU...UU;. We can find further open sets vj,j = 0,...,1, such that v; CC Uj, K CvgU...U;.

FiGURE 16. Compact ' CC Uy CC 2

Let ¥ be a partition of unity subordinate to the v;’s. Let 1); be the sum of the (finitely many)
Y’s whose supports are in v;. Let u; := ¢ju. If for each j = 0,..,1 we can find ¥; € C°(R") such

that |lu; — ¥jllrp < 77 then we are done since, with ¢ := Z;.:O Vj,

l l
Hu—m,pz‘ D owu ="l = (uy — )
YET j=0 k.p §=0 k.p
!
< g = illkp <

j=0
For j = 0, we find v by direct regularization (see above Prop. prior to the theorem on density of
C*>°(Q) functions).
Fix a j € {1,...,l}. Since u; has support in v; N R, we can extend it to be = 0 outside Q. In
particular, u; € W*P(R" \ T'), where
I':=19;N0N
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Let y be the non-zero vector corresponding to U; in the segment condition. Pick ¢ such that
dist(vj, R™ \ Uj) }
|

0<t<min{1,

and set I'y :={x —ty |z € T}

FIGURE 17. Segment Condition III
The segment condition gives that I';y N Q = (), and our choice of ¢ also guarantees that I'; C U. e
Since u; € WHP(R™\ T), the function
() = uj(z + ty)

belongs to W*P(R™\ I';). Translations are continuous in LP, so D%u;; — D%u; in LP(f2) as t — 0.

Hence u;; — u; in W*P(Q) as t — 0. It thus suffices to find 1; € C°(R") such that ||uj; — ¥j||x,
is small. Since
QNU; cC R\ Ty,
we can take a regularization of u;; as in the proposition mentioned above.
O

The key idea of the proof is that we want to regularize u to get a C°° function. As we want to
include boundary points, the usual regularization would involve averaging u outside 2. However,
we do not need to make the regularization at z € 02 with an average centered at x; we can average
about another point in the interior. This is what the translations of the boundary does. This is a
useful idea when dealing with boundaries.

Corollary 9.24.
Wy (R") = W (R")
Remark 9.25. The corollary is in general not true for Q. Also, since Lipchitz boundaries (properly

defined for non-compact 02) satisfy the segment condition, we obtain the density result when 0f2
is Lipschitz.

We will now use the density of smooth functions to study coordinate transformations.

Theorem 9.26. Let ), D be domains in R™. Suppose that there exists a one-to-one and onto
U : Q — D such that ¥/ € C*(Q), (¥~1) € C¥(D) have bounded derivatives, j = 1,...,n, and
& < |det DU|+ |det DU~ < C, for some C > 1,k > 1. Given u € W*P(D), define T(u): Q=R
by (u)(z) = w(¥(z)). Then, ¥ transforms W*P(Q) boundedly onto W*P(D) and has bounded

imverse, 1 < p < oo.
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Proof. The map is well-defined for a.e. defined functions since k > 1. Let {u;} C C*°(f2) converge
to u in W*P(D). Let |a| < k be a multi-index. Successive applications of the chain rule and
product rule give that (y = \I/( ))

Zpaﬁ Dﬂuj (v)

p<la
= Pap(@) ¥ (D u))(x),
pla

where pag is a polynomial of degree < |3| in derivatives of ¥/, j = 1,...,n of order < |a|. Let

b e C2(Q).
Dl [ D)D) - S [ pes(@)¥ (0P @) @)

B<a
|| «a -1 e 1 _
(—1) fDMD (=1 (y))|det DT~ (y)|dy 5; Jo Pas (1 )W (DP) (U (1)) (w1 (9)det DU (3)|dy
uj(v) <a

DBuj(y)

Since Dﬁuj — u, we can replace u; by u above and change variables back to get
(! [ @D ) = 3 [ ps@)F DR @
Bp<La
so U(u) is W¥(Q) and
DU (u)(z) = ) pap(x)¥ (D u)(x).

B<a
Then,
/|Da\i1( )(x)[Pdr < C max sup|pag(x |p/ U (Du) |pdx
Q 1BI<lal zeQ
Dﬁu
< C max / |DPu(y)[P|det DU (y)|dy
18I<lal JD
< Cllullwrrpy = ¥ (W)|lwrr@) < Cllullwrspy-
Repeating the argument for ¥~! gives the result. O

9.4. Extensions. Given u € W*P(Q), can we extend outside Q2?7 In other words, does there exist
@ € WFP(R™) such that @ = u in Q? We begin by making this notion more precise:

Definition 9.27. Let 2 C R" be a domain, kK > 0 an integer and 1 < p < oco. A linear map
E : WFEP(Q) — WFP(R™) is called a (k,p)-extension (or simply extension if &, p are understood),
in Q if there exist a constant k = k(k, p) such that

(i) Pu(zr) = u(x) a.e. in

(1) [[Eullwrrmny < Ellullwes o)
for all u € W*P(Q). E is called a strong k-extension (or strong extension if & is understood)
in  if it is a linear operator mapping a.e. defined functions in € to a.e. defined functions in
R™, and such that, for every 1 < p < oo and every 0 < m < k, the restriction of E to W™P(Q)

is a (k,p)-extension. E is called a total extension in ) if it is a strong extension for every k
(necessarily extends from C*(Q) to C*(R™)).

Lemma 9.28. Let Q =R’} = {3: eR™|z" > O}. Then, there exists a strong k-extension operator
in Q. Moreover, for every multi-indezx «, |a| < k, there exists a strong (k — |a|)-extension operator
FE,. in Q such that

D“Ev = E,D%u.
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Proof. Set

u(z), z™ >0,
E —
u(x) { Z;‘fill Nu(zt, . 2™ —jx,), 2™ <0,

u(zx), ™ >0,
Eou(x) =
(@) {Zfill(—j)“")\ju(acl,...,w”_l,—jxn), z" <0,

where Ay, ..., A\g+1 are the unique solution to

k+1

S=DN=1, 1=0,...k

j=1
If u € CH(R™), then Eu € C*(R™) and
D*Eu = E,D, |a] <k.

(Bg, k=1, M4+ =1,-A1-2 =1\ =3, Ay = —2, Bu(X) = 3u(a!, ..., —2")—2u(x!, ..., —22™)
- Eu|{xn:0} =u, 8¢Eu|{znzo} = Oiu, i <n, anEu|{zn:0} = 8uu]{xn:0})

Then,
k+1 P
/ |DaEu|p:/ yDau|P+/ > (=) A Du(at, . 2" — ")
n R” R® |55
<C | D%ulP
R
By density of C®(R") in WHP(R"), we obtain that the inequality is valid for u € WHP(R™),
0 <m <k, so E is a strong k-extension. A similar argument, noting that D°E,, = o+, shows

that E, is a strong (k — |a|)-extension.
O

To obtain the result for general €2, we need conditions on 0f2.

Definition 9.29. A domain 2 C R™ satisfies the strong local Lipschitz condition if there exist
d >0, M >0, alocally finite open cover {U;} of 0Q, for each j a real valued function f; of n —1
variables, such that

(i) for some finite R, every collection of R + 1 open sets U; has empty intersection;
(ii) for every pair
z,y € Q5 == {z € Q| dist(z,0Q) < §}
such that |z — y| < 0, there exists j such that
z,y € Vj:={z € Uj | dist(z,0U;) > &}

(ili) each f; satisfies a Lipschitz condition with constant M
(iv) For some Cartesian coordinate system

(9]'71, ...,9]'7”) n Uj, an Uj = {ej,n < fj(9j71, ...,Gjyn,l)}.

Remark 9.30. For bounded {2, these conditions reduce to the requirement that €2 has a locally
Lipschitz boundary.

Definition 9.31. A domain Q C R” satisfies the uniform C* condition if there exists a locally
finite open cover {U;} of 99, a sequence {1;} of C* functions taking U; onto B;(0), with C*
inverses wj_l = ¢; such that

i) for some finite R, every collection of R 4+ 1 open sets U; has empty intersection;
Yy p J pty
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(ii) for some 6 > 0,

Q5= {z € Q| dist(z,00) < 6} C | ] ¢;(B

j=1

1 (0))
(iii) for each j,
¢j(Uj NQ)=B1(0)N{z" >0}
(iv) there exists a constant M such that
|D*¢l(x)| < M Vz € Uj

[D*¢(y)| < M Yy € Bi(0)
and every |a| < k.

Theorem 9.32. Let Q satisfy the uniform C* condition and 0Q be bounded. Then, there exists
a strong k-extension operator E in Q. Moreover, if a and B are multi-indices with || < |a] < k,
then there exists a linear operator E.p continuous from W'P(Q) into WLP(R™), 1 <1 < k — |a,
1 < p < o0, such that
D*(Eu)(z) = ) Eap(D’u)(x)
1BI<e|
for all u € WlelP(Q).

Theorem 9.33. Let Q) satisfy the strong Lipschitz condition. Then, there exists a total extension
operator in §2.

The proofs can be found in Stein, E. ”Singular integrals and differentiability properties of func-
tions.” For the first theorem, the basic idea is to use our theorem on coordinate transformations
to reduce the problem to R’f, for which we already have the result. For the second theorem,
the key idea is to use that the distance function to 02 is Lipschitz, and then work with suitable
approximations of the distance function.

Remark 9.34.

e The assumption of Q2 bounded in the first theorem is not essential and can be removed in
most reasonable cases.

e We have the implications:
uniform C* regularity (k > 2) = strong local Lipschitz = segment condition.

9.5. The Sobolev embedding theorem. Our goal in this section is to answer the following
question: if u € W*P(Q), does u belong (in a non-trivial way) to some other function space?

In order to answer this question, it is helpful to establish some conventions about C*¥(). So
far, we have only considered C*(Q) when € is bounded, in which case C*({2) is a Banach space.
(An exception was the density of C*°(2) in W*P(Q) when Q satisfies the segment condition. But
in that case the statement was that restrictions from C>°(R") to Q are dense in W*P(Q2), in which
case we can entirely avoid talking about C°°(£2).) For our purposes, we are interested in considering
other function spaces that are Banach spaces. However, the set of functions continuously differen-
tiable up to order k on © might not be a Banach space if Q is not bounded. Thus, we henceforth

adopt the following.

Definition 9.35. Let Q C R™ be a domain and k > 0 an integer. We define CX(£2) as the space
of all u € C*(Q) such that D% is bounded, 0 < |a| < k. C%(Q) is a Banach space with norm

fullego) = 3 sup|Du(@)]

lal<k (S
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If u € C°(Q) is bounded and uniformly continuous, it admits a unique, bounded continuous exten-
sion to Q. We define CX(2) to be the space of those u € C*(2) such that D%u is bounded and
uniformly continuous on © (so in particular D%u extends to Q), 0 < |a| < k. C*¥(Q) is a Banach
space with the norm

lul @y = D sup| D u(x)].
|a|§ker

Let 0 < v < 1. We define the Holder space CX7(Q) as the subspace of C*(Q) of those u such
that D%u satisfies a Holder condition with exponent 7, i.e., those u for which there exist a
constant M > 0 such that

[D%u(z) = D%u(y)| < M|z —y|",
0 < |a| < k. CH7(Q) is a Banach space with the norm
[D%u(z) — D*u(y)|

Ul ok () ‘= [|U]|ckg) + max  sup
[ullcron@y == lluller @ I P
TFY
The quantity [u],.o = sup, , co % is called the v Holder semi-norm.
TAY

Remark 9.36.

e The notation C*(Q2) can be confusing if Q is not bounded, as we can have u € C*(Q),
Q cc  (so u is k-times continuously differentiable up to 99Q) but u ¢ C*(Q) because the
derivatives are not bounded. In other words, by Ck(Q) we always mean the Banach space.

e It is common to write || - HCE(Q) =" ||Ck(Q).

e C%1(Q) is the space of Lipschitz functions on .

e If0 < § < 7 < 1, it is not true that C*7(Q) c C*9()) and, more generally, if k+~ < m+4,
it is not true that C™*°(Q) cc Ck7(Q). For example, take Q = {(z,y) € R? | y <

|z, 22+ 92 < 1),

FIGURE 18. Q= {(z,y) e R? |y < 2|z, 22 +y% < 1}

Pick 1 < 8 < 2. Set

signz y?, y >0,
ulz,y) =19, <0

Then, u € C'(Q), but if 5 < v < 1 then u ¢ C%(Q), so CH(Q) ¢ CO*(Q).
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We also have C*1(Q) ¢ C*+1(Q) (since Lipschitz functions need not to be differentiable
everywhere e.g., |z|) and C*1(Q) ¢ C*1(Q) (above example).

e For nice domains, however, the above expected inclusions hold.

e But it does hold that C**(Q) c C*5(Q), 5 < «

e Holder spaces capture functions like 3 (which € CO’%(R)): not differentiable, but better
than just continuous.
e The following is also used in the literature to define the Holder norm:

| D%u(z) — D*u(y)|
|l ko) = lwlloriqy + max  sup
TFY

The C**(Q) and C**(Q) norms are not equivalent for arbitrary domains. However, since
I - ||ék,a@) < |- llex.o(qy, the embeddings into C*2(Q) that we establish below will auto-

matically give embeddings into C** ().

We now introduce the types of domains we will consider.

Definition 9.37. Let y be a non-zero vector in R™. For each = # 0, let <(z,y) be the angle
between the position vector z and y. Given o > 0 and 0 < 6 < 7, the set

6
C=Cyop:= {mER"|m:Oor0< lz| < o, <Z(1:,y)§2}.

is called a finite cone of height p, axis direction y, and (aperture) angle 6 with vertex at the origin.
The set z + C is a cone with the same properties but vertex at z.

FI1cURE 19. Finite Cones C and z + C of Heights p

Definition 9.38. A domain in R" satisfies the cone condition if there exists a finite cone C such
that each z € Q is the vertex of a cone C, contained in 2 and congruent to C (i.e., each C, is
obtained from C by rigid motions).

The intuition is that, up to rigid motions, we can fit the cone C inside €2, with a vertex on 0f).
Thus, the domain can have corners with uniform aperture but cannot become arbitrarily this in
one direction. (see examples below).
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Definition 9.39. A domain 2 C R" satisfies the uniform cone condition if there exists a locally
finite open cover {U;} of 00 and a corresponding sequence {C;} of finite cones, each congruent to
some fixed finite cone C (i.e., each C; is obtained from C by rigid motions), such that

(i) There exists a constant M < oo such that every U; has diam(U;) < M;
(i) There exists a 0 < ¢ < oo such that Qs C (J;2, Uj, where Q5 := {z € Q|dist(z,00) < 6};
(iii) For every j,

Qj = U (a:—l—Cj) C

IEUjﬂQ

(iv) For some finite R, every collection of R + 1 of the sets @; has empty intersection.

We have the following implications: uniform C* regularity (k > 2) = strong local Lipschitz
— uniform cone condition = segment condition.

Note that all these four conditions imply that 02 is (n — 1) dimensional and that € lies on one
side of its boundary (since the segment condition implies so). But this is not the case of the cone
condition since. In particular, the cone condition does not imply the segment condition. However,
uniform cone condition = cone condition

Example 9.40. Q = {(z,y) e R? |0 < |z| <1, 0 <y < 1} (not a domain, but we can modify it).
However, a bounded domain satisfying the cone condition can be decomposed into a finite union
of subdomains each of which satisfies the strong local Lipschitz condition (and hence the segment
condition).

=

~

Figure 20. Condition Check Example 1

Cone condition? Yes. Uniform cone condition? No. Segment condition? No.

FiGURE 21. Condition Check Example 2

Cone condition? Yes. Uniform cone condition? Yes. Segment condition? Yes.
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Q={z>1,0<y<?i}

Ficure 22. Condition Check Example 3

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

Q) 93—>0

Figure 23. Condition Check Example 4

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

Q:

{o<z<1,0<y<a?}

FiGURE 24. Condition Check Example 5

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

We need one more definition before we can answer the question posed above.

Definition 9.41. Let X, Y be normed spaces. We say that X is (continuously) embedded in
Y, and write X — Y, if X is a vector subspace of Y and the identity map on X is continuous, i.e.,

there exists a constant M >

0 such that ||z|ly < M||z|x for all z € X.

Theorem 9.42. (Sobolev’s embedding theorem). Let Q) be a domain in R™. Let j > 0 and

k > 1 be integers. Let 1 <p

< 0Q.

Case I. Suppose that 2 satisfies the cone condition.
Case I.A. If either kp >n or k=mn and p = 1:

WHEHIP(Q) <5 CL(Q).
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Moreover, ' '
WHHP(Q) = WH(Q), p<g< o0
In particular, WFP(Q) — L9(Q), p < q < oo.

Case I.B. If kp = n: ' '
WHEHP(Q) — W(Q), p<q< .
In particular, WFP(Q) < LI(Q), p < q < oo.

Case I.C. If kp < n:
WHIP(Q) < WI(Q), p< g =

(i.e 1_ 1 _k
YU p pf T on
In particular, WFP(Q) < LI(Q), p<q<p*:= nﬁ%p.
The constants in these embeddings depend only on n, k,p,q,j and the dimensions of the cone C

in the cone condition.

Case II. Suppose that Q0 satisfies the strong local Lipschitz condition. Then, the target space
in the first embedding above can be replaced with C7 (). If, moreover, kp > n > (k — 1)p, then

WEP(Q) < CIP(Q), 0<p<k— %

and if kp > n = (k — 1)p, then
WEP(Q) — CIP(Q), 0<p< 1.

Also, if n =k —1 and p = 1, then this last embedding holds for r = 1 as well. The constants in
these embeddings depend only on n,k,p,j and the data on the strong local Lipschitz condition.

Case III. All the above embeddings hold for arbitrary Q if the W space being embedded is re-
placed by Wy.

Note that it suffices to prove the above embeddings for j = 0. The other cases follow by applying
the j =0 case to D%, |a| < j. We begin estimating u by some suitable weighted averages.

Lemma 9.43. Let 2 C R"™ be a domain satisfying the cone condition and k > 1 be an integer.
Then, there exists a constant K depending only on n,k, and the parameters o and 0 of the cone
condition such that

@) <K Y eln / D% u(y)|dy

la|<k—1 Car
K Y /C D*u(y)l|x — ylFdy
jaf=r /e

for allu € C>(), every x € Q, and every 0 < r < g, where Cy,p := {y € C; ’ lz—yl <r}, Cp =
cone with vertex at x as in the cone condition.

Proof. Set f(t) = u(tm +(1- t)y) for x € Q, y € C; . Recall Taylor’s formula:

f1) = kil lf(j)(o) T /1(1 — t)F W) (1) dt
_j:O J! (k=1 Jo

But .
f(j)(t) = Z i—!!Do‘u(tx +(1- t)y) (x —y)*,

laf=j
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sot =1 gives

w@l < Y It -yl

|ar|<k—1
k k ! k—1
£l | a0t + - o)

Integrate over C,, w.r.t y and using |z —y| <r

|a
n r
@l < 3 S [ rulay

o] <k—1

1
0

k - (0%
+ a'/c Iw—yl’“/ (1 — )" D (tx + (1 — t)y)|dtdy.

|laf=Fk

Here, a is the constant in vol(C;) = ap”, so vol(Cy,) = ar™. Next,

1
/ |x—y|k/ (1— t)F D%t + (1 — t)y)|dtdy
Cepr 0

1
:/ (1—75)'“_1/ ID%u(te + (1 — t)y)llz — yl*dydt
0 Ca,r

1
= / (1—t) ! / |z — /¥ | Du(z)|dzdt
0 C;U,(lft)r
where z =tz + (1 —t)y = dz=(1—t)"dy and z —x = (1 — t)(y — x).

FIGURE 25. z= (1 —1t)r

General: 0 <t <1~ @
2 € Cyp

1— |z—=]

:/ |z—m|k|Dau(2)|/ T (1= i
Ce,r 0

M=z 1

n n
rn

/ 1 — b | Dou(2) | d.
n cz,r

IN
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Divide by ™ to get the result.

Proof. of case I.A. We will show that (recall that it suffices to show the j = 0 case):
lu(z)] < Cllullgp-

Take u € Wk» (Q) N C>*(£2). The above inequality is a direct consequence of the previous Lemma
if k=n,p=1. For kp > n, if p =1, then k > n and again the inequality follows from the previous
Lemma. Consider thus kp > n,p > 1. Apply Holder’s inequality with % + % =1 and r = g in the
Lemma

1 ey
/C |D%u(y)|dy < vol(Czp) e |D%ul1r(c, ,)
z,0

1 n
=ad07|| D% (e, ,)

1
q
/ |Dau<y>r|m—y|k-"dys( / (|:c—y’f—“)qdy) 1Dl

x,0 C%Q
The integral is finite if £ > n. If k < n, then, as kp > n, (k—n)q = (k — n)}% =(kp — np)p%1 >
~~

>n
—n, so (since we can assume o < 1)

(k—n)g _ 1 1

_ € . (n—k)q
Ty S gy T eyl sl

[z —y

< (n—k)g<n—ec <= —n+e<—(n—k)g=(k—n)g,
ie.,, —n < (k —n)q. Thus,

/ (Jz — y\k_")qdy <C e e < oo,
Ca,o B,(0)
Thus,

@) <k 3 ool /C Deu(y)ldy + 5 S /C Du(y)||x — yl*"dy

lo|<k—1 || =k
<C Y TP,y +C Y IDl.,)
|o|<k—1 |a|=F
< Cllul|gp since Cpp C 2

If u € WkP(Q), then there is a uj — u in W*P(Q), u; € WFP(Q) N C>(Q). By the above,
|uj(x) —w(e)| < Clluj — wllkp

so uj — u in C%(Q) and thus u C%(Q). The second embedding follows from interpolation: u €
LP(Q2), now we know that u € L*>(Q), so u € LI(Q), % =8 410 %,0 <0 <1, ie,ue L),

p o]
—0
p < g < o0 and [[ul ey < [[ull ey lulli gy < Cllullig
]

To continue and prove cases 1.B. and 1.C., let us introduce Yy, to be the characteristic function
of B,(0), and G(x) = |z|*~". Note that

XrG(z) = {

[2*n, Jaf <

0, |z[=>r,
Ifk<nand 0<r <1,
Xr(2) < xrGi(z) < Gi(z)
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Lemma 9.44. Let p > 1 and k > 1 be an integer. There exists a constant k > 0 such that
XrGi * [u] € LP(R™) and

Ixr G * [ull| Loy < Kr¥||ul| Lo ey
for every r > 0 and every u € LP(R™). In particular

X1 * [ul | Lo ey < IX1GR * [ull| Lo@ey < Ellull Lo @n)
Proof. Write
xGerlula) = [ ful)l xele = le =yl "y

= [ iyl = [ eyl
(@) By (a)
If p > 1, use Holder, 1% + % =1,

1 1
< ( [ i yr"ﬂ’dy) ' ( [ - yr<m+’“-”>%zy) "
By (x) By (x)

Since dy ~ t"~dt, the second term is finite if (m +k —n)g+n—1> -1 < (m+k)p—n >0,
in which case it gives
C(T,(m—i—k—n)qﬁ-n)% _ CTm+k_%.

If p=1, then |z — gy k=" <pm+hk=nif yy + k —n > 0, thus
/ [u(y)lle —y| ™"~y "y < Tm+k_"/ [u)llz —y[™"dy.
B (x) r(2)

Thus in either case we have

WG bl@) = [l -l iy < o

for m in the above range. Then,

/ IxrGr * |u|(z )|pdaj<0r(m+k / / (Y|P |z — y|”"™Pdydx
n r($
— Cplm+ipn / / )X 5, (o) (9) = — 4]~ dyde

= Cr(m+kp= / / IPxr(x —y)|lz —y|""Pdydx

1
P
lu(y)[P |z — yl‘mpdy>

r(z)

Observe that

s (lel ™) = [ u)Pxele =l — ol "y

e % Ol | 1 gy = / / DIPxe (& — gz — y| P dyde

Applying Young’s inequality
1f * gllLrs®ny < I fllzer ey 119l o2 ),
p% + p% = p%, +1withpy =pa=p3 =1, f = |ulP,g = xr|z|7"P, we find
Ial” s Ocr 27" ) | Ly ey < Ml ey e 1217 1 ey

= [lullZo gy IXr 217" L2 o)

Ixr |~ || L1 gny = / || ""Pde < Cr TP
B (0)
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provided —mp +n —1 > —1, i.e., n > mp. Hence,
1o G [l oy < Crm P, g
= CT‘kauHLp (R™)
Thus, we get the result provided we can find m satisfying all the above conditions, i.e.,
(m+k)p—n>0and n > mp,
ie.,
n

n
——k<m< —.
p p

Since by assumption k£ > 1, this is possible.

We need the following.

Lemma 9.45. Letp > 1, kp <n, p* = There exists a constant k > 0 such that

n— kp
[xx # Julll Lo gy < X1 G ¥ Julll or ey < N1Gr* [ulll o @ny < AllullLe@ny
for all uw € LP(R™).

Proof. The proof is like in the previous Lemma, by a careful (albeit more complicated) analysis of
convolutions. O

Proof. of case I.C., p > 1. Recall: j =0, kp <n,p < q<p":= and we want to show

WhP(Q) < LI(Q).

np
n—kp?

Let u € C®(Q) N WHFP(Q), extend u to R™ by making it identically zero in R™ \ Q. Recall the
estimate

@) <x Y rlan / D%u(y)|dy

|or| <k—1

+m2/ D u(y)lx — y[Fdy

|al=k

Taking r = p, and writing (o < 1)

/C D u(y)||z — 4™ "dy < / IDu(y) ||z — y™ " dy
x,0

Bi(x)

= [ ID*uw)lxs, o)k~ ol "y
= /R |D%u(y)|x1(z — y)|lz —y[™ "dy
= (x1Gm) * | D%u|(x)

for m =n or m = k. Then,

u@) <C Y xaxID%l(@) + Y (iGy) * [Dulu(x).

|a|<k—1 la|=k
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Then,
lull Loy < C D llxa = D%l o) + C Y 0x1Gr) * 1Dul || 1o (e
lal<k1 o=k
<C Y Ixa* D%l oy + C D I Gr) * D%l pogrn)
|a|<k—1 la|=k

By the next-to-previous Lemma above:

<C Y D% pp@ny +C D 1Dl ogn

|| <k—1 la|=k
=C Y ID%lpo) +C Y D] oo
oo <k—1 lal=k

< Cllullwr.p -
Similarly, using the last Lemma:
[ull 2o (@) < Cllullwer @)
(Here is where we use p > 1, since the last Lemma requires p > 1).

1_0 (1-9)
Letq—p+ o

, 0<0<1,s0p<q<p". Interpolating

lull o) < Nullfoqy llull;,: (Q)
< Cllullwrrqy-

The immediate inequality extends to an arbitrary u € W*P(Q) via approximation by smooth
functions.

O

Proof. of remaining cases I. To complete the proof of case I, we need to establish case 1.C.
for p = 1 and case I.B. The proofs are somewhat lengthy, but again involve ideas like averaging,
interpolation, and exploiting the cone condition. We will omit their proofs for the sake of brevity.

O

Proof. of case II. Recall that it suffices to prove the case j = 0, so we need to show
WhP(Q) — C%(Q),
where kp > n and
(a) 0<fy§k—%f0rn>(k—1)p,

(b) 0<y<lforn=(k—1)p, p>1,
(c)0<y<lforn=(k—1)p, p=1.

In particular, we have the embedding in C%(Q). Since the strong local Lipschitz condition implies
the segment condition, by part I, we know that

sup [u(z)| < Cllullk,p-
€N

So it remains to show

u(z) — u(y
sup LADZ 4 oy
z,y€Q |z -y
T#y

with v as above. We claim that we can reduce the problem to proving this inequality for the case
k = 1. For, if K > 1, then case I.C. with j = 1 gives

(3) WEDHP(Q) > WHP(Q), p* = =gy, for (k—1)p <n.
Case L.B. gives
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(B) WE=D+Lp(Q) < Wh4(Q), p < q < oo, for (k—1)p=
Case LLA. with p =1 gives
(@) Wk-D+LL s pheo(Q) - for (k—1) =

Cases (a), (b), and (&) correspond to the relation between k,p and n in (a), (b), (¢) above. Thus,
we see that all cases are covered by the following statement: If u € W1P(Q),n < p < oo, then

sup @ =W o o<y <1
eye T —y[7 p
Ty

Assume first that v € C*°(2) and Q2 is a cube with unit edges. For 0 < ¢t < 1, let @Q; be a closed
cube with edges having length ¢ and faces parallel to €.

Q:

FIGURE 26. @Q; C Q2

If 2,y € Q, | —y| = 0 < 1, then there exists @, such that z,y € Q,. For z € Q,:
Ld
u(z) —u(z) = / — <u(m +t(z — m)))dt.
o dt
1
lu(z) —u(z)| < / \Vu(z + t(z — 2))||z — z|dt
0

Since the diagonal of a n-dim cube of edge o has length o+/n:

() — u(z |<a\f/ Vu(e +t(z — 2))|dt

1n/u )d2| </Qg lu(z) — u(2)|dz

< 0{1/ / |Vu(z + t(z — z))|dtdz

= nl// [Vu(z + t(z — x))|dzdt.
o

Set 0 =z +t(z — x), so

= 7 1/ / IV u(0)[t"dodt = \F /0 </M|Vu(9)|d9>t_”dt
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Applying the Holder to the @, integral, % + % =1,

<

n ! 1 .
v /0 IVl (ol @o))i  tdt

g

1
< Ve [Vl [
0

< 0o since p > n

The same inequality holds with y instead of z, so

u(z) — ln/gu(z)dt‘ 4

juf) - u(y)| < -

thus
u(z) — u(y)|
|z —yl|”
and the desired inequality holds when 2 is a cube since 0 < r <1 — %. Any parallelepiped can be
transformed into a cube, implying that the inequality holds for parallelepipeds as well.

<Clz—y|' v u

‘Lp>

We now consider a general () satisfying the strong local Lipschitz condition. Let 4, M, s, Uj,
and V; be as in the definition of such domains. We recall here the definition for convenience:
Q) C R"™ satisfies the strong local Lipschitz condition if there exist 6 > 0, M > 0, a locally finite
open cover {U;} of 09, for each j a real valued function f; of n — 1 variables, such that

(i) for some finite R, every collection of R + 1 open sets U; has empty intersection;
(ii) for every pair
z,y € Qs == {z € Q| dist(z,0Q) < §}
such that |z — y| < 0 there exists j such that
z,y € Vj:={z € Uj | dist(z,0U;) > &}

(ili) each f; satisfies a Lipschitz condition with constant M
(iv) For some Cartesian coordinate system

(Hj,ly "'76j,n) in Uj, an Uj = {Hj’n < fj(@jJ, ---70j,n)}-
There exists a parallelepiped P, whose dimensions depend only on § and M, with the following
properties:
e For each j, there exists a parallelepiped P; congruent to P and having one vertex at the
origin such that for every x € V; N}, we have x + P; C Q.
e There exist constants dy and d1, dp < 6, such that if z,y € V; N Q and |z — y| < dp, then
there exists a z € (x + P;) N (y + P;) satisfying |z — 2| + |y — 2| < §1]z — y|.
Let z,y € Q. We consider the following possibilities:
o [z —y| <y <6 and x,y € Q5. Then,
u(z) — u(y)] < Juz) —ul2)] + [u(z) — u(y)],
where z € (z+ Pj) N (y+ P;). We can apply the previous inequality in  + P; and y + P; so
u(z) —u(y)| < Clo = z["ull1p + Cly — 2["|lull1p
<z —yl"[ullp

since |x — z|, |y — z| < 91|z — y|.
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o |z —y| <dy, €, yecQ\Q Then z € V; for some j and we can again apply the
inequality in x + Pj, y + P;.

o |z —y| <&, z,y€Q\ Q. Then we apply the inequality to = + P,y + P where P is any
parallelepiped congruent to P with a vertex at the origin.

e |z —y| > dp. Then,

u() = u(y)] < |u(@)] + [u(y)] < Cllu

1p < O " |z =yl [[ull1p-

An approximation by smooth functions produces the result for a general v € W1P(Q).

The following pictures illustrate the above ideas.

0N

/]

f([0r, ... 0,])

~

[01,...,0, 1]

FicUre 27. Strong Local Lipschitz Condition
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FI1GURE 28. Proof of Case II:

Proof. of case III. The operator that maps u : 2 = R to % : R™ — R by extending u to be zero

outside 2 is an isometry of VV(/;C P(Q) into W*P(R™). We can then apply cases I and IT to W*P(R™).
|

9.6. Sobolev’s inequality. We have the embedding W*?(R") < LI(R") for some values of q
depending on the cases kp >, =, < n. We will now refine this embedding:

Theorem 9.46. (Sobolev’s inequality). Let k > 1 be an integer and p satisfy kp < n. Then
there exists a constant k > 0 such that

lull Larny < %Y 11D Logny
|a|=k

for every u € CX(R™) if and only if

g=p = np
n—kp

Proof. We start proving the if-part. It suffices to prove the case k = 1, since higher k cases can be
obtained by induction. Moreover, if suffices to prove the following inequality for o = 1:

n n nﬁl
/ |u|"—Tdx < K)(Z/ |(9ju|dx> .
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For,if 1 <p<mn, p* = then we apply the above to |u|", r = (n — 1)— to get

np’

n * n ﬁ
urnldx—/ upd:):§0< / 8'u7"dac>
[l [ 3. [ fouer

n

n—1
<Z/ lul""1|0; u]dat) , apply Holder

p—1 1, _n_
r—1 % P D L
ul""") P T da |0julPdx
Rn
n(p—1) n
p(n—1) I
< |ul? dm) < [/ laju]pd:c} )
j=1 IR
after using (r — 1)-2 = ((n— )& — 1)-2- = (n=L e _ gy p__ ((n=Up-ndp) p__ mp e Algg
. p—1 n p—1 n n— p—1 n—p p—1 n—pt” ’
TnT_ll =(n— 1)% : nr_Ll =p",

np=1) _ (m—-Dp—np—-1) n-p
p(n—1) p(n—1) p(n—1)’
«n—-1) (n—p) _ mp n—p_,

n pn—1) n—p np '

So let’s prove the inequality. Since

$i
_ 1 i—1 gi it ny g4
—/ Oz, ..zt L a)dt
—0oQ

we have

o
u(a)| </ Va8, 2 ) df
—00

1 < H (/ ‘Vu ) i_l,ti,xi+1,...,x")‘dti>n_l.

Integrating in 2! and omitting the argument (z?, ..., 2*~1 ¢ 2+ .. 2")

+o00 " +oo M +o0o ) ﬁ
/ |u(x)|n—ldx1§/ H(/ \Vu|dt’> dz?

- =1

= </ ]Vu|dt1> / H (/ |Vudt’> da?!

=2

Thus

Apply Hdélder’s inequality

!
1 1
/\ul...ul]dx < H HuiHLm, —+ .+ —=1
im1 b1 b
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in the z! variable to the n — 1 functions

(/ |Vu]dt1> 1=2,...nwithp,=n—1,

—00
1 n

o] 1 oo 00 %
g(/ |Vu\dt1> H(/ / |vu|dtidx1> ,

=2

Integrate w.r.t. z2:

1
00 o] " oo 0 n—1
/ / |21 dat da? g/ {(/ |vuydt1>

_1

n %o oo A ="
</ / \vu|dt2dx1>" 11 </ / |Vu]dt’d:n1> 1}dx2
—00 J —o0 i—3 —o00 J —0o0

1
00 00 %12 00 00 %1
:(/ / \vu|dt2dx1> / {</ yvu\dt1>
H </ / |Vu|dtid:x1> }de.
i=3 —00 J —00

Apply again Holder’s inequality to the n — 1 functions on the right in the 22 variable:

L oo 0 n%
S(/ / ]Vu\dthx1>n 1(/ / \vuydtldx2> 1
H </ / / |Vu|dtidac1dx2> .
i—3 —00 J—00 J—00

If u = 2, we are done. Otherwise, we continue to get

n =
/ lu|=Tdx < (/ \Vu|da:> .
n Rn

Now we prove the only if part. If

ull oy < C Y 1Dl Logn)
|a|=k
holds for all u € C2°(R™), then it holds for u;(z) = u(tx), t > 0. Changing variables we find
el pagny < CE7 20 3" (1D | 1o (.-
|a|=k

Since we must have k — % + % =0, we find ¢ = p*.

Remark 9.47. If ) is bounded, we can get
[ullze ) < ClIVullLr(q),

which is known as Poincaré’s inequality, v € C2°(Q). Thus, ||[Vul[zsq) is a norm on Wol’p(Q)
equivalent to || - ||1,. There are other related inequalities which are also known as Poincaré’s
inequality.
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9.7. Compact embeddings.

Definition 9.48. Let X and Y be Banach spaces. We say that X is compactly embedded into
Y if X is continuously embedded into Y and X and each bounded sequence in X is pre-compact
in Y (so bounded sequences in X have convergent subsequences in Y).

We recall the following theorem from analysis:

Theorem 9.49. Pre-compactness in LP(Q2). A bounded subset B C LP(Q2),1 < p < oo, is
pre-compact if and only if for every e > 0 there exists a § > 0 and a subset Kk CC Q such that

/ iz + ) — (@) [Pda < €@
Q

and

/ lu(z) Pz < €
O\R

for every u € B and every h € R™ with |h| < &, where

. ~Ju(z), zeQ,
“(x)_{o, zd Q.

Theorem 9.50. Reillich-Kondrachov theorem. Let Q) be a domain in R™ and Qp C Q a
bounded subdomain. Let k > 1 and 7 > 0 be integers, and 1 < p < co. The embeddings below are
compact under the stated hypotheses:

Case I. () satisfies the cone condition, kp < n,

np
n—kp

WHHIP(Q) < WH4(Qy), kp<n, 1<qg<p" =

orkp=mn, 1<q<oo.
Case II. Q) satisfies the cone condition, kp > n,

WHEHIP(Q) < C%(Q)
WEHIP(Q) — WH(Qp), 1< q < oco.
Case III. () satisfies the strong local Lipschitz condition,
WkHIP(Q) — CI(Q), kp > n
WEHIP(Q) — CI"(Q),kp>n> (k—1)p and 0 < r < k — %

Case IV. Q is an arbitrary domain. Then all of the above embeddings hold with W*+iP(Q)
k+j.p

replaced by W, (Q). In particular, if Q is bounded, we can take o = Q0 above.

Proof. As for the previous embeddings, it suffices to prove the case j = 0. We can also assume €
to satisfy the cone condition. For, if C is a cone for the cone condition of €2, let € be the union of
all cones congruent to C that are contained in {2 and have non-empty intersection with €2g. Then
we have Qo € @ € Q. @ is bounded and satisfies the cone condition. If W*P(Q) < X(Q) is
compact, so is W*P(Q) < X () by taking the restriction. We will also use that the composition
of a continuous embedding with a compact one is compact.

Proof of case I. Consider the case when
np

kp<nandl1<g<p*= .
n—kp

We will reduce the proof to ¢ = 1 by the following claim:
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Claim 9.51. If WFP(Q) < L (Qq) and W*P(Q) — L9 (Qg) compactly, then WFP(Q) < L1(Qp)
compactly for q1 < q < q*, where ¢* < co.

To prove the claim, interpolate
0 —0 0 —0
lull zagaoy < Nullzon @ llull 127 o, < Clullze oo 1l

If {u;} is bounded in W*?(Q), then it has a subsequence converging in L% (£y) by assumption, so
it is Cauchy in L7(Q).

In our case, we have the embedding
WEP(Q) < LP(Q)
by Sobolev embedding (case I.C.), so it suffices to get compactness W*P(Q) < L(Qy).

Let B be a set of bounded functions in W#?(Q). We will use the LP-precompactness theorem
above, so let

o Jur), zeQ,
u($)_{0, x ¢ Q.

and ¢ > 0 be given.
Let
) 2
Q; = {a: € Q| dist(x,09) > ;}a

7i=1,2,.... We have:

1

Lo la s ([t as) oo o)
Q0\Q; Q0\0;
_1
< Cllullyraay vol(Qo \ Q)"

Since p* > 1, we have that for every u € B

/ lu(z)|dr < e
Q0\Q;

if j is large enough. Similarly, if j is large enough

€

/ |@(z + h) — a(z)|dz <
Q0\Q; 2

Now, let \u!<% Then z € Q; = x+they;, 0<t< 1.
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2
J
Qg/' ¢ q
1
J
L oh
Q; J 0N

FIGURE 29. Q;, Q;, Oq

Then,

d
ﬁu(x +th) ‘dtda:

/Q_\u(ﬁh)—u(x)\dxsfﬂj/:

J
<hl [ Vu(o)lds
QQ]’
< Clhf|ullywrrq)-
(prove the above inequality for C*° first).

So fQj \u(z + h) — u(z)|dz < § if |h| is sufficiently small, and we get fQo |i(x + h) — a(z)|dr < e.
Thus B is pre-compact in L(Qp).

The case kp = n is proven with similar ideas. For example, if then we have, with 1 < r < p,
WHP(Q) s WHEP(Qq) < WH(Qg) < LI(Q),

and the latter is compact as showed above (recall that {2y can be assumed to satisfy the cone

condition).
Proof of case III. Consider ) satisfying the strong local Lipschitz condition and

kp>n2(k—1)pand0<7<k—ﬁ.
p

Let 8 be such that vy < 8 < k — %. We have
WEPQ) e M) o () = Co7(Q0)

Sobolev, case II by restriction compact by Q¢ bounded and Arzeld-Ascoli
If kp > n, let [ > 0 be an integer such that
(k—=Dp>n>(k—-1-1)p.

Then
WEP(Q) — WrLP(Q) — C0Y(Qy) — CO(Q)

where the last two embeddings are similar to above with the last one compact.
Proof of case II. Since )y can be assumed to satisfy the cone condition and is bounded, we

can write
M
Q=9
Jj=1
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where each Q; satisfies the strong local Lipschitz condition (this is a property of the cone condition
that we will not prove). Then
WEP(Q) = WhP(Qy) — C°()

where the last embedding is compact as above. If {u;} is bounded in WHP(Q), we can then select a
subsequence whose restriction to §2; converges in C°(C)) for each j. But then it converges in C%(Qo).
The other embedding follows from Hélder’s inequality since Qg is bounded, so C%(Qq) < L9(£)
for any q.

Proof of case IV. This follows from the embedding I/Véc IP(Q) < WHHIP(R™) obtained from
extending functions to be zero outside ).
O

9.8. Traces. In order to treat boundary value problems, we need to be able to talk about the
restriction of Sobolev to 0f2.

Theorem 9.52. (trace theorem). Assume that Q is bounded and OQ is C'. There exists a
bounded linear operator T : WP(Q) — LP(00Q),1 < p < oo, such that Tu = ulpq if u € WHP(Q) N
C(). (Tu is called the trace of u on 99).

Proof. Suppose first that u € C'(Q) and that 0 is flat near a point z € 9Q and such that
B.(2)N{z" >0} CcQ, B.(2)Nn{z" <0} CR"\Q

for some r > 0. Let ¢ € CZ°(B;(z)) be such that ¢ > 0 and ¢ =1 on Bz(z). Let I' := 00N Bz (z)

and y = (2!, ...,2""1). Then,

/ ulPdy < / PluPdz
r {zn=0}

. / O (6 ul?)da
B (z)N{z™>0}

= —/ |ulPOypdx —/ YplulP~ (sign u)Oyudz.
B (z)n{z™>0} B, (z)n{z">0}

<C |ulPdx + C [ul[P~ | Vu|dx
B, (z)n{z">0} B (z)n{z">0}

< Clullf,

since |uP~HVu| < C(Ju|P~D4 + |VulP) = C(JulP + |[VulP).

Since 0f) is compact and each z € 02 has a neighborhood where 9 can be flattened, we get
the inequality for C'*(Q) functions. Using an approximation we get the inequality for u € WP(Q).

If u € WhP(€) N C°(2), observe first that Tu does not depend on which sequence we use to
approximate u. If we take the sequence we constructed in our poof of the density of C*°(2), that
sequence converges uniformly to a limit v € C(Q), so Tu = ulsq.

O

In the case of Wy (£2), we have:
Theorem 9.53. Let 2 be bounded and 9 be C*. Let u € WP(Q). Then u € Wol’p(Q) if and only
if Tu = 0.

Proof. We will omit the proof, but this should not be surprising since u € VVO1 P(Q) is the limit of
functions compactly supported in Q.

O
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It is possible to define Sobolev spaces W*P(Q) with s not an integer. In fact, we will do this for
p = 2. In this case the trace theorem can be strengthened to

T WP (Q) = W' »P(99).
If 09 is sufficiently regular, we get similar results for W*P(Q2), s > 1. In particular, for p = 2:
T : HY(Q) — H*2(09).

9.9. Sobolev spaces of fractional and negative order. It is possible to generalize the defini-
tion of Sobolev spaces for W*P(Q) with s € R. Here, we will do this in the case p = 2 and Q = R".
First, we recall some basic facts about the Fourier transform.

Facts about the Fourier transform.
e A function u € C*°(R",C) is called a Schwartz function if for every pair of multi-indices
a and (3 there exists a constant k, g such that for all z € R"
%D u()| < Kayp

The space of Schwartz functions is denoted by S = S(R"™).
o If u € §, the Fourier transform of u is defined by

u(€) = F(u)(§) = / ey (z)dx.

n

The inverse Fourier transform of ¢ € S is

w(z) = F (4 = 1 e ey .
(@)= F @) = e [ e i)t

F and F~! are continuous maps (with respect to the Schwartz topology) S — S that are
in fact inverses of each other.
(The topology on S is given by the metric

-y
1 + pj u—v)
where {p;} is the (countable) set of all semi-norms
Pa,s(w) = sup |°Du(z)].)
TER™

e Parseval’s formula
1 / -
— 1(&)0(&)dé = u(x)v(x)d.
e L €00 = [ w@yite)
Observe that
Do = ilolevq
This will motivate the definition of H*(R") for s € R.

Definition 9.54. A continuous linear form on S (a.k.a. continuous functional, i.e. a linear map
f S — C that is continuous, f(u;) = f(u) if u; = u in S) is called a tempered distribution.
The space of tempered distributions is denoted S’.

Definition 9.55. The Fourier transform of f € &’ is defined by
fu) = f(a), ues.
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Definition 9.56. Let s € R. We define the Sobolev space H* = H*(R") as the space of u € §’
such that @ is a measurable function with the property that @(€)(1 4 |£[2)2 is square-integrable.
We sometimes write H®) if we want to stress that s can be any real number. A norm in H® is
given by

1
1 R 2

Jull = bl = ( oy [ 18P (1+ ey
and an inner product by

1

(1) = (. 0)) = e [ WO (1-+1€) e

To see the definition, notice that if £ > 0 is an integer, then Dku = i¥|¢|F4, so

1
2

Dulle = 1lla Lo = [ (6 aoPac)
More generally, we have

Sl < Y e <o e

laf <k

So the norms [[ull, and ||ul|) are equivalent. One can also show that if u € H®) then u is |a|-

times weakly differentiable, |a| < 5. These observations show that H() agrees with the previous
definition of H® when s is a non-negative integer.

All the basic properties H*, k > 0 integer, remain valid for H®), including

Density of C2°(R™). We also have density of S.

D : H®) — HG~12) is bounded.

(u, D*v)g = (=1)l*/(D%u,v), u,v € H®, |a| < s.

The Sobolev embedding theorems and compact embeddings hold for H(®), where s replace
k in the statements and the inequalities among s,n, and p are interpreted accordingly

(including p* = 25).

Definition 9.57. Let u € H®). We define (1 — A)‘u as the tempered distribution whose Fourier
transform is (1 + [¢]?)ta(€), i.e.,

(1= A)u)(€) = (1+[¢2)"(©).
We obtain that
11 = A)2ul|o—py = [[ull(5)s

[V

SO (1 — A) is a bounded linear map from H) to H( ),

(1- A)_%. Thus, we see that

It has a bounded inverse given by

HYR™) = (1 - A)”2(L*(R)).
We also have

((1 — A)%u,v) = (u, (1— A)%v)o

0
for u,v € H® s>0, t <s.
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9.10. Duality. We will now investigate the dual space of W*P(Q).
Notation 9.58. Given 1 < p < 0o, we set

o0, p=1,

/

pP=9 ;o1 1<p<oo,
1, p=o0.

We recall the following construction used in the proof that WP () is reflexive for 1 < p < oo:

Let wu(k,n) be the number of multi-indices a such that |a| < k, and for each « let €2, be a
copy of €, so the pu(k,n) domains €, are disjoint. Set

Q= | Qa-
|| <k
Given v : Q) — R, we write v, for vlq,, so we can identify v with a vector (va), va : Qa — R.
Given u € WH*P(Q), let v be the function Q) that coincides with D% in Qq. The map I :
WkEP(Q) — LP(Qry) u = v is an isometry. Because WHP(Q) is complete, the image X of T is
a closed subspace of LP(Q;)) and we have WHFP(Q) = T71(X). We will use these constructions
below.
The dual space of W*P(Q) is defined in the usual way as dual of a Banach space:

Definition 9.59. The dual space of W#?(Q), denoted (W*P(Q))’, is defined as the space of
continuous linear forms on W*P(Q).

Our goal is to characterize the (W*P(Q)). We will use certain dualities realized by the L? inner
product so it will be convenient to denote

(u,v) = /Q w(z)v(z)da

provided the RHS makes sense.
Lemma 9.60. To every f € (LP(Qy)))’, 1 < p < oo, there corresponds a unique v € Lp/(Q(k)),

such that
flu) = v(x)u(x)dr = Vo (T)ug (x)dr = (Vo Uy )
L >/ >

|| <k la| <k
for all w € LP(Qy). So (LP(Q))) = L' (Qq)-
Proof. This is simply the Riesz representation theorem applied to LP(€()) under our notational

conventions.

0

Theorem 9.61. (Riesz representation for Sobolev spaces). Let1 < p < co, k > 1 an integer.
For every f € (WFP(Q)Y, there exists a v € LV (Q)) such that

flu) = Z (v, D%u) (9.1)
|a|<k
for all uw € W*P(Q). Furthermore

1 llwre @)y = igf HUHLPI(Q(M) = Hzljn H’UHLP'(Q(M) (9.2)

where U is the set of all v € Lp/(Q(k)) for which (9.1) holds for all w € W*P(Q), and the last
equality in (9.2) indicates that the infimum is attained. If 1 < p < oo, then the v satisfying (9.1)
and (9.2) is unique.
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Proof. Define, for elements in X:
f(Tu) = f(u).

so f* € X' since I is an isometric isomorphism. Then,

[f*llx = sup f*(Tu)= sup  f(u)=|flwrrq)-

IIFu”XSl Hunk,p<Q>§1

By Hahn-Banach, there exists a (norm-preserving) extension fof fto LP(Qxy). By the previous
Lemma, there exists a unique v € Lp/(Q(k)) such that

Fw) = 3 (vasua), u € LP(Q)
lal <k

Thus, for u € WP(Q)
fu) = f*(Cu) = f(Tu) = Y (va, (Tu)a)

0<|ea|<k
= Z (Voy, D).

|| <k
This proves (9.1). (Observe that uniqueness of v is guaranteed for f, i.e., such that f (u) =
> jaj<k (Vas Ua) for all u € LP(€y,)), but not necessarily for f, i.e., not for all u ~T'u € X.)

As seen, HfH( )' = ||f*||x’, but the later equals

Wk:p(Q)

||f||(Lp(Q(k)))’ = HUHLP'(QUC))'

Now we have to show that
”fH(Wk,P(Q)), = lgf HwHLp/(Q(k)) — n’zl/}n ||wHLp’(Q(k>).

We have already identified a v € Lp,(Q(k)) such that || f]| (w . Thus, it suffices

ko@) lollze @)
to show that if w € LPI(Q(k)) is such that
fu) =) (wa, D)
la|<k

for all u € WFP(Q), then |[w]| Q) > Hv||Lp/(Q<k)). But such a w agrees with f* on X, so it will be
an extension of f* to LP({,), and thus it must have norm at least equal to || f*[|x/ = ||v||Lp/(Q(k)).

It remains to show uniqueness when 1 < p < oco. Suppose the conclusion holds for v; and vg
attaining the minimum, so ||v1||Lp/(Q(k)) = | fllwrr)y = ||U2HLp/(Q(k)) = 1, where we can assume

= 1 upon redefining f as f/[|f|lyr.nr)y, and for all u € WkP(Q),
flu) =Y (1, D) = Y (vg, D%u)
o] <k || <k
First we claim that there exists a unique x € X such that
[ (@) =zl = 1-
Since HfH(Wk,p(Q(k)))/ = ||f*|lx» = 1, there exists {z;} C X such that ||:c,||Lz(oQ = 1and |f*(x;)| —
(k)

1. Modifying {z;} if needed (multiply by —1) we can assume that f*(z;) — 1.
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Because LP(€y)) is uniformly convex for 1 < p < oo, given 0 < e < 2, there exists a § > 0 such

- — 1) [li ;]| oo lzita;ll
that (since ||z;|| = 1) if ||x; — :Bj||Lp(Q(k)) > ¢, then TJU,(Q(M) < 1—6, thus if =5~ Lp Q)

1 — 6 we must have [|z; — ;|| 1r(0,,) <€

For large i we have f*(x;) > 1 — § thus for large 4, j we also have f*(me]) > 1— 6. Then,
because f* is continuous with norm 1:

| g e Tt < llzi 4] '
2 2 LP(Q(k))
Hence ||z; — :cj||Lp(Q(k)) <¢, and {z;} is Cauchy and z; — x in LP(£,). Since X is closed, » € X.

Clearly ||zl zr( Q) = 1 and f*(z) = 1. To obtain uniqueness, suppose that there are two such

x’s, 1 and xy. Then we apply the above argument to the sequence {x1,x2,x1,x2,...} which must
converge.
Since by assumption v; and vy are two representatives of f*, we have

) =1= S {@)ata) = 3 ((02)ar7a).
|| <k || <k
Next, consider the claim: given w € LP(Qy)) with |lw|[rr(q,,) = 1, there exists at most one
L€ (LP(Q)))" such that [|l]|(zr )y =1 and {(w) =
Let 97 and 72 be the extensions of v1 and v9, considered linear functionals on X, to LP(Q(k))

given by Hahn-Banach. Thus H’DlHLp/(Q(k)) =1= Hf}gHLp/(Q(k)) (observe that though 01 = f* = 09

on X, we cannot claim 7; = U2 because the Hahn-Banach extension might not be unique), and by
foregoing we have 01 (z) = 1 = 03(x). Thus, 01 = 03 by the claim.

It remains to prove the claim. Suppose there are two such I’s, {1 and la, {1 # l2. Then I3 (u) # la(u)
for some u € LP(£)(;)). We can assume that

li(u) —la(u) =2
upon replacing v by multiple of itself, and that
li(u) =1 and la(u) = —1
by replacing u with its sum with a suitable multiple of w. Thus
li(w+tu) =1+t
lo(w—tu) =1+1t, t>0.
Since [[l1]| ey =1 = lll2llLe(@y,)y> we have
1+t =10h(w+tu) <|w+ tuHLp(Q(k>)
L+t =l(w—tu) < ||lw—tullLoq,)-

Recall the LP-parallelogram inequalities

a+blP a—>blP 1 1
> —|lallf, + =|1bll5,, 1<p<2
a+bl|” a—bl|” 1 1 Pl
> =|lallb, + =|bll% 2 <p< oo
1 2 (G g 2 <o
If1<p<2, we get
4 2P (w+ tu) + (w — tu) || N (w+ tu) — (w — tu) ||
Ylizrgy) = 2 2
LP(Q1y) LP(Q1y)

1 1
> Lt g, + =t = (1
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which cannot hold for all ¢t > 0. If 2 < p < oo, we apply the second inequality

(w+ tu) — (w —tu)||”
2

1 1 Pl :
2<2WU+“WZﬁ%g+2Hw—tﬂﬁummJ > (1+1t)P
which again is an impossibility. O

Definition 9.62. Consider C2°(Q2). For each compact subset k C Q, let D, (£2) be the set of all
u € C2°(Q) such that supp(u) C k. Define a family of semi-norms by

(w + tu) + (w — tu) ||
sy = !

1+t

Pran(w) = sup |Du(z)|, m integer,
la|<m
TER

D,.(£2) is then a locally convex topological vector space. The strict inductive limit of D,,(2), when &
varies over all compact subsets of 2 is a locally convex topological vector space. We denote CZ°(€2)
with this topology by D(Q).

A consequence of the definition is that a sequence {u;} converges to u in D(2) if and only if (i)
there exists a compact set k C € such that supp(u;) C & for all j, (ii) for any multi-index «, the
sequence {D%u;} converges uniformly to D*u in &.

Definition 9.63. A continuous linear form on D((2) is called a distribution. The space of
distributions on {2 is denoted D'(92).

Thus, f € D'(Q) if and only if it is a linear map f : D(2) — R such that f(u;) — f(u) when
uj — u in D(Q).

Definition 9.64. Let f € D'(Q2) and « be a multi-index. The a-derivative of f is the distribution
D f defined by

D° f(u) = (—1)l (DY)
for every u € D(§2). Observe that distributions are infinitely many times differentiable.
The motivation for this definition is clear: if v is smooth, it defines a distribution by

and D% by

Then, integrating by parts:
Fpay(u |a|/¢ )D%u(x)dz = (—1)1° f,. (D).

Let f € (W*P(Q)). By the above theorem, f(u) = >_laj<k (Va, D%u) for some v € LPI(Q(,C))
Since C*(Q) ¢ WkP(Q), f lcoo(q) is well defined. To see that f|cec(q) defines a distribution, let
uj = u in D(Q). Then

-y =3 / o () D® (u; — w)dz

la| <k 770
< > lvall o 1D (s = w) ooy
la|<k

Z lvall 0 (Qu) [ D% (u; —U)HLP

la|<Kk
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for some compact r; but ||[D¥(u; — u)|ze(x) — 0 as j — oo since D%u; — D%u uniformly on
#. Therefore, elements of (W*P(Q))" can be viewed as extensions to W*P(Q) of distributions.
Similarly, (Wok P(Q))" can be viewed as a space of extensions to Wé‘: P(Q) of continuous linear forms
on D(Q2). In the case of Wéc P(Q), this in fact characterizes the dual:

Theorem 9.65. Let k > 1 be an integer and 1 < p < co. (WkP(Q))' is isometrically isomorphic
to a Banach space X consisting of those distributions f € D'(Q2) that have the form

F=Y (1D, fo.(u) = (va,u), ueDQ) (9.3)

la|<k
for some v € Lp,(Q(k)) and having norm
171x = nf ol o = min ol o
where U is the set of all v € Lp/(Q(k)) for which f is given by (9.3).

Proof. First observe that the set of f € D'(Q2) of the form (9.3) with norm || f||x = infy, \|U||Lp/(9(k))

is a normed space.
Let f € D'(R2) have the form (9.3). Let us show that it has a unique continuous extension to

WEP(Q). Let u; — u in WiP(Q), {u;} € C°(Q). Then,
[ (wg) = F@)l < D7 [(fous D*(uj — wi))]

laf<k

< Z [ D (u; — “i)HLP(Q)HUa”Lp’(Q) —0asz,7—0.
la|<k
Thus {f(u;)} is Cauchy in R and converges. If we take another sequence, the limit is the same so
we can define

flu) = lim f(uy)

j—o0

for u € WEP(). Observe that f is linear, thus it defines an element of (Wo™()Y'.

Let f € (WEP(Q)). Then f: WEP(Q) — R has a norm preserving extension f* : Wk?(Q) — R
and thus f* has the form (9.3) by a theorem above and its norm is as stated. This applies in
particular to the extension f so the infimum is realized. Thus we have a norm preserving map
feX— feWrr)y.

Reciprocally, if f € (I/Véf P(Q)), then as just seen it is given by
flu) = f7 (@) = Y (va, D), w€ Wy™(2)

|| <k
with norm as indicated. As seen above, f restrictied to D(§2) gives rise to a distribution, i.e., we
have a norm preserving map f € (Wéf’p(Q))’ = fp) € X CD'(Q).

Consequently, X is complete since (Wég P(Q)) is.
([l

Observe that the above argument does not hold, in general, for W*P(Q): to uniquely extend
f € X to an element of (Wéc’p(Q))’ we used that any u € Wok’p(Q) is a limit of elements in C2°(£2),
where f is initially defined, but elements in W*?(Q) cannot in general by approximated by C°(€).
In other words, when VVéC P(€)) is a proper subspace of WP(Q), f: W*P(Q) — R is not determined
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by its restriction to C°(Q). Thus, f € X extends to W*P(Q) (by extending to Wg’p(Q) uniquely
and then to W*P(Q) by Hahn-Banach) but this extension in general is not unique.

Definition 9.66. The Banach space X in the previous theorem, identified with (VV(;C P(Q)), is
denoted W57 (Q).

Observe that W—5?'(Q) is separable and reflexive for 1 < p < occ.

We will now give another characterization of W5 (Q) for 1 < p < cc.

Definition 9.67. Let 1 < p < co. Any element v € L¥ (Q) determines a functional on Wéf’p(Q) by
Jo(u) = (v, u), since

[fo()| < 10l o o llell o) < Ml0ll Lo @y lullwnn o)
We define the (—k,p’')-norm of v € L (Q) as the norm of f,, i.e.,

Vg = 01—k ron 1= , , = su U
ok = Ielhy-scy = oll gy = _sup 1)
lullg,p<1

= sup [(v,u)|.

ueWk.r(Q)
Tall p=1

Observe that ||v||_pp < ||vHLp/(Q) and

u
¥4 <7a

[l

(v, u)| =

v)

< Nlullipllvll—p

for all uw € W*P(Q) and v € L¥ (), which is known as the generalized Holder’s inequality.
Theorem 9.68. Let 1 <p < oo and k > 1 be an integer. Then

W=k (Q) = completion of LP' () w.r.t. || - | —k.pr-
Proof. First we show that

X={f|velr()}

where f, is as above, is dense in (I/V(/;f P(Q)). If that is not the case, then there exists a F €
(I/Vé€ (€2))"\ X. By one of the corollaries of Hahn-Banach, there exists [ € (Wé~C P(Q))” such that
I(F) # 0 and [ |g = 0. By reflexivity, there exists a Fj € Wy’ MP(Q) such that [(F) = F(F)
for every F € (WEP(Q)). Then, for F € X (so F = f,), F(FR) = fo(F) = (v, F), but

F(F) 1) = l(~ ) = I(fy) = 0, so (v,F}) = 0 for all v € LP (). Hence, F; = 0 and thus [ = 0
by I(F) = F(F;), a contradiction.

Let Y be the completion of L' () w.r.t. || - ||_x,. Define T: Y — (WFP(Q))' by
T(y) = lim f,

j—00
where v; — y in Y and lim; , fo, is the limit in (Wg’p(ﬂ))’. Then
(i) T is well defined. If lim; oo vj = y = lim;_,0c wj, the limits in Y, then, since ||v||_py =
vaH k, WP ()
va] fwJ H whr )y = |lv; —wjll-kp — 0,

so T'(y) = lim; 00 fy; = limj 0 wy, limits in (Wé“’p(Q))’.
(ii) T is linear.
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(iii) T is one-to-one. If T'(y) = 0, then
0= L 1o oy = im0l
soy =lim; ,ov; =0in Y.
(iv) T is onto. Let f € (Wéc’p(Q))’. By the above density, f = lim;j o fy, in (Wéc’p(Q))’ for
some {v;} C X. But
ij - vi”—km’ - Hf'Uj - wa(W:vP(Q))/
thus {v;} is Cauchy in Y, v; = y and
f=lim f,, =T(y).
J]—00
If T(y) = f, then we have
T(y) = lim f,,, limit in (WP (Q))
j—oo

for some v; — y in Y. Because the limit lim; o f,; is in (WEP (@)Y,
HT(ZU)H(W(’;%P(Q))/ = ]11{20 Hij ||(W§’9(Q))/ = jlggo v ||—/<3,P’

= [yl

since v; — y in Y. Thus, Y is an isometric isomorphism.

We observe the following consequences of the above theorem and its proof:
e Since any f € (Wég’p(Q))’ is of the form

f:jli?gofvj7 Uj—)UGK

we can extend the notation (,) to mean

<U7u> = fv(u) = lim ij(u) = lim <Uj7u>
j—o0 j—oo

for all v € Y and u € WoP(2). Thus, any linear functional f on WP (€2) can be represented
as

fu) = (v, u)
for some v € WFP((Q), i.e., some v with finite | - ||, norm.
e We can extend the generalized Holder inequality:
(v, )| < [[oll -k ullps
veWRr(Q), ue WhP(Q).
Remark 9.69. The same argument as above shows that (Wg’p(Q))’, 1 < p < o0, can be identified
with the completion of L? () with respect to the norm

ol -k = sup [(v,u)l,
ueWk.r(Q)
lullp p<1

v E LPI(Q), and that the above representation and generalized Holder’s inequality also hold. Some-
times the dual of W#*?(0Q) is also denoted W ¥ (Q) with the |- || 1, norm denoted by |||- ||| -

Remark 9.70. We can verify that for p = 2 and Q = R?, the above construction of H ™% agrees
with H().
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Definition 9.71. We define the pairing between Lp([(), T, H(S)) and L' ([0, T1, H(_S)), as

T
(1, ) :/0 (1= A)u, (1— A)5v)dt,

for u € LP([0,T], H®)), v € LP([0,T], H=)).
(Note that here (,) is denoting something different than above.)
The definition makes sense because ((1 — A)zu, (1 — A)~2v) is integrable in ¢:

(1= A)2u, (1= A)"70)o] < [Ju(®) | greo |0 ()] g,

SO
00 < Wl 1) 190 (00

Notation 9.72. We abbreviate

rr([0,7], H®) = LPH® = LY H?
Theorem 9.73. Given f € (L%H;Es))/, there exists a v € L§°H£‘s) such that
f(u) = {u,v)
for allu e LYHS).

Proof. This follows from the duality between H(®) and H(=%) and the Riesz representation theorem.
We leave it as an exercise. O

9.11. Some miscellaneous inequalities. We collect here some inequalities that will be use later
on, mostly in the study of non-linear problems. Their proofs can be found in most books on the
topic.

o Let u,...,u; € HY(R") N L¥(R"), a, ...,y be multi-indices with 22:1 |ay| = k. Then

!
1D uy .. Dy gy < CY | DPusl| 2oy [ ] 110 poe ey
i=1 i
(This inequality also holds in C2°(£2) by considering zero extensions)
e Let F € C®°(R""!) be such that F(z,0) = 0 for every x € R™®. Assume that for each

non-negative integer j and multi-index « there exists a continuous increasing function F, ;
such that

| D Dy F(z,y)| < Fa;(ly])

for all (x,y) € R"*1. Then, if u € H¥(R™) N L®(R"), F(-,u) € WFR") (i.e., it is k-times
weakly differentiable) and its derivatives are given by the chain rule. Moreover, there exists
a continuous increasing function C' such that

()l ey < C (el oo greny) ] e em-
o Ifuc WhP(Q), ve WkP(Q), k> o, then wv € WFP(Q) and

[wvllywrr) < Cllullwre@llvllwer@)-

These assertions hold for Q2 satisfying the cone condition.
e Interpolation:

53752 52751
ull resa) ey < Nl ey ey 141l o) ey

s1 < S9 < s3.
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For 2 satisfying the cone condition, we also have, 0 < m < k,
ullyro) < C(ellullwrnq) +€ = [lullr))
ulwrn) < Clelulyre@) +€ = llull o))

1
where |u]Wk,p(Q) = (Z|a|=k ‘Da“’p)p

lllwrgy < Clullf ey Tl

Moreover, let ¢ satisfy: p<g< wifkp>n;p<g< xifkp=n;p<qg<p'= nﬁip if
kp < n. Then
lllo@y < Cllullyem ey lull 5
=kt

10. NECESSARY AND SUFFICIENT CONDITION FOR EXISTENCE OF SOLUTIONS TO LINEAR PDESs

In this section we will assume €2 to be a bounded domain with smooth boundary. We will also
consider only operations of second order. More general domains and operators also be considered
by adapting the proofs below.

Consider the boundary-value problem

(BVP){Lu—finQ

Nu =0 on 0f2
where throughout we assume
Lu= aijé)z-c‘)ju + biaiu + cu,

Nu:a@—i—ﬁ-DTu—f—'yu,
v

where D, is the tangential gradient and a™, ¥/, ¢, i, 8, v, are smooth in Q and a¥ = o/’

Consider the following formal computation.

/ vLu :/ v(a” 9;0u + b'O;u + cu)
Q

= / Zjavau/vaajﬁu/bavu/abvu
/cuv—i—/ a' 1)8 uv; + / blouy;
o0
—/ Uaavu—i-/aajavu—i-/8a]8vu+/88a VU
/b’@ vu—/@bzvu+/cuv—|—/ a”v@ uv; + blouy;
o2 o0

—/ a”(‘?ivuvj — &a”vuvj
oN oN

:/ u [aijaiaj’v + (28jaij - bi)aﬂ) + (C - @‘bi + 8i6ja"j)v]
Q

+ /89(aijv8ju + b'vu — a”djou — dja T vu)v;.
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This motivates the following.

Definition 10.1. The formal adjoint L* of L is the operator
L*u = a”9;0;u + (20;a”7 0v — b")0jv + (¢ — 9ib" + 0;0;0" )u

Definition 10.2. Let C37(£2) be the space of u € C°°(Q2) satisfying Nu = 0 on 9Q. A function
v € CY(Q) is said to satisfy the adjoint boundary condition N*v = 0 if
(Lu,v)p = (u, L*v)

for all u € CF(€2). The space of all v € C*°(Q) satisfying N*v = 0 will be denoted CF.(€2).

Example 10.3. If Nu = u (Dirichlet boundary condition), then N*v = v since in this case the
boundary term becomes

/ (a"vdju + bivu — a dou — djavu)v; = / a djuviv
o0} o0
thus one needs v = 0 on 9%, provided a%/ Ojuv; # 0 (say, if L is a an elliptic operator, to be defined
later).
Definition 10.4. Let k be an integer. We say that u € H*(Q) is a weak solution to BVP if
(U, L*U)O = (f7 U)U

for all v € CR.(Q).

The idea is that if u is a smooth solution, then integration by parts gives the above equality for
v e CR.(2).
In the next theorem and what follows, H~%(2) is the dual space of H*(f2) (and not of Hj(€2)).

Theorem 10.5. Let s,t > 0 be integers. Then, there exists a weak solution u € H*(2) to BVP for
each f € HY(Q) if and only if there exists a constant k > 0 such that

[oll—¢ < &[lL7v]| -
for all v € CF.(Q) (recall || - ||ls = || - |55 ())-
Remark 10.6. Observe that the theorem makes no statement about uniqueness.
Proof. We first need some auxiliary constructions. Let (k > 0, integer)

T: H7*(Q) — (H*(Q))

completion of L*(1)

wrt. [l _g
be the isometric isomorphism that identifies these two spaces. Let
R: (H*Q)) — H*Q)
be the isometric isomorphism given by the Riesz representation theorem. Set
(u,v) g == (RoT(u),RoT(v)).
This defines an inner product on H~*(). We have
() = (Ro T(u), Ro T(w))y = | R(T(w)|?
— T @)y = ( s 1, 0))? = [lull2

veEHk(Q)
lvllp=1



76 MATH8110 - Theory of PDEs

so (-,-)_ generates the H~*(Q) topology. We already know that an element in (H¥(£2))" is rep-
resented by an element in H*(Q). Conversely, a g € (H¥(Q)) is uniquely represented by a
v e HE(Q) via
g(u) = (v,u)g,u € H*(Q).
The argument is similar to what we did for the first identification, showing that the functions of
the form g,(u) = (v,u),v € H*(Q) form a dense set. Moreover,
lgoll(z-#()y = sup [(v,u)ol

ueHF(Q)
flull —p <1

But we can also write (v,u)g = fu(v), fu € (H*(2))". By one of the corollaries of Hahn-Banach,

we can choose a u' such that f./(v) = [[v[lx and || full gr @)y =1 so
19oll(zr—k(0)y = sup (v, u)o| = | fur (v)] = [Jvllx,
u€H~k(Q)
llull — <1

thus [|gull(g—#())y = llvllx by the generalized Hélder inequality.

Therefore, the construction 7' : H=*(Q) — (H*(Q))’ carries over to T : H*(Q) — (H~*(Q))’, where
we slightly abuse notation by calling the later map T as well (so we have T : H=*(Q) — (H*(Q))’
for k € Z).

We can now prove the theorem.

Assume the estimate. Set
X =L*CR(Q) c H*(Q).
For f € HY(Q), set F: X — R by
F(L™) = (f,v)o.
This is well defined because the estimate gives that v = 0 if ||[L*v|_s = 0. By the generalized
Holder inequality,
[E(L )| < ([ fllellvll— < sIFIIL 0l -,
thus F is a bounded linear functional on X. By Hahn-Banach, F extends to F' : H—*(Q) — R,
ie., F e (H5(Q)). By the foregoing discussion, the linear functional F can be represented by a
u € H*(Q) via
F(w) = (u,w)o
for all w € H~%(?). In particular, if w € X,

(u,w)o = (u, L*v)og = F(L*v) = F(L*v) = (f,v)o,

ie., (u,L*v)o = (f,v)o for all v € CR.(£), showing that u is a weak solution.
We can now prove the converse. Assume that for each f € H'(2) there exists a weak solution
u=1uy € H*(Q2). The map
gf("U) = (f,v)o, v € H7t<Q)7
defines a bounded linear function on H~*(Q2), i.e., g5 € (H*(Q))". Since H~*() is a Hilbert space
as seen above, by the Riesz representation theorem there exists a R(gf) € H () such that

9r(v) = (R(gy),v)~t
On the other hand, R(g¢) is the image by T~'o R7! of an element in H', and this element must
be f since the maps involved are all isometric isomorphisms:

HY Q) B H Q) D H () B HY (),
(T~ o R7Y(f),v) -t = g5 (v) = (f,0)o
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This holds for every v € H*(Q2). In particular, for v € CR%.(£2) we have

(T o RY(f),v)—t = (f,0)0 = (uy, L*v)o,
(T~ o RTM(S), v) =] < Nluglls| L0l s < Cpl|[L*0]| .

Since the maps T and R are isomorphisms, any w € H /() is of the form T~ o R7!(f) for some

f. Thus, we define, for each v € C%%(Q2), the functional

sw) = (170 7(5) ||L||)_

w

Hence, we have a family {Jv}ve(};@ @ C (H7Y(Q)) with the property that for each w € H'(Q)
| Jo(w)] < Clu,

i.e., the family is pointwise bounded. Therefore, by the Banach-Steinhaus theorem, the family
{JU}UGC%’*(Q) is uniformly bounded, i.e., || Jul[(g-t()y < C for all v € CR.(2). Thus, for any

we HYQ)
w v
(Fmr) e
Choosing w = v gives
o2
ol ¢l L*vf|—s =
hence the result. O

10.1. Egorov’s counterexample: a PDE that is not locally solvable at the origin. For
this section, we will further restrict the notion of weak solution. We continue to assume L and €2
to have the same form as in the previous section.

Definition 10.7. We say that u € H*(£2) is a weak solution to Lu = f in Q if (u, L*v)g = (f,v)o
for all v € C°(Q), s,t, € Z.

Definition 10.8. Let 2 C R" contain the origin. We say that L is locally solvable at the origin
if given f € C2°(Q), there exists a 2 C Q2,2 >0, and au € H%(1), s € N, such that Lu = f holds
weakly in €.

We will henceforth consider the operator

Lu = 02u — a*(t)0%u + b(t) O,

(t,z) € R a,b € C®(R). We will present an example, due to Egorov, of a choice of, a, b such that
L is not locally solvable at the origin. The construction is a bit tedious, involving some cumbersome
computations, and we will give only the main steps.

Lemma 10.9. If Lu = f always has a (weak) solution in Q C R? for any given f € C(S) then
there exists a C > 0 and N € N such that

[ollo < Cl[L7v]|x
for allv € C ().

Proof. Using that now we established H~*(Q) ~ (H*(Q))’, the necessary condition for existence
can be extended for s,t € Z. Thus there exist s,t € Z and C > 0 such that:

[olls < ClIL vl (10.1)
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If s > 0, then ||v]jp < ||v||s and we choose N > t. Otherwise, note first that we can assume ¢ > s
since if t < s then we can choose > s and work with ¢ instead (so |L*v||; < ||[L*v||;). Since
Dév e CX () if v € C°(Q2), we can apply the inequality (10.1) to DSv,

[1Dz0lls < CIIL* D3|l = C| Dy Lol < CHL*UHtHa\
where we used that L*v = 02v — a(t)0%2v — b(t)0,v. This latter expression also gives

107v]ls—1 < C|IL"]ls—1 + 1870]ls-1 + 1020l s—1
—_——

<Ll <I|L*0le1
by s<t by the above with D¢=092
and s—1 in place of s
< Cf|L*v||¢41
Then
[olls11 < [lvlls 4 [107v]ls—1 + [|050]] s
~—~—
<[ L*vfe <C[|L*v|[t41
< Ol L™ 0|41

Iterating this argument
[0lls+1 < ClIlL ¢4

and we choose [ such that s+1=0and N =¢+1. O

Theorem 10.10. There exist a,b € C*(R) such that given f € C°(Q), Q containing the origin
in R?, Lu = f has no weak solution u € H—*(Q2),s € N.

Remark 10.11. This is not yet saying that L is not locally solvable.

._ g tin (t%), t >0,
a(t) :=
0, t<0,

Proof. Set

b(t) = {;zat(i)g(;(t) —d(t), t>0

where £(t) — sin~*(}) — In(¢). One can verify that these functions are smooth.

Notice that a oscillates very fast on the intervals I, := ( (u ) ﬂu) We will use this to violate the

inequality in the previous Lemma by constructing a sequence of functions v,\ € C2°(/, HZL‘(—%, %))
which makes the RHS smaller than the LHS for large pu, A.

We first search for approximate solutions L*v,, =~ 0. The change of variables t = ¢,z = z— fg a(t)dt'
is smooth near the origin and setting o(t,z) = v(t, x),
dv d*v dv
L't=—= —2a—=—=—(b+d)—
"= o e
9*v 9*v dv
= 99— —92¢/qg=—
e~ *ozor X oz

We now drop the 7’s. Set
!

vun(t, x) Z Hw;(Azx)
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for z; € C°(I,), w; € CF(—1,1), 80 v\ € C(Jn), Jun = I, X (—%, 7). Calculate
L*v,y = —X2awj () + &' 20)

+ zywo — 2aw] (2] + &' 21)

1
+ (w1 — 2awh(2h + ' z3))

A
+ ..
1
+ yzf/wl
Take w; € C°(—1,1) and set
d,
w(#) = ()~ (z), = A
so w;, | = w;. Set
20 = e ¢
t {/ t/) ,
() = 5(t>/ 27 (1) et gy
i) =™ |2l

1"
Zi

then z; € COO(IM)(efsinﬂl(%) dominates (5t)e® because the latter is o(wf_o‘ezﬁsi‘r{z(%))7 o, B > 0).
Then, with these choices v\ € C°(J,). Moreover,

1L vl g, < Cun A7V,
——

does not
depend on A
and
2 —2¢(t),,.2 -1
HUH)\HLO&(JP)\) > / e %l )wo()\m) dt dx — Dy A
BA ~~~
does not depend
on A or N
Compute
+ 1
/ wi(\z)dr = / wi (BN dE = A1 C
_% Az=% J_1 —~—
depends on [
because wg does
Thus
2 -1
[opallz2 (g, = Eu A
does not depend
on A or N
Thus, for large p and large A (choosing A after fixing p large) we violate the inequality of the
previous lemma. O

Corollary 10.12. There exists f € C°(R?) such that Lu = f has no weak solution u € H~5({),
s € N, for any Q containing the origin.

Proof. For a fixed {2 containing the origin, set
X,(Q) == {f € C°(R?) | Lu = f has a weak solution u € H*() such that |u|_s < [s|+ 1}

X(Q) :={f € C*(R?) | Lu = f has a weak solution u € H *(Q) for some s € N}.

If f e X(Q), then f € X5(Q2) for some s. For, if u € H™%0() is a weak solution, then since
lul|—s < [Jul|=sy, —s < —s0, we have u € H%(Q), —s < —sg. If there is no s such that |lul|s < |s|+1,
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then we have ||ul|—s > |s|+1 for all —s < —sg, so taking —s to be sufficiently negative we can make
||u||—s, arbitrarily large. Thus

S=—00

X (Q) is a Fréchet space with topology given by the collection of semi-norms || - ||s, s € N. Thus, its
topology is generated by open sets

Usy,..sp = {2 € X(Q) | lz]ls, <, 2]l <€}
Hence x; — = in X () iff ||z; — z||s — 0 for each s € N.
Let {f;} C X4(Q) converge to f. For each j there exists f; such that Lu; = f; weakly and
lujll—s < |s| + 1, so the sequence {u;} is bounded in H~*(€2) and thus has a convergent sub-
sequence, still denoted {u;}, converging to a limit v € H~*(2). But (f;,v)o — (f,v)o for all

v € C2(2). We also have (u;, L*v)g — (u, L*v)o for all v € C(Q), since H*(Q) — H*71(Q)
compactly, —s — 1 < —s, u; — u in H—*"1(€2), which gives the claim. Therefore,

Lu = f weakly,
and we conclude that X,(€) is closed.
Let f € X,(Q). By the above, there exists a f € C°(Q) such that Lu = f has no weak solu-
tion w € H*(Q2) for any s € N. If f +tf € X(Q), then there exists a w € H*(Q2) such that

Lw = f +tf weakly. And since X5(92), there exists a z € H%(Q) such that Lz = f weakly. But
then

1 1 N .
SL(w—2) = S (f +tf — f) = f weakly
contradicts the properties of f . Since f 41 f — fast— 0T, f cannot be an interior point. Thus,
Xs(2) has an empty interior.
Therefore, X () is of first category. Now, set
Y, :={f € CX(R) | Lu = f has a weak solution u € H *(£;) for some s € N},

where {€;}2°, is a collection of nested open sets with smooth boundary that form a countable basis
for open sets containing the origin.

By the above each Y; is of first category. By the Baire category theorem, C°(R™) # U2, Yi,
thus there exists an f € C:°(R™) \ U;2, Vi, and such f has the desired property.
]

11. LINEAR ELLIPTIC PDES
In this section we consider the following boundary value problem for a unknown function

Lu = fin €,

BVP
( ){u:()onaQ,

where () is a bounded domain in R"™ and L is given by
Lu = —08;(a0ju) + b'Ou + cu

and a% = aji.
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Remark 11.1. If the coefficients a* are sufficiently regular we can write
Lu = —a"9;0;u + (b' — 9;a")0yu + cu
W
=bi
the operator L is said to be in divergence form if written as in (BVP) and in non-divergence

form if written as in this last expression. The negative sign in —d;(a”d;u) is for convenience (we
will consider integration by parts).

Definition 11.2. The operator L is (uniformly) elliptic in 2 if there exists a constant A > 0
such that

a(x)&:€5 > Al¢f?
a.e. in Q for all £ € R™.

An obvious example is the case a’ = 670" = 0,¢c = 0, so L = —A. The motivation for
this definition is as follows. The definition says that the matrix (a%) is positive definite, with
smallest eigenvalue > A. This implies that given xg € €2, there exists a coordinate transformation
y) =7 (2!, ..., 2") in the neighborhood of zg such that Lu reads

(L)) = = s (@) ) + B i) + i)

where @ (yo) = 6Y,y0 = ¥(x0). So an elliptic operator is locally comparable to the Laplacian.
We will see that many of the basic properties of Laplace’s equation remain valid for elliptic oper-
ators. Note that if a”/ are the components of a (inverse) Riemannian metric, the above change of
coordinates is realized by normal coordinates.

Definition 11.3. Let L be an elliptic operator and assume that a*,b?,c € L>°(Q). The bilinear
form

B: H)(Q) x H)(Q) - R
associated with L is
B(u,v) := / (a" Qjudjv + b'vdyu + cou)dz.
Q

We say that u € H((Q2) is a weak solution to (BVP) if

B(“? U) = (f7 ’U)O
for all v € Hy(Q).

The idea of weak solutions is that if u is u satisfies (BVP) pointwise, multiplying Lu = f by
v € H)(Q) and integrating by parts we get B(u,v) = (f,v)o.

Remark 11.4. Because a weak solution u is in H{(€2), it has zero trace on 9 (when the trace is
well-defined). Whenever talking about u|sq it will always be meant in the trace sense.

Definition 11.5. We say that u is a strong solution to Lu = f in Q if u is twice weakly
differentiable and satisfies Lu = f a.e. in Q. wu is a strong solution to (BVP) if it is a strong
solution to Lu = f such that u|sq = 0.

Observe that if u is a weak solution that is sufficiently regular, then we can integrate by parts
and obtain that it is a strong solution.

11.1. Existence of weak solution. Strategy to solve (BVP):

e Find (unique) weak solutions: easier because weak solutions are more general.
e Prove regularity: show that the weak solution is in fact sufficiently differentiable, so it is a
strong solution.

We will need the following theorems from functional analysis.
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Theorem 11.6. (Laxz-Milgram theorem). Let H be a real Hilbert space and let B: Hx H — R
be a bilinear form that is bounded, i.e.,

1B(z,y)| < hllzllyll
for some constant h > 0 and all x,y € H, and coercive, i.e.,
lllz]* < B(z,y)

for some constant Il > 0 and all x,y € H. Let f : H — R be a bounded linear functional. Then,
there exists a unique z € H such that

B(Z7$) = <fax>
for all x € H, where (,) is the pairing between H and H'.

Definition 11.7. Let X and Y be real Banach spaces. A bounded linear map x : X — Y is called
compact if given a bounded sequence {m};";l C X, the subsequence {mc};";l C Y is pre-compact
inY,ie., {mx}j’il has a convergent subsequence.

Theorem 11.8. Let H be a real Hilbert space. If k : H — H 1is compact, so is its adjoint
k*:H— H.

Theorem 11.9. (Fredholm alternative). Let H be a real Hilbert space and k : H — H a
compact operator. Then

(i) ker(I — k) is finite dimensional.
(ii) range(I — k) is closed.
(iii) range(I — k) = ker(I — Kk*)= .
() ker(I — k) = {0} if and only if range(I — k) = H.
(v) dim ker(I — k) = dim(I — Kk*).

(I is the identity operator.)
Theorem 11.10. There exists constants k,l > 0 and m > 0 such that
|B(u, v)| < kllull gy @) lv] my0)
and
Uullfgy @y < Blu,u) +mllull72
for all u,v € H{().
Proof.

Bu,v) < 3 167 ooy /Q V|Vl

3,j=1

5 1 ey /Q IVullo] + llell =) /Q ol
=1

< Cllullag @ llvll o)
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The ellipticity of L gives

A/ |Vu|* < / a" Ojudju = B(u,u) —/(biaiuu+cu2)
Q Q Q

< B(u,u) + b .00 / Vullu + |le|| foo /u2
(u, ) ;H 2o (@) ; Vullu| el Lo (@) A

§5|Vu|2+iu2

<& [ IVu]2+C [, u? if € is sufficiently small.
— A/ |Vu|* < B(u,u) +C/ u?.
2 Ja Q
Because u € H{(§), we have (Poincaré inequality)
[ullz2() < ClIVullr2(9),
which gives the result. O

Theorem 11.11. There erxists a m > 0 such that, for each p > m, and each f € L*(Q), there
ezists a unique weak solution v € Hy(Q2) to

Lu+ pu=f in §,
u =0 on Of.

Proof. Take m > 0 from the previous theorem. The bilinear form
BN(“? ’U) = B(’LL7 U) + ,U,(U, U)

corresponds to the operator L,u := Lu + pu. B, then satisfies the assumptions of Lax-Milgram
since p(u,u) > I(u,u). Given f € L?(), set

<f7 U> = (f7 U)Uv

v € H|(Q), which is a bounded linear functional, so by Lax-Milgram there exists a unique u € H{(€2)
such that

Bu(u,v) = (f?v)O
for all v € H)(Q).

Definition 11.12. The formal adjoint to L is the operator L* defined by
L*v = —0;(a70;v) — b' v + (¢ — 9ib')v
if b € C'(Q2). The adjoint bilinear form B* : H)(Q2) x H\(Q) — R is defined by
B*(v,u) = B(u,v).
We say that v € H|(f2) is a weak solution to the adjoint problem

L*v = fin Q,
v =0 on 01,

if B*(v,u) = (f,u)o for all u € H)().
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The above definition is again inspired by integration by parts:

/vLu:—/Bi(aijaju)fU%-/ bi@-uv—l—/cuv
Q Q Q 9)

—/aijﬁjuaiv—i-/biaiuv—i—/ cuv = B(u,v)

Q Q Q

= —/ @(aij@w)u—/(biaivu+8ibiuv)—I—/ cuw
Q Q

Q
= / uL*v.
Q

On the other hand, the bilinear form B*(v,u) such that

/ L*vu = B*(v,u),
Q
so B*(v,u) = B(u,v).
The next theorem characterizes the solvability of (BVP).
Theorem 11.13. (Fredholm alternative for elliptic operators). Ezxactly one of the following

statements holds:
(i) For each f € L*(Q) there exists a unique weak solution u to

BVP Lu=f in Q,
( ) u =20 on 99,

or else
(i) There exists a weak solution u # 0 to

BVP - H Lu=0 i Q,
( - H) u =0 on 909,
Furthermore, if (ii) holds, then the dimension of the subspace N C H{() of weak solutions to
(BVP-H) is finite and equals the dimension of the subspace N* C H( () of weak solutions to
L*v =0 1in Q,
v =0 on 08,

Finally, (BVP) admits a weak solution iff (f,v)o =0 for allv e N*.

(BVP - H)* {

Remark 11.14. The theorem says, loosely speaking, that we can solve (BVP) iff f is orthogonal
to the kernel of the adjoint operator. Compare with the similar statement in linear algebra.

Proof. Let m > 0 be the constant from the previous theorem and set
Lpu = Lu + mu,
with corresponding bilinear form
B, (u,v) := B(u,v) + m(u,v)o.

Then, given g € L?(Q) there exists a unique u € H{(Q) such that By, (u,v) = (g,v)o for all
v € H)(Q). This defines a linear map L, : L?(Q) — H{(2),g > u.

u € H)(2) is a weak solution to (BVP) iff B(u,v) = (f,v)o
which is equivalent to

B (u,v) = B(u,v) + m(u,v)o = (f + mu,v)o
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for all v € H)(Q). But this means that u = L;;!(g) with g = f + mu, i.e.,
w= L f+mu).
We can write this equation as
w—mL tu=1L_f.
—— =
=:KU —=:h
Let us show that x defines a compact operator x : L?(2) — L?(Q2). We have, for any g € L*(Q),

ml|ul[f ) < B (u,u) (g:wo < lgll2@llull 2 @) < gl llullmy @)

taking:v =u
= mllullg; @) < 9ll20)-

But u = L;'g = Lrg (if m = 0 then L, = L and there is nothing left to prove). Thus,
K L2(2) — H}(Q) is bounded. Since H}(Q) < L?(Q) compactly, x : L*(Q) — L?(2) is compact.
Thus, by the Fredholm alternative, ker(I — k) = {0} if and only if range(I — k) = H. Thus, either
u — ku = h has a unique solution u € L?(Q) for each h € L?(2) or else u — ku = 0 has a non-zero
solution u € L?(2). In the former case, taking h = L. .1 f, we have h € H}(Q) thus by the foregoing
w is in fact in H{ () and is a weak solution to (BVP). In the latter case, necessarily m > 0, and
the dimension of the space N of solution to

u—ru=20
is finite and equals the dimension of space N* of solution, to
v—rK'v=0.

Let us show that u — ku = 0 iff u is a weak solution to (BVP-H) and v — xk*v = 0 iff v is a weak
solution to (BVP-H)*.

Observe that:

L,}lg:u means
B (u,v)=(g,v)o for all

. 1
veEH((Q) with g=—-u 1
— ™ B,

1
u—ku=0s —u=Ltu u,v)z(u,v)0<:>
m m

B(u,v) +m(u,v)o = (mu,v)y < B(u,v) =0
for all v € H)(R), i.e., u € H)(S) is a weak solution to (BVP-H). (u € H}() because u = mL,, u,
and L' : L2(Q) — H(Q) C L3(Q)).

For (BVP-H)*, notice that the formal adjoint L}, is L} u = L*u + mu, with corresponding bi-
linear form
B! (v,u) = By, (u,v).

Thus we also obtain a bounded operator

m(L:) " =& LA(Q) — H)(Q)
that is compact into L?(2). Then, for any u,v € L?(), ku, kv € H{(Q) and

B (K, &v) = mBy, (L, u, &v) = m(u, &v)o
— L 'u=w s By(w,2) = (u,2) Yz € Hy(Q)
B (ku, &v) = B (Rv, ku) = mB, (L) o,ku) = m(v, ku)g
— (L:) v =24 Bl (z,w) = (v,w)y Yw € H)(Q)

Thus

(u, kv)o = (v, K)o = (K v, u)o
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for all u,v € L?(Q). Thus x* = m(L},)~! and the same argument used for u — ku = 0 shows that
v — kv* = 0 iff v is a weak solution to (BVP-H)*.
For the last statement of the theorem, note that since u — ku = h has a solution iff h J_2 N*,
L

with h = L,;! f we have
1 1 1
(h7v)0 = E(Kfv U)O = E(fv K*U) = E(f’ U)7

v E N*.

Theorem 11.15. There exists at most a countable set ¥ C R such that
Lu=MXu+ f in Q
u =0 on )

has a unique weak solution for each f € L%*(Q) if and only if X\ ¢ . If ¥ is infinite, then
¥ = {Aj}?ib and \; is a non-decreasing sequence with A\; — 00 as j — 00.

Proof. Considering again, L,!, this follows from properties of eigenvalues of compact operators.
O

Definition 11.16. X is called the spectrum of L and the vales A € X the eigenvalues of L.
Corollary 11.17. If A ¢ X, then there exists a constant C' > 0 such that

lullz2(0) < Cll fllz2()
for u € H)(2) the unique weak solution to

{ Lu=Xu+ f in

u =0 on 0N

Proof. If not, there exist {f}52; C L3 (9), {u;}52, C Hp(Q2) weak solutions such that |lu;|p2(q) >
Jllfll2()- Replacing uj, f; by HuﬂrLjQ(Q)
L?(€2). Since

) IIujﬁLz’ we can assume that [|u|;2(q) = 1, then f; — 0 in
mllull}y o) < Bluw) +Uull}2q),

(u.f)

u,J)o

[ull g0y < € so uj — u weakly in Hg(Q2) and u; — u in L?(2). It follows that u is a weak solution

to
Lu=Muin
{ u =0 on 0f)

Since A ¢ ¥, u =0, but [lul[z2q) = 1. O
Remark 11.18. The constant above — 0o as A — 2.
11.2. Elliptic regularity.

Theorem 11.19. (interior regularity). Let a” € CY(Q)) (b',c € L>®(Q)), f € L{(Q) and
u € H(Q) be a weak solution to BVP. Then u € H2 (Q), Lu = f a.e. in Q, and for each 2 CC ,

i o loc
there exists a constant C = C(Q,a",b", c) such that

lull ey < COLF N2 + llulz2)
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Proof. Let Q' be such that
QccQccQ
and 0 < ¢ < 1 be a C2(Q) such that 1) = 1 in Q. Since B(u,v) = (f,v)o for all v € H)(Q), we

have
/ a" dudjv = / fo, (11.1)
Q Q
f=f—bdu—cu. Let
Dlu(z) = u(z + he;i) —u(x)

be the difference quotient of u, assume |h| small and set
v = —D; (2 D).
Note that v € H|(£2). We also note the formulas

/ZDl_hw:—/lehz
Q Q

(integration by parts), z compactly supported, h small, and
DMzw) = 2"DMo 4+ wD 2

(product rule) where z"(z) := z(x + he;). Then

LHS(1.1) = — / a9y, (D; (62 DIh))
Q

=/ D} (a" 9;u)0;(4* D' h)
Q
_ / [(a'9)h D} ,ud; ()2 Dlu) + Dltaiiud; (12 Dlu)]
Q
= / (aij)thl('?juDlhajuwz
Q
+/ [Qw(?ju(aij)thh@juDlhu + Dl'a" 9;uD'd;unp?
Q
+ 21/}03¢Dlha”81uDlhu] = I + Is.
By ellipticity (with & = ¢ D'Vu)
A/ V| Dpvul? < I
Q
For Iy,

Ll <C /Q ( ¢|DIVu|[ D]+ ? |Vl DIVu)
! \_\f_‘ ——‘

<e?| DEVul2+ | Dhul? <C|Vul?+| DI Vul?
C
< e/ ¢2|D?Vul2+€/ (1Dl + [Vul?).
Q Q

We will show in a lemma below that

/ |Dhul? < C'/ |Vul?, thus
194 Q

|| < e/¢2\Dﬁvu\2+c/ Vul?,
Q Q



88 MATH8110 - Theory of PDEs

SO
LHS(111) =1+ 1, > /2\/ V2 DIVl - C/ |Vul?
Q Q

Next,

RHS(ll.l):/va<C/Q(\f|+\Vu|+|u])|v

< C'/ (f2—|—u2+ |Vu|2) +e/ v2.
Q Q
By the Lemma below

[ v <c [ v tuP
Q Q
<C \Dlhu\2+C/ Y2 DIVul?, so
o o

RHS(11.1) < e/ ¢2|Dthu2+C/ (F +? + [Vul?).
Q Q
Therefore
/~ |Dhvul? < / VDIV < C/ (2 +u® + |Vul?).
Q Q Q
By the lemma below Vu € H{ () so u € H2 () and
[ull gy < Cllull @) + I1f 1l L20))-
Next, observe that if we repeat the argument in a set Q C ' C Q, we in fact have
[ll gra gy < C(llull gy + 111 20)) -
In (11.1) choose v = ¢?u, 0 < < 1, ¢ =1 in ', »C°(Q). Then

/¢2|vu12 < C/ (u” + f?).
Q Q

Lemma 11.20. Let u € WHP(Q),1 < p < oo. For each Q CC Q,
1D ull 1oy < ClIVull o),
Dhu = (D}, ..., Dhu), 0 < |h] < Ldist(Q,0Q).
If1<p<ooandue LP(Q) satisfies
HDhu”LP(Q) <C,

0<|h| < %dist(fl,@@), then u € WHP(Q) and HVUHLP(Q) <C.

Proof. Assume first u smooth. Then

1 1
u(z + hey) —u(x) = / %u(m + they)dt = / Vu(x + thep) - hedt
0 0

u(z + hey) — u(x)
h

1
< / |Vu(z + tey)|dt
0

/ | DMu|Pdz
Q

Set



Disconzi 89

Then, using Jensen’s inequality,

n 1
/~\Dhu\pdx§02/~/ \Vu(z + te;)[Pdtda
Q = /2 Jo

1

§C/ /\Vu(:v—i—tel)\pdxdt
0o JQ

< ClIVull, o

Assume now ||Dhu||Lp(m < C,1 < p<oo. Then

Sl;Lp |’D7huHLp(Q) < 00,

so there exists a v; € LP(Q) such that D;"u — v weakly in LP(Q) as h — 0, so

_ 1 hy —  1: —h
/Q“a”/’_/gua”b_%%/gﬂ)lw_ ilzg%/QDl u

:—/wa:—/gvzw,

so v; = Jyu in the weak sense, Vu € LP(Q).
d

Theorem 11.21. (higher elliptic regularity). Let the coefficients a,b',c € C*1(Q) and
fe Hk(S}),k‘ > 0 an integer. If u € Hy(Q) is a weak solution to (BVP), then u € H{f}iQ(Q) and
for each Q CC Q

ull oy < C (1 ey + Nullzacey).
In particular, if a”, b c, f € C®(Q), then u € C®(Q).

Proof. This is proven by induction in k, with £ = 0 done above.
O

Theorem 11.22. (boundary regularity). Assume that a” € C1(Q),b',c € L>®(Q), f € L*(),

and 0S) is C2. Let u € H\(Q) be a weak solution to (BVP). Then u € H*(Q),Lu = f a.e. in (,
and there exists a constant C = C(,a", V", c) such that

lull g2 < C(I1f 2 + llull2).
Proof. Consider first the case

Set 0 := B1(0) NRY and let v € C2°(B1(0)) be such that 0 < <1, =1in B1(0). Note that
¢ =11in Q.
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FiGUure 30. Q = B(0) "R}

/aijaiuajv:/fv
Q Q

for all v € H}(Q), where f := f — b'du — cu.

We have

For h small and [ € {1,...,2" "1}, put
v = —D; " (Y Df).

We have
U(:C) — 7leh <¢2 U(QZ‘ + he;;) — u(q;))
=~ 2 — her) (u(e) ~ (e~ he) — y2(e) (e + her) — ()]

The RHS has a weak derivative for z € 2 (recall that 1 </ <n—1) and u =0 on {z" = 0} (in the
trace sense), thus v € Hy(€2). We thus repeat the proof given in the first regularity to conclude

Ju € H’(Q),l =1,...,n—1,
and
10Vull 2@y < O f 2 + lullar @), l =1, ..on = 1.
Since we already know u € HIQOC(Q), we have Lu = f a.e. in ), thus, since ¥ € C1(Q),
—a"9;0;u + (b — 9;0")0u + cu = f

SO
n

"y = — Z a' 0;0u + (bi - 8jaij)8iu +cu— f.

i,5=1
i+j<2u

By the above estimate for 9, Vu, [ = 1,...,n — 1, we have 9?u € L*(Q) so u € H*(Q), (a" > C >0
by ellipticity, take £ = e,). As before we also obtain

[l 2y < C I f |2 + llull2@))-
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Using the compactness of Q and local flattenings of the boundary, we obtain the general result,
including the desired estimate in H?(£).
O

Remark 11.23. Observe how we made specific use of the structure of the equation to estimate
O2u.

Theorem 11.24. (higher boundary regularity). Assume that a” b’ c € CKTY(Q), f € H*(Q),
and 09 is C**2 k> 0 an integer. Letu € H}(Q) be a weak solution to (BVP). Then, u € H*2(Q),
and we have the estimate

[ull grve ) < CUf lar@) + [ullz2)-
In particular, uw € C*°(Q) if all the data is C* (up to the boundary).

Proof. Again by induction.

Remark 11.25.

e The regularity theorems say, roughly, that v gains two derivatives in relation to f so w is
”as regular as possible”.
e If v is the unique weak solution, then an argument similar to the one used to prove

[ull2(2) < C| fl|L2(0) gives
[ull grve ) < Cllfllaxo)
11.3. Maximum principles. We will now assume an elliptic operator of the form
Lu = a"9;0ju + b'0u + cu
in a domain (2, with a”, b, c € L>®(Q) and a¥ € C°(€). Ellipticity is as before,
a’ & & > AJ¢P.
The basic intuition of maximum principles is that if 2y €  is a maximum for u over  and ¢ = 0,

then Lu(zo) = a”8;0ju(wo) < 0 since (9;0;u(z0)) is non-positive and a' () is positive-definite by
ellipticity. Thus, if Lu > 0, u cannot have an interior maximum.

Throughout, replacing u by —u we obtain statements for minimum.

Theorem 11.26. (weak mazximum principle). Let u € C%(Q) N C%(Q) satisfy
Lu>0(<0)

in a bounded domain 2, and suppose that ¢ = 0. Then the mazimum (minimum) of u is achieved
on 0N.

Proof. Since a” > 0, we can choose o > 0 large so that
Le®™ = (a2d” + ab)e™™ > 0.
For any € > 0,
L(u + ee™” ) >0,

thus u + ee®®’ achieves is maximum on 9 by the above argument. So does u by taking € — 0.

O

Corollary 11.27. Consider the same assumptions as above but instead suppose ¢ < 0. Then

sup u < sup ut(inf u > inf u~
s O )

ut = max{u*,0}, v~ = min{u,0}. In particular, supq |u| = supyq |u| if Lu = 0.
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Proof. Set
Qf ={z € Q|u(z) >0}
If Lu > 0 then
Liu= aijﬁiﬁju +b'0u > —cu>0in QF
since —cu > 0 in QF. Then the maximum of u in Q% is achieved on 9QF. Since u < 0 in Q\ QF,

and u(zg) = 0 if zg € 9QT N Q, we must have supg u < supgou™.
g

Corollary 11.28. Under the same assumptions of the previous corollary, if Lu > Lv in Q and
u<v on dQ, then u < v in Q. In particular, u =v if Lu = Lv in Q and u = v on €.

Remark 11.29. The assumption ¢ < 0 cannot be relaxed, as there exist positive eigenvalues to
the problem Awu + Au =0 in 2, u = 0 on 9.

Definition 11.30. A domain 2 C R" satisfies the interior sphere condition at zg € 02 if there
exists a x € Q and a r > 0 such that B,(z) C Q and z¢ € 9B, ().

Lemma 11.31. Suppose that L satisfies ¢ = 0, and Lu > 0 in Q, where u € C?*(2). Let zo9 € 99
and suppose that

(i) u is continuous at xy;
(i) u(zo) > u(x) for all x € Q;
(iii) S satisfies an interior sphere condition at xo.Then, the outer normal derivative of u at xg,
if it exists, satisfies the strict inequality
ou
—(xo9) > 0.
6\/( 0)

If ¢ <0, the conclusion holds provided that u(xo) > 0. If u(zg) = 0, the conclusion holds
wrrespectively of the sign of c.

Proof. Let Br(y) C Q be such that o € 0Bg(y), by the interior sphere condition. Fix 0 < p < R,
set

v(z) = e o — e o,
r = |z —y| > p, @ > 0 to be chosen. For ¢ < 0 we have
Lu(z) = (a9;0; + b'9; + ¢)v()
= ¢or’ [4a%a™ (2; — yi)(wj — y;) — 2a(a™ + b (x; — y3)] + ev
> e [4a”Ar® = 2a(a” 4 [blr) + ¢ (o] = |(B",...6"M)])
> gor’ [40®Ap? = 2a(a™ + |b]r) + ¢]

ar2

since v < e~ and ¢ < 0. Thus, taking a large enough,

Lv>01in Q' = Bgr(y) — B,(y).
Since u — u(xg) < 0 on 9B,(y), there exists a € > 0 such that u — u(zo) + ev < 0 on IB,(y). We
also have u — u(zg) + ev < 0 on IBg(y) since v = 0 there. Moreover,
L(u—u(zo) + ev) = Lu, — cu(zo) + e Lv
>0 >0
> —cu(zg) >0 in .
where the last inequality is valid for ¢ = 0 or ¢ < 0 with u(zg) > 0. Since u € C?*(Q) and u

is continuous at xg, we have u € C%(Q') N C°(Q’). Thus, by a corollary of the weak maximum
principle, (Lw > Lz in Q,w < zon 90 — w < z in Q) we have u—u(zg) +ev < 0in Q. Because
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the function u — u(zp) + ev vanishes at xg, we conclude that its normal derivative at zp cannot be
negative, so

ou ov
2 (z0) > —e—(0).
ov (w0) 2 “ov (o)
Bu f—(xg) —+Vo(zg) - 29 = —V'(R) = 2aRe~*F* > 0. For ¢ arbitrary, if u(zo) = 0 the above

argument works with L replaced by L — c*.
]

Theorem 11.32. (strong mazimum principle). Suppose that u € C?(Q) satisfies Lu > 0 (< 0)
in Q and ¢ = 0. If u achieves a maximum (minimum) in ), then u is constant. If ¢ <0, then u
cannot achieve a non-negative mazximum (non-positive minimum,) in Q unless it is constant.

Proof. Suppose u achieves a maximum M in Q. If u is not constant, Q™ := {z € Q | u(z) < M}
is not empty, neither is 92~ N Q. Thus, there exists a xy such that dist(xg, 9Q27) < dist(zg, 9Q).
Let B, (xg) be the largest ball centered at zp such that B, (:Uo) C Q. Then u(y) = M for some
y € OB,(x¢) and u < M in B,(z0). By the above Lemma 2 e (y) > 0, but Vu(y) = 0 since y is an
interior maximum.

O

Remark 11.33. The proof also gives that if ¢(x) < 0 at some x € € then the constant in theorem
must be zero and if w vanishes at the interior maximum (minimum) then v = 0 regardless of the
sign of c.

Theorem 11.34. Let Lu > f(= f) in a bounded domain Q, u € C%(Q) N CY(Q), and assume
that ¢ < 0. Then, there exists a constant C' > 0 depending only on the diameter of Q1 and on

B = L0t poo(Q)  such that
/- \<\f!>
suuuSSUU+U+Csu’ A )

up (Jul) up (lul) oA

A
(f~ =inf {f,0}, ut = sup{u,0}).
Proof. Let Q lie in the slab 0 < 2! < d, and set
Lo = a"09;0; + b'0;.
Then, if « > 8+ 1,
Loe™ = (a?a” + ab')e az’ > (a®A + ab') e
> (@A = alb'|)e™™ > (a®A — a|(b', ..., b") || Lo () "
= (a®A — aAB)e™™ > A

!

Set -
v=sup ut + (2 — ') sup /7 >0
20 o A
Then
Lv = Lov + cv = —(Loe™™) sup m + cv
——— ~—
<A <0

< —sup|f~|, thus
Q
Liv—u)=Lv—Lu<—sup|f |—f<O0.
Q

We also have v — u > 0 on 9€2. Thus, by one of the corollaries of the weak maximum principle
(Lw > Lz in Q, w < z on 99, then w < z in ). u < v in Q.
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Thus,
u <suput 4 (e —e sup ~——
2% o A

<suput 4 (e — 1) sup “——
o0 Q

0

Corollary 11.35. Let Lu = f in a bounded domain Q, u € C?(Q)NCY(Q). Let C be the constant
of the previous theorem. Suppose that

+
A=1- —>0
csu)pA
Then

1
sup Ju| < — <sup |u| + C'sup ’f‘)
Q A

Proof. Write Lu = (Lo + ¢)u = f as

(Lo+c u=f—ctu=:1.
From the theorem,
il
A
|/

sup lul < sup lu| + C'sup

<sup]u\+C’<sup i

+ su | ﬂ)
p\“! sup

SO

je*

(1 — C'sup A‘) sup |u| < sup |ul + Csup ‘f’
Q

0

Remark 11.36. Since we can take C' = e®?~1 — 0 as d — 0, the above corollary implies uniqueness,
hence solvability, of the Dirichlet problem on any sufficiently thin bounded domain.

12. NONLINEAR ELLIPTIC EQUATIONS

We will investigate the solvability of equations of the form
Lu+ f(-,u) =0, (12.1)

where L is an elliptic operator. When f is non-linear in w, this is a semi-linear elliptic equation. Our
goal is to illustrate some techniques, thus we will consider special cases of (12.1) (but the ideas can
be adapted to more general settings). We will also briefly consider more general nonlinear equations.
The arguments we will employ in this section are soft, thus, it is instructive to consider a more
general setting. Therefore, in this section we will take (M, g) to be a closed Riemannian manifold
and let Ag be the Laplacian w.r.t. g, which in local coordinates reads Ag = (\/det g”@ )

Students not familiar with geometry can take M = 7" (n-dimensional torus) and Ag = A. Here
are the facts that need to be known for our analysis:

e We can define the spaces W#*P(M) and the embedding theorems go through.

e The Fredholm alternative remains valid.

e Elliptic regularity remains valid. In fact, we will use that elliptic regularity holds in
WkEP(M), 1 < p < co. Thus, f € WFP(M), Lu = f = u € WFk2P(M) if the
coefficients of L are sufficient regular.
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e The strong maximum principle remains valid.
e As a consequence of the above, W*P(M) = L(W*t2P(M)) @ ker L*,1 < p < 0o, and when
L is invertible L= : WP (M) — W*+2P(M) is an isomorphism.

12.1. The method of sub- and super-solutions.

Theorem 12.1. Consider in (M, g) the equation
Agu + f(?u) = 07

where f € C®°(M x R). Suppose that there exist functions 1_,vy € C?>(M) such that 1_ < 1y
and

Ag¢— + f(vw—) > 07
Agthy + f(04) 0.
then there exists a smooth solution u to Agu+ f(-,u) = 0.

Remark 12.2. ¢)_ and ¢4 are called, respectively, sub- and super-solutions to the equation.

Proof. Let A be a constant such that
—A<y_ <Y, <A
and choose a constant ¢ > 0 large enough such that
F(z,t) =ct+ f(x,t)
is increasing in ¢t € [—A, A] for each x € M. Set
Lu := —Agju + cu.

By the maximum principle, ker(L) = {0}. Notice that if u = const solves Lu = 0, then u = 0 (since
¢ > 0). But if —Agju+ cu < 0 then u cannot have a non-negative maximum unless it is constant,
so u < 0; and if —Agu + cu > 0 then u cannot have a non-positive minimum, so « > 0. (Note that
here we are applying the strong maximum principle to the equation multiplied by —1; max and
min always achieved by compactness of M.)

(Alternatively, we can see uniqueness by:

-Agutcu=0 — (|Vgu\2+cu2)dvolg =0 = u=0)
by parts J s

We also note that L is a positive operator, i.e., Luy > Luos = wuj > uo, since the maximum
principle gives L(u; — u2) > 0 = w3 — ug cannot have a non-positive minimum, so u; — ug > 0.
Thus we have an isomorphism

L7t WhP(Q) — WF2P(Q),1 < p < co.

Let v € C?(M). Then v € W2P(M) for any p since M is compact. Thus L~'v € W4P(M)
for any 1 < p < oco. Taking p large enough so that 4 — % > 2, by the Sobolev embedding

W4P(M) — C**(M), we have that L~1v € C?(M).

Define inductively

IzZ_JO = ¢+7 &l = L_I(F('v QZ)l—l))

ﬁo = sz)—v Ql = L_I(F('7 %l 1))

Observe that
L, = Fp) = et + f(02) = e — Ay = Lup



96 MATH8110 - Theory of PDEs

and

Ly = F(-,¥4) = cq + f(-h4) < cpy — Agtpy = Ly,
thus _
Ly_ <Ly =F(,¢-) < F(,y) = Ly < Lapy

since F' is increasing
in its second argument

Hence ¢_ < yl < )1 <9 by the positivity of L. Repeating the argument,
o <, < <y <Py <@y for every L.
Thus, we have monotone bounded sequences {yl}, {1y}, thus they converge pointwise to limits u

and u, u < u.

Since |¢,| < C, we have [|[F(-,9,())lzp(ar) < C for any p . Because Ly, = F(-,¢, ), elliptic
regularity gives

1% lw2rary < CUEC Y, Dllzeony + 19l ean) < C.
By the compact embedding W2P(M) — CH*(Q),2 > 7, we have that {¢,} C Cle(M) and
converges, up to a subsequence in C¥(M). But v € CY*(M) implies that for any p, we find
[vllwis@r < Cllvllcraar. Hence

1 llwsoary < CUFC $_Dlwroan + 1 llzoan) < €

and by the compact embedding W3»(M) — C**(M) we obtain convergence in C?(M). We can
thus pass to the limit in the equation to obtain

Ly, = F('@H) = Lu= F(-,u).
Similarly Lu = F(-,u). But
Lu=F(,u) & —-Aju+cu=cu+ f(-,u) & Agu+ f(-,u) =0.

Applying elliptic regularity inductively as above to Agu + f(-,u) = 0 we conclude u € C*°(M).
]

Remark 12.3. There might be many sub- and super-solutions. E.g., Agu = f(-,u)+coswu,|f|] < 1.
Then u(x) = 2mm and u(xz) = (2m — 1)7 and all super- and sub-solutions, respectively, so we find
at least one solution u on each interval (2m — 1)m < u < 2mm.

We will now give a proof of the easy case of the uniformization theorem.

Theorem 12.4. Let (M, g) be a closed two-dimensional Riemannian manifold with the Euler char-
acteristic x(M) < 0. Let & < 0 be a smooth function in M that is not identically zero. Then, there
exists a metric § conformed to g such that k(§) = K, where k is the Gauss curvature. In particular,
we can take kK = —1 and obtain the uniformization theorem in the negative case.

Proof. Write § = e*"g. Then the scalar curvature of § and g are related by
R=e"?(R—2Au).
Since scalar = 2 Gauss, the Gauss curvatures are related by
Au — K + ke* = 0.

Hence, we only need to find u solving this equation.

Let us find a super-solution ;. We claim that we can find v € C°°(M) such that

Agv :f%(] *I;»,
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where &g = (volg(M))~! [}, Rdvoly. Then [, (Fo — k)dvol, = 0, i.e., kg — & is L? orthogonal to
constants. But ker(Ay) = R since Aju =0 = [}, |[Vqu|?*dvoly = 0. Thus, by Fredholm, we cam
solve Aju = kg — k. Elliptic regularity gives v € C°°(M).

Set ¥4+ = av +b, a,b € R. Since Ky < 0 by our assumptions, we can choose a such that ak < k(z)
for all z € M. Then, take b so large that e2(4t%) — ¢ > 0. Then

Agpy — K+ Re2V+ = alAgv — K+ Re2V+
= a(ko — k) — Kk + ke®+ = akg — K + fi(e2(“”+b) —a) <0.

Next, we will find a sub-solution ¢ _ such that ¥_ <.

Let v solve
Agv = K — Ko, ko = (VOlg(M))l/ kdvolg,
M

which can be found by the same arguments as above. Put ¢y_ = v — ¢, where ¢ € R is large enough
so that ¢ <. Then

AY_ — k+ Re®— =Kk — ko + Kk + Re2VT2

— _KIO + /'%621}—20
Since kg < 0, by x(M) < 0 and Gauss-Bonnet, we can choose ¢ large such that RHS > 0.

0
Remark 12.5. It is possible to give a full proof of the uniformization theorem using PDE methods.
12.2. Implicit function theorem methods. We recall some notions of functional analysis.

Definition 12.6. Let X Y be Banach spaces, U C X an open set, and f: U — Y. We say that f
has a Gateaux derivative at x € U if

d
"(z,y) == —f(z +t
fi(z,y) dtf(:v Y) i

exists for every y € X. We say that f has a Fréchet derivative at x € U if there exists a
continuous linear map D f(x) : X — Y such that

fle+y)=f(z)+Df(z)(y) +o(lyl)
for every y such that z +y € U, in which case one sees that Df(x) is in fact defined for every
y € X. We say that f is continuously differentiable (or C!) at z if the map
zeUw— Df(x) € L(X,Y)
is continuous.

Theorem 12.7. Let X,Y be Banach spaces, U C X open, f:U — Y. If f has a Gateaux derivative
f(z,y) in U which is linear in y, and if the map x € U — f'(x,-) € L(X,Y) is continuous, then
f is Fréchet differentiable in U and Df(z)(y) = f'(z,vy).

Theorem 12.8. (implicit function theorem). Let X,Y, 7 be Banach spaces. Let f : X XY — Z
be continuously differentiable. Suppose that f(xo,yo) = 0 and that D f(xo,y0)(0,:) : Y — Z is a

(Banach space) isomorphism. Then there exists a neighborhood U x V' 3 (xo,y0) and a Fréchet
differentiable map g : U — V such that f(z,g9(z)) =0 for allx € U.

Definition 12.9. Let p : C®(Q) — C*°(2) be a differential operator. Its linearization at
u € C*(Q) is the linear operator

d
Lyv=Lv= £P(U + tQ}) t:O.
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This definition extends to P defined on H*(Q2) etc.

As an application, let  C R3 be a bounded set with smooth boundary. Let h : 02 — R, and con-
sider the problem of extending A to ) as a perturbation of the identity that is volume-preserving,
ie.

" Jac (id+Vu) =1,
where u extends h and id +Vu is the map

z € Qs z+ Vu(r) € R®.
Expanding the Jacobian, we see that Jac (id +Vu) = 1 is equivalent to
Au+ N(u) =0,
where
N(f) = faalyy + foafoe + Fyyloz — foy — [on — fi. + det(D?f).

Thus, given h, we seek to solve

{ Au+N(u) =0in Q, (12.2)

U = h on 01},

which is a fully nonlinear BVP. If h = 0, then u = 0 is a solution. Thus, we expect that a solution
u is small if h is small. But for small u, the equation reads

Au+ O(|D*ul?) =0
and since |D?u|? << |D?u| for u small, we have a perturbation of Au = 0.

Theorem 12.10. Let s > 3 and BET(09) be the open ball of radius § in H**2(92), where Q is a
bounded domain with smooth boundary in R3. If § is sufficiently small, there exists a solution u to

(12.2).
Proof. Given h € H5T2(9)) define
F: HV2(00) x H*V3(Q) — H*2(9Q) x H*3(Q)
F(h,u) = (ulpg — h, Au+N(u)).

This is well defined since D?u € C°(£2) by Sobolev embedding and u|sg € H*T2(9€2) by the trace
theorem. We have F(0,0) = 0. F is C! in the neighborhood of the origin and

Dy F(0,0)(w) = DF(0,0)(0,w) = (w|aq, Aw).
Given (g, f) € H*T2(09) x HSJF%(Q), there exists a unique w € Her%(Q) solving

Aw = fin Q,
w = g on 0f),

and elliptic regularity gives
0l gor 5 gy < € (11 v+ Nl9llierzcomy) -

so D2 F(0,0) is an isomorphism (we did not quite see how to solve the Dirichlet problem in these
fractional spaces, but it follow by similar ideas to what we used; solutions with u % 0 on 02 follow
by considering a problem for v — g with homogeneous boundary condition).

By the implicit function theorem, there exists a f = ¢ (h) solving (12.2) if A is small.

The implicit function theorem is generally a good tool to find solutions by perturbations.
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12.3. The continuity method. The basic idea of the continuity method is the following. Suppose
we want to solve P(u) = 0. We embed this problem into a one parameter family of problems.

Pu)=0, 0<t<1,
where P;(u) = P(u). We then consider
A= {te[0,1] | P(u) =0 has a solution}.

The goal is to show that A # () and that A is open and closed, so that A = [0,1]. The usual
strategy is:

e to show A # (), choose P; so that Py(u) = 0 is easy to solve

e to show that A is open, use the implicit function theorem. to show that if P, (u) = 0 has
a solution, so does P;(u) = 0 for all ¢ near t.

e to show closedness, use estimates for solutions to show that if {t;} C A, ¢; — t, then there

exists a subsequence of {u;}, where u; solves Fj,(u;) = 0, converging in a topology such
that Fy, (u;) — Fy(u).

We will now illustrate the method with the equation
Agu+ f—he" =0,
where f,h > 0 (compare to the equation studied in the uniformization theorem).

Theorem 12.11. Let (M,g) be a closed Riemannian manifold and f,h : M — R be smooth
functions satisfying f,h > 0. Then, there exists a u € C°°(M) solving

Agu+ f—he" =0,
Proof. Define
F(t,u) = Agju — hu+t(f — h(e" —u)).
Then F(1,u) = Agu+ f — he®. Set
A=1{te[0,1] | F(t,u) = 0 has a solution u € C*(Q)}
For t =0, u = 0 solves F(0,u) =0, so A # (.

Suppose that F(tg,up) = 0. The linearization of F' at (f«,us) is
L, ) = Dgv — h(1 — ty + tie™ ).
Let p > ¥ so that W2P(M) < C%(M) C LP(M). Thus F defines a map
F:Rx W*P(M) — LP(M)
and so does Ly, .,)
Lty - WHP(M) = LP(M),

which is a bounded linear map between these spaces. Consider

Lt ua) — L(f,a)” = sup ‘(L(tﬁm) - L(ﬂﬂ))v‘
Hvak‘,p(jw)zl
= sup ‘h(l—t*—kt*e“*)v—h(l—f—kfeﬁ)v!
Hvak,p(AQ:l

= ’h(f— ty) + h(tie" — feﬂ)‘.

Since WkP(M) «— C°(M) and M is compact, we can make this expression as small as we want by
taking ¢, close to £ in R and u, close to @ in W*P(M). Thus, L depends continuously on (¢, ), the
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Gateaux derivative equals the linearization which equals the Fréchet derivative, and F is C.
For (to,up) we have, 0 <ty < 1, we have

Ltoup)v = Lv = Agv — (1 — to + toe™)v

and 1 —to + tpe"® > 0 and, since h > 0, by the maximum principle L,,,)v = 0 = v = 0. By the
Fredholm alternative and the elliptic regularity, L is a Banach space isomorphism L : Wk» (M) —
LP(M). By the implicit function theorem, there exists a u; solving

F(t,ut) =0

for t near tg. Bootstrapping the regularity of u as we did in the sub-/super-solutions theorem, we
find u; € C?(M), Thus, A is open.

Suppose now that we here a C? solution
F(t,u)=Agu—hu+t(f—h(e"—u))=0
At a max of u

0>Au=hu—t(f—h(e"—u))
=—tf+h((1—t)u+te")

Since h >0 and e®* > 1+ x, and t > 0.

0> —tf+h(l—1t)u+ ht(1+u)

= —tf+hu+ ht
>0
> —tf + hu
Since t < 1,
t
uﬁgﬁiﬁskldp£:c<oo

since h > 0 and M is compact. Applying a similar argument to the minimum of u, we conclude

lullcoary <€

where C does not depend on t. Using this bound, writing F'(¢,u) = 0 as

Au=hu—t(f—h(e"—u))=f.
Fll ocary < C, applying elliptic regularity and bootstrapping the regularity of u as before, we get
(M)
ullc2.eary < C,

where C does not depend on ¢ € [0,1]. If {t;} C A, t; — ¢, let {u;} be corresponding solutions to
F (ti,ui) = 0. Then

HUiHCZa(M) <C
where C does not depend on i. Thus, by Arzeld-Ascoli, up to a subsequence, u; — u in C?(M). We

can thus pass to the limit in the equation to obtain F'(t,u) = 0, so A is closed. Thus, A = [0, 1] and

we found a C? solution. Bootstrapping the regularity of this solution as above, we find u € C°°(M).
O
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13. LINEAR HYPERBOLIC EQUATIONS

We will now study linear hyperbolic equations, which are generalizations of the wave equation
in a similar manner as we saw that elliptic equations are generalizations of Laplace’s equation.

Lemma 13.1. (Gronwall Lemma). Let A, p, and u be non-negative functions on [Ty, T] C R,
u € L>=([To, T)), ¢ € LY [Ty, T)), and A is non-decreasing. Suppose that
t

u(t) < A(t) +/ o(T)u(r)dr

To
for all t € [Ty, T]. Then,
u(t) < A(t)eﬁo e(r)dr
for all t € [Ty, T).
Proof. 1t suffices to prove it for ¢ > T since A is non-decreasing. So we can assume

A = A(T') = constant.

Set .
F(t):=A +/ o(T)u(r)dr.
To

Then:

e [ is differentiable a.e.

o ' =oyu

e [ is absolutely continuous.
Then .

G(t) := F(t)e Imo#Ddr

e is absolutely continuous (since ff{) o(T)dT is).

e (G is differentiable a.e.
We have

G/ _ F,(t) 6_ fTo p(r)dr _ F(t)(p(t)e_ fTO p(T)dr
~——
=¢(t)u(t)
t
= p(t)(u(t) — F(t))e 0?0 < g
—~ ———
>0 <0

Then

t
G(t) < G(Tp) = F(Tpy) = A = F < Aelro #47.
Since u < F, the result follows.
OJ

Remark 13.2. For simplicity, we will work on the interval [0, 7], i.e., Top = 0. It will be clear the
results will hold on [Ty, T, Tp # 0.

13.1. Linear first-order symmetric hyperbolic systems. Let us consider the initial-value
problem or Cauchy problem

(13.1)

AOu+ B u= fin[0,T] x R",
u=up on {t =0} x R",

where f:[0,T] x R® = R4 A, B : [0,T] x R® = Myyq = d x d matrices and u : [0,7] x R — R¢
is the unknown.
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Definition 13.3. We say that the PDE in (13.1) is a (linear) first-order symmetric hyperbolic
system (FOSH) if the matrices A* are symmetric and A° = A’ is uniformly positive definite, i.e.,

A%(x)(€,6) > C|¢)* for all z € [0,T) x R™.
Notation 13.4. We will often write (¢, x) for points in [0,7] x R", i.e., (t,z) € [0,T] x R™. Denote
Mr =M :=[0,T] x R".
5= {(t,z) € M }.

We often write u for u! = transpose of w if it is clear from the context, e.g., udu = u'Au, A = d x d
matrix.

Theorem 13.5. (Basic Energy Estimate) Assume that u is a smooth solution to the FOSH
system (13.1) such that u(t,-) and dyu(t,-) are Schwartz functions with constants that are uniform
m t, i.e.,

in M (note that f then also satisfies similar bounds). Suppose that A", B and all their derivatives
are bounded in Mp. Set

2 Dgu

+ |Dow|) < €, 5

1 1
E(t) = / uAudr = / uA dz.
2 Js, 2 Jn

Then, there exists a constant C > 0 independent of u such that

¢
VW < (VO +C [ 10 o ir )
for allt € Mr.
Proof. Compute

1 o 1
8tE—2 8tuA U+2/

1
uA%du + / ud A%
Et Et 2

pM

:fzt uA%9;u by symmetry of A0

, 1 .
= —/ (uA*Oju + uBu — uf) + 3 / u0; A%, by symmetry of A° :
Et Et

= —/ 1&-(uAiu) — 1u@iAiu +/ 1u&tAOu +uf —uBu
s, \2 2 s, \2

1
= —ud, APy — uB .
bypms/& <2u AU —u u—i—uf)

We have
/ (w0 A*u — uBu) < C lu? < C | uA = CE(t)
Et Zt Et
[t < Wellsoll ez < VE® 1 lz2cso,
t
S0

WE < CE+ CVE| f| 2
Setting E.(t) = E(t) + ¢,e > 0, the same inequality holds for E.(t), so
OE: < CE.+ CvVE:|fll12,

SO

O,.F
\;E{ = 20,\/E- < C\/E: + || fll 12
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Then

¢&@§»@um+CAHﬂp@mh+CA\HMﬂW

By Gronwall’s Lemma:

VE-(1) < <M+ C/Ot ||f||L2(2,)> !

which gives the result taking e — 0.

Definition 13.6. The commutator of two differential operators P and ( is defined as
[P, Q] := PQ — QP
wherever the RHS is defined.

Remark 13.7. If P and @ have orders k and [, respectively, and are linear, then [P, Q] has order

k+1—1, since
P=) auD* Q=) b,D"
|| <k || <l
PQ = Z aabgDaJrﬁ + terms where at least one derivative falls on b,
lee|=Fk,| B|=1
QP = Z bﬂaaDB‘m + terms where at least one derivative falls on a,
lor|=F,|B|=1

Corollary 13.8. (higher order energy estimates). Under the same assumptions of the theorem,
hEy < CEp + CVEg || fllarsy)

Bult) < Cr (VEO) + [ 15 lancs, 7

where Cp = constant depending on T and

E(t) == = Z D%A° D%udz.
jal<k >

Proof. Write the equation as Lu = f and Ej, = Ej(u). Then, applying D¥ to the equation.

D% =D% = LD%% = D%f +[L, D%u
=L(Da@)+[D¥,Llu

Applying the basic energy estimate to Dy with f replaced by DYf + [L, D&]u (or, more precisely,
applying an intermediate inequality that was obtained in the proof of the basic energy estimate):

HE(D%u) < CE(D) + C\/E(D%u) (I|D%f + [L, Dull s, ) -
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We have, since |a] < k, ”DdeLa(Et) < [ fll ey
(D%, Llu = [D%, A*8,Ju + DY, Blu
(D%, A*9),Ju = D¥(AF9,u) — AF, D%

I
(]

<%> DB Arg, D%y — Ar9, Dy

™y
IN
QL

= <%> DY P A#9,DPu+ Y <%> D3P Arg, DRy — A19, Dy

f<a B<a
The second term gives
a 5B i 3
> <5> DT AD < Cllullgns,)
f<a L2(5)

For the first term, we use the equation and the fact that A° is invertible to write
Opu = (A)7L(f — A'9;u)

so that . .
3 (%) DI P A9 Dy =Y <Oi) DB A0 DGy
B<a B<a
a 5—f 5 - i
=> <§> DI PADF ((A%)7H(f — A'Du))
G<a
So

a a—38 3
Z(ﬁ D0 A0, DPu| < C|\fllgn-rcs,) + Cllull s,
g<a L
< Clifllares,) + Cllullgris,)

where we used that (A%)~! is smooth since A is [D¥, B]u is handled similarly. Thus
8, E(D%) < CE(D%) + Cy/ E(D3w) (||D& f+IL, D@]UHLQ(&)) .
< CE(D%) + Cy/ (D) |Jul i s,y + O\ EDT) ||f | s,

Since A° is positive definite and bounded,
1
GHUH?{k(zt) < Ei(t) < CHUH?{I@(&)’
so, using that E(D%) < Ey,

OE(D%) < CEi + VEg || fll v sy -
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Summing over « and using

Ey= Y _ E(D%)

| <k

we have the first inequality. Dividing by /E}, (or /Ej+e¢, as before) and using Gronwall’s inequality
gives the result.

O
Next, we extend the result for negative k:

Corollary 13.9. Under the same assumptions as above,

e My < Or (10 My + [ 15 s )
for any k € Z.
Proof. We already have the result for £ > 0, so take k < 0. Set
vi= (1 - A)ru.

Because (1 — A)¥ maps S into itself (it is defined using the Fourier transform that maps S into
itself), v satisfies Schwartz bounds similar to w.

We have
k _k
ull e s,y = 11— A)2ullpe(s,) = (1= A) 20| 2(s,)

= vl gz, < CVE-k(v)

Since v identically satisfies the equation
Lv=F =: Lv,

the energy estimates give

t
wmmmsc¢Eamm+cA\mmk@wT

Since
E_£(0)(0) < vl zr—k(sg) = lullme (),
it remains to estimate the term [[Lv|| &5,

Observe the identity

(1-A) Lo+ [L,A-A)Fo=1-A) Lo+ L(1-A) " —(1-A)" Ly
=LO1-A) " v=Lu=f,
=Uu
SO
(1=A)" Lv=f—[L,(1-A)"o
Apply (1 — A)% and take the L? norm:

_k k
(1= A)"2Lv| 2z, < (1= A)2 fllp2(sy
:HLUHH—k(Zt) :Hf”Hk(Et)
k _
(1= A)2[L, (1= A)Fof| g2z,

=[I[L,(1=2)" v

HH’“(ZH
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Expanding (1 — A)~F = > |a|<—2k agDY, then (recall k < 0)
L, (1= A) o= [A"0,, Y azD%v
|| <—2k
= Z (AMQ#(G@D&U) - a&D&(A“8MU)>
|@|<—2k
= Z A“(?#a&Dav — Z Z (%) a&D&_EA‘@uDEU
|&|<—2k |d|<—2k G<@

Thus
—2k —2k—1

L, (1 - A)fk]UHHk(gt) <O D] ey +C D IID 0w | sy
=0 =0

< Cllollg-k(s,) + CllOwl| g-r-1(s,)
Using that D : H* — H*"! is bounded.

Let us estimate [|0v|| gg—#-1(x,). Set L = (A°)~'L. Then, arguing similarly to above:
(1—A)*Lo+[L, A=A o=L1-A) %= (A""1f
=Uu
But (1 —A)™*Lv = (1 - A)™% (9 + (A°) 1 A9v), so
(1—A) 0w =—(1-A)"F (A% A'90)

= —[L,(1-A)

= (A%)7'f
Since [[9;0]|g—r-1(s) = |1 = A)|| 77 ol z2(sm,)> we apply (1 — A)*7 and estimate in L

—k—1

(1= A)"7 dwllz2 < Cll(1 = A) Dol g1 (s,
+C|IL, (1= A) Mol v sy
+ Ol fll ez

(1 — A)~%Du contains at most —2k + 1 derivatives and [L, (1 — A)~*] at most 2k derivatives and
no time derivative, so the first two terms on the RHS are bounded by

ok
1D~ )l g (s, < 0l gr-x(sy)-

Thus
10wl gr—r-1(s,y < Cllvllg—r(s,) + Cllfll aE—1(5,)-

Putting all together and invoking Gronwall’s inequality gives the result.

Corollary 13.10. Under the same assumptions as above,

T
[u(t, My < Cr | 1T ) lgesy + [ 1) mes,dr
u Hk () T{lu HE(S) \

for any k € Z.
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Proof. Set
Lo(t,z) == — ANT —t,2)0(t, x) + AT — t,x)dv(t, )
+ B(T —t,2)v't, x
u(t,x) == u(T —t,x).
Then Oyu(t, z) = —0u(T — t,x), diu(t, x) = Oyu(T —t, ), so that
La(t,z) = — A%T — t,2)dxi(t, x) + AT — t,2)d0(t, )
+ B(T —t,x)u(t, x)
=ANT — t,2)0pu(T — t,2) + AT — t,2)0u(T —t,x)
+ B(T —t,z)u(T —t,x)
—(Lu)(T — t,)
The operator —L satisfies the same assumptions as L, thus we have an estimate
t A
e Mz < € (1000 My + [ 1ot lnncs, ).
Forv =14
[ 1t sy = [ 12T =l i
[ ) s
T
T
— [ (s sy,
T—t
so, since Lu = f
T =t e < € (1T o + [ 1N yds)
Since any t' € [0, 7] is of the form ¢ = T —t for some t € [0,T], we have the result.
]

Definition 13.11. We denote

CtnymCO = {(t,fﬁ) € MT|0 <t< tva € Btofcot(xo)}
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Co < ¢cp < Cp

Bt()—(f(lt(‘xU)

~

to to

FIGURE 31. Ci.z0,c0

Theorem 13.12. (Domain of Dependence and Uniqueness). Let u € C*([0,T] x R™) solu-
tion to the FOSH system (13.1), where the A" are C', bounded, and have bounded derivatives, B
is C° and bounded, and f is continuous. There exists a cg > 0, depending on the lower bound of
A® and the upper bounded of A*, such that if ug =0 on By (x0) and f =0 in Cp 4y.c, then u =0 in
Cr,z0,c0, In particular, solutions are unique.

Proof. Consider, for a > 0,
Oule M uAru) = e~ 2uAru + e~ ud, Alu — ae” " uAy
= 2¢”"u(f — Bu) + e~ "ud, A'u — ae” " uA u.

Integrate over C = C; 4.¢,, Where cg will be chosen.

/aﬂ(e_atuA“u) —/ e uAtun,
C ocC

:/ e_atuA“uuu—/ e MuAu,
oLC By (z0)

=0

where v is the unit outer normal to C, 9rC is the lateral boundary so that OC = 9;C U B,(xg),
and we used v = (—1,0,...,0) on B,(xg). We can make the components v; as small as we want by
taking ¢ large enough, so that vy > 0 and

uAruy, = wAury + uAtuy;
> Cy|ul® — Colul® > Clul?
Thus [, 0, (e~ *uAFu) > 0. On the other hand
=0inC 2C\ul?
/ 2¢"u(  f — Bu)+e “ud,A'u — ae” " uA u
C

< / e~ (—2uBu + w0, Atu — aC|u]2) <0
C

if we choose a large enough. Thus RHS < 0, LHS > 0, thus, since LHS = RHS, both sides must
vanish. Since we can freely choose a (large enough), we must have u = 0 in C.

0
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Definition 13.13. Let L = A*0,, + B be a first-order symmetric hyperbolic operator. The formal
adjoint of L is

L*u = —0;(A%) — 0;(A'u) + B*u
= —A"0u — 0, A"u + B*u,

where B* = transpose of B.
The motivation for the definition comes from integration by parts, e.g., if 1 € C°(Mry),

//1/114“8 udzdt = // onatudtda:—i—/ / wAlé' udzxdt

= —/ (A% udzdt —/ O (Ap)uddt,
0 Rn

where there are no boundary terms because ¢ € C2°(Mr).

Theorem 13.14. Consider the Cauchy problem for the FOSH system (13.1). Assume that ug €
CE(R™), f € CP(R x R™), A*, B are C*™with all derivatives bounded. Moreover, there ezists a
compact set k C R™ such that w =0 outside [0,T] x k.

Proof. The uniqueness and the statement about « follow from the domain of dependence /uniqueness
result.

Let ¢ € C°(R x R™) be such that ¢(t,z) = 0 for t > T. Since —L* is also a first-order sym-
metric operator, we have, by one of the above corollaries,

T
_ < _ L* i d
lela-ss < C [ el + [ 1%l dr

=0
T
<C/ L* —x dT
<O [ Wl

This implies, in particular, that if L*p = 0 for ¢ € [0, T] then ¢ = 0. Given ¢ € L' ([0, T], Hk(]R”)),
for ¢ as above and k > 1, set

T
(o) = /0 (s )odt

which is well defined by the generalized Cauchy-Szhwartz inequality.

For ¢ as above, L*p € L' ([0,T], H *(R")). Let X C L ([0, T], H *(R™)) be the subspace spanned
by L*¢, ¢ as above. Define Fy, : X — R by

Fy(L*p) = (¥, ¢).

Note that Fy, is well defined (L*¢ =0 = ¢ = 0for 0 < ¢ < T') and is bounded by the above energy
estimate. By Hahn-Banach, F;, extends to a bounded linear functional Fy, on L! ([O, T], H‘k(R"))
(with same norm as Fy). By one of our duality theorems, there exists a u € LOO([O,T],Hk(R”))
such that

T
Fo(w) = [ twohodt = (u.0)
for all v € L ([0, T], H*(R")).
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In particular, for elements in X,

~ T
Fy(L*g) = Fy(L'p) = /0 (u, L* o)t

T
= () = /O (b, o,

T T
/ (¢7 @)Odt = / (U, L*QO)[)dt.
0 0

Consider now f as in the theorem, but assume further that f(¢,2) = 0 for ¢ < 0. Take ) = f above
and extend u to be identically zero for ¢ < 0, so u € LOO((—oo, T], Hk(R”)) Therefore,

/_i(f, P)odt = /_io(u L¥p)odt

for all ¢ € C°(R x R™) such that ¢(¢,2) = 0 for ¢t > T. We would like to integrate by parts to
obtain (Lu, ¢)o and then Lu = f, but u is not regular enough in time. Thus, we proceed as follows.

ie.,

Let @ € L?
such that

((—00,T) x R™) such that @ is k-times weakly differentiable with respect to = and

/ / updrdt = / / updxdt

for all ¢ € C*°((—o00,T) x R™) (the existence of such @ can be demonstrated; @ is “essentially” u).
Applying this to ¢ replaced by L*p, and using the above, we have

T T
/ f(pd:):dt—/ / L*pudxdt

for all ¢ € C°((—o0,T) x R™). Write

T
/ / L*pudxdt = / / —0,(A%p)adzdt —/ / Di(Alp) udzdt +/ B*pudxdt

we can integrate by =pBu
parts because of the
z-differentiability of @

T
= —/ 8,5 udfndt—l—/ / QAOudxdt —I—/ / pBudzdt.
Therefore

T T
/ fodxdt = — / O (A p)udxdt + / / @A O;tidxdt + / / pBudxdt.
—o0 JR™ —o0 JR™ n n

Write this as

loc

/ / (f — A"9;t — Bi)dxdt = / O (A%p)udaxdt
n R"

Any 1) € C°((—o00,T) x R™) can be written as ¢ = A0<p for some ¢ € C°((—o0,T) x R™) by our
assumptions on A°, so the above reads, using that (A%)~! is symmetric

T . T
/ Y[(AY)TH(f — A'9;0 — Bii)]dxdt = — / Oppudrdt
—oo JR™ —oo JR?

for all ¢ € C2°((—o00,T) x R™). This shows that @ has a 9; weak derivative. Moreover, 0,4 is given
by
oy = (A°)7N(f — A'9;t — Bai).
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Since u is k-times weakly differentiable in « the RHS admits & — 1 weak spatial derivatives, so
D0y = 0, D@ exists, @] < k — 1. We can now iterate this argument: apply the above identity
with 1 replaced by 9, DY, |d| < k — 2.

T — . T —

‘/ @LﬂwﬁA%_%fjﬁaaBﬂWMﬂt:(/ Op(0y D% uidxdt.

—oo JR? —oo JR™
Since, by the above, 0; DY0;u exists, we can integrate by parts on the LHS to conclude that 92 D%
weak derivative of @ exists. Proceeding in this way, we conclude that

# D%, j+|a <k
exists weakly. Since we can take k very large, by Sobolev embedding we conclude that @ is, say,

C' for some large I. (We have not said that @ € H¥(R"), but to conclude that @ is C it suffices to
apply the Sobolev embedding theorem to ¢u, with test functions ¢).

We can now integrate by parts to get Lu = f pointwise in (—oo, T] x R™.

To conclude, finally, that @ is C°°, observe that for a (large) k we obtain a C solution and for
a different (large) &k’ we obtain a cv solution, and in principle these two solutions need not to
coincide. However, since we can assume [,I’ > 1, the previous uniqueness result says that both
solutions coincide. Thus @ is C* for all I hence smooth.

Observe that since @ is C*° in (—o0, T] x R™ and vanishes identically for ¢ < 0, we in fact have that
@ =0on {t =0} x R" (so this @ is not yet the solution to the Cauchy problem).

We now remove the assumption that f vanishes for ¢ < 0. Let 0 < ¢ < [ be a smooth func-
tion on R such that ¢(t) = 0,t < 0,p(t) = 1,t > 1. Set

pite) = (£ 1t

For any ¢ > 0, we have by the above a solution u, to Lu. = f such that u.(t,z) =0 for t <0. ( <
and not only < by the above). By the energy estimates

t t
¥ <> - <,> ‘||f||Hk(ET)dT-
€ €

Thus, u,, for any t € [0,T], u. converges to a limit in H*(X;), for any k,t € [0,T]. Solving for
Oiue in the equation, we get convergence of the time derivatives as long as ¢ > 0. Hence, we have
a smooth solution to Lu = f in (0,7) x R™. Let us show that this solution extends to ¢t = 0. We
have, for any k:

t
|m—mmmm§04

t t
el gresy <C | Wellarsydr <C | I fllares,)dr
0 0

The RHS is independent of ¢, thus the inequality holds for u too. Hence (taking k large), u and
D%, converge to zero as t — 0. We can solve for dyu in the equation and then get convergence of
Oy as t — 07 (to whatever it has to converge according to the expression for d;u determined by
the equation). Inductively, we get convergence of higher time derivatives.

Thus, we obtain a C*°([0,7] x R™) function u solving Lu = f in [0,7] x R™ and satisfying u = 0
on {t = 0} x R". To obtain the correct initial condition, we take C°(R) 0 < ¢ <1, =1 for
—1 <t < T+ 1 and consider the problem for u — puyg.

]
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Remark 13.15. Observe how we get the z-differentiability from “general” arguments and the
t-differentiability by using the equation to “solve” for J; (even in the case of the weak derivatives).
Compare with what we did for elliptic equations to get the d2u regularity on the boundary.

Corollary 13.16. Consider the Cauchy problem for the FOSH system (13.1) in R x R™. Assume
that ug € C(R™), that f € C*°(R x R"), and that A* and B are C*°. Suppose that for each
[T1,T5] C R there exist a,b such that

€A% > alg?, | A% <.
Then, there exists a unique u € C°(R x R™,R?) solving (15.1).

Proof. As before, uniqueness follows from a theorem further above. For existence, we now do not
necessarily have f compactly supported and A*, B with bounded derivatives, so we will use cut-off

functions.

Fix T > 0. Let ¢y be as in the domain of dependence theorem. ¢y depends only on the con-
stants a,b on [0,T]. Let r > T'cop + 1 and set

Cri={(t,2) €[0,T] | # € Br_cyt(0)}.

Let o € CP(RxR"),0< ¢ <1, ¢ =1on Coia,r, and ¢p € CZ(R") satisfy ¢ = 1 on B,(0),
1 =0 on Ba,(0).

Set (see picture below)
A0 = A9 4 (1 - 9)4%(0,0),
Al = @A, B = ¢B,
iy = pug, f=vf
and consider
ArQ, i+ B = f in [0,T] x R™,
u=1g on {t =0} x R™.

~+

u#0
(below purple

line)

Boyi2com—cot(0)
= By, fco (2T /)(“)

N i \ T

Coryacor 27 \1 p=1

(below purple line) (below purple line)
(below purple line)

F1GURE 32. Visual Demonstration
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Let @ be the smooth solution. Since
€A% = e A€ + (1 - 9)6A°(0,0)¢
> pal¢* + (1 - p)al¢f?
= al¢f?
A" < 1A' < b,

we can apply the domain of dependence property to @ with the same constant ¢y. Thus @ vanishes
outside Bayi¢,t(0),t € [0,T]. In the region where % does not vanish, A* = A, B = B, so @ solve

A9, i+ Bi = f,
U= aO?

in [0,7] x R"™. In C,, f = f, so @ solves the original equation in C,.

Next, repeat the argument with ¢ > r, obtaining a solution «’ to the original equations in Cg
that agrees with @ in C,. In this way, we can repeat the argument and use uniqueness to obtain a
solution in [0, 00) x R".

To obtain the solution for (—oo, 0], we reverse time.

0

Remark 13.17. We will often refer to “reversing time” arguments, so let us write the details here
once. Set 7 := —t,

Consider
Li(t,x) = A%(t, 2)dpu(t, ) — AL(t, x)0su(t, z) — B(t, z)u(t, x)

= _.]Z(tvx)'
For t > 0, we obtain a solution by the above. Then, setting u(—t,z) = a(t,x), du(—t,z) =
_815&(7573;)7 ~ R _
—A(t,2)0u(—t,z) — A(t, 2)du(—t, x) — B(t,z)u(—t,x) = —f(t, z)
A(—t, 2)dpu(—t, ) + AY(—t, 2)0;u(—t, z) + B(—t,z)u(—t,z) = f(—t,z)

which is the original equation evaluated at (—t, z).
13.2. Linear hyperbolic/wave equations.

Definition 13.18. A Lorentz matrix g is a (n + 1) x (n + 1) symmetric invertible matrix with
the following property. Denoting the components ofl; /;;g by g, i, v =0,...,n, goo < 0 and
gij,1,J = 1,...,n, are the components of a positive definite matrix. We denote the components of
g~ ! by g". Observe that g~ is also a Lorentzian matrix, i.e., g°° < 0 and ¢¥ are the components
of a positive definite matrix.

A Lorentzian metric in [0, T] x R™ is a map of g from [0, 7] x R" to the set of Lorentzian
matrices with uniform bounds

goo(t,z) < C <0, g;;6¢ > Cl¢)?,
g%t x) < C <0, g7(t,x)6& > ClEf?
for all (t,z) € [0,7] x R™ and all £ € R™.
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Definition 13.19. A second order linear system of hyperbolic PDEs, a.k.a. a (system of)
linear wave equation(s) in [0,7] x R™ is a system of the form

g""0,0,u + a"Oyu +bu = f,

where a*,b : [0,T] x R® — d x d matrices, f : [0,7] x R* — R? g is a Lorentzian metric, and
w:[0,T] x R® — R? is the unknown.

Theorem 13.20. (Basic Energy Estimate for Wave Equations). In the above (system)
linear wave equation, assume that g,a*,b and f are smooth and all their derivatives are bounded.
Let u be a smooth solution with the property that for each T > 0 there is a compact set Kk C R™
with u(t,x) = 0,t € [0,T],z ¢ k.

Then
VEWD < (\/E<o> o [l ~>HL2@T)dT)

for some constant independent of u, where

1 3
E(t) := 2/2 (—g™|owul* + g% Oudju + |ul*)dx

(9 0;udju = g" d;uT Oju, but as before we omit the transpose sign in u'l ).
Proof. We have

OFE = (—goo&gué?fu + gij@-u@j@tu)
pI

1 y
+ 2/ (—019™|0vul? + B1g” Drudju + 2udyu) =: I) + I.
DI

11:/“ —g"0wdiu+ g70mu 0; O
St ~~

by parts

=— Oru (gooafu + gijf)i@ju) — / (%gij(‘)iu@tu
Et Et

=" 0,0,u — 2¢"18,0;u
=f—a"0,u—bu— 29" 0,0;u

:2/ Y Oud; 0 — Owu (f — a!Ouu — bu) — / ajgijaiuﬁtu
P P P
:/ d"o; (latu|2) — Ou (f — a'Oyu — bu) — 8jgij8iu8tu
e by parts Y ¢
=— / (99" |0vu|* — Opu (f — atOyu — bu)) — / ;9" d;udyu
Et Et

<CE+ CVE||f| 12z

since, under our assumptions

1
—FE < / (|6tu|2 + |Vul? + ]u|2) <CE.
C 2,

Using this we also obtain Is < F so
OE < CE+VE|fllr2s0)
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and the result follows by dividing by v/E and using Grénwall.
O

Theorem 13.21. Let gr,1 = 1,...,d, be smooth Lorentzian metrics in [0,00) x R™ such that for
each T > 0, g satisfies uniform bounds in the sense of the definition of Lorentzian metrics in
[0,T] x R™. Let aﬂ“,bl,fl € C®([0,00) x R"),I = 1,..,d. Let u},ul € C*[R"),I = 1,....d.
Consider the Cauchy problem
g 8, 0,u" + aﬂ“@uuj + bhul = f1 in [0, 00) x R,
ul(0,-) = ud on {t = 0} x R,
ol (0,-) =ul on {t =0} xR",
where I,J = 1,...,d and there is a sum over J (but not over I). Then, there erists a unique
smooth solution u € C*®([0,00) x R™", RY). If the data has compact support and fr(t,z) = 0 for

t € [0, T,z ¢ kK = compact, then there exists a compact set & C R™ such that u(t,z) = 0 if

t€10,T],x ¢ k. Moreover, the following domain of dependence property holds: given T > 0, there

exists a cg > 0 such that if ué,u{ vanish By(xg) and f1 wvanishes in Crao,c0, then u vanishes in

Crzo,co- This last statement requires only gr to be C' with uniform bounds, aﬂ“,b{] and f to be
continuous, and u to be a C? solution.

Proof. This can be proven with ideas very similar to what we used for FOSH linear systems. For
existence, we derive higher order energy estimates by considering the equation satisfies by D%, and
then involve functional analytic methods. For uniqueness and the domain of dependence property,
we integrate over C, s, ., choose co appropriately, and analyze the boundary integrals. We will,
however, take a shortcut, as follows.

Set for each I =1,...,d, and 4,5,k =1,...,n,
ol = (o] vk) = (Ol ., Bt Ot ud),
Azljo = g?’
Aé0+1,n+1 = Aglng,n+2 =1,
Ai],]fz—i-l = Aleiu = g?ﬂ
Aalz]j-l,nﬂ = QQ?k-

From this we obtain (n + 2) x (n + 2) matrices A’? and A’¥, where the entries that have not been
defined above are set to zero.

Set
h{z+1 = _flv
d§n+1,i = —a{]ia
d§n+1,n+1 = *agoa
df] n+ln+2 = —bﬂ,
dg n+2,n+1 = _5§7

and the remaining components are set to zero.

Then, if u is a solution to the wave equation, v satisfies the FOSH linear system:

Al%90f — AT 9! 4 dhv? = n! (13.2)
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(no sum over I). Moreover, v(0, -) satisfies
U[(O, ) = (’Ul(o, ')7 sy Uﬂ(()? ')7 UTZ-‘rl(O? ')7 Un+2(0, ))
= (0111 (0,-), ..., 3,1l (0,-), Dyl (0, -), ul (0, -)).

Observe that the initial data has the property that
iy, 42(0,) = v (0,). (13.3)

From our assumptions, we can apply our results on FOSH systems to obtain a smooth solution v
with a domain of dependence. Assume further that the initial data satisfies (13.3). From (13.2),

taking the j-component:
=0

(AT%901); — (ATign!); + (dho”); = (K1),
=0

Al (0" — AL (00" ) ar + dfy (07 =0

ik
=g] =0 =0

1075, .1 10 I 10 I
Ajp (O )i + Aj n41(00" g1 + Aj n42(00V Jns2
=0 =g =0
Ii I Ii I Ii I
(2 (2 (2
— A (O )k = Ajy 1000 )1 — Ay 9(00 g2 = 0
jka, I _ ijo T
g1 Oy = 97 Oivp 4
=oF =siowl
1 ) 1
— ;g7 Oy = mu; g7 Ovyga

1 I
— at’U,L' = ai'l)n+1,

where m is the inverse of (g? ) (not necessarily m;; = g;;).

Similarly, taking the n + 2 component
=0

(A0 )2 = (AT 00 g2 + (d5v7)pya = (B )ne

=6/, L=n+1
Aﬂz a0 ) — Aﬁrz w00 ) + df n+2L (v/)L =0
10 I I0 I I0 I
An+2,k(8tv )k +An+2,n+l(atv Jn+1 +An+2,n+2(at” Jn+2
=0

=0 =0

Ii I Ii I Ii I

A 1 (2 N

- An+2,k(aiv )k — An+2,n+1(aiv Jnt1 — An+2,n+2(8iv Jnt2 =10
I T

= Oty 40 = VUpyq-

Set u! := v}, ,. Then by (13.3) 9;u(0,-) = v/(0,-).
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Then

t
ol (t,-) = 9t (0, ) +/ oy opul (7, ) dr
0 N———
. § .
_vn+2(T’)
t
=1(0,") +/ 9; Oyl o7, ) dr
0 N—_———
:U'£L+1(T7’)
t
= UiI(O, )+ / 31'1),{4_1(7, ) dr
0 N———

:atviI (T")

Also
8tu = 8tvn+2 = Un+1-
Hence, v is of the form stated in terms of u, and u satisfies the original equation.

14. LOCAL EXISTENCE AND UNIQUENESS FOR QUASILINEAR WAVE EQUATIONS

Our goal is to study systems like the above linear wave equation where now g (and a, b, etc.)
depend on u. For this, we used to make some specific choices about this dependence.

Definition 14.1. We say that a C* map
g : RmaF2dEn+l y space of (n 4 1) x (n + 1) Lorentzian matrices

is a (C¥,n,d)—admissible metric, or admissible metric for short, if:

e For every multi-index a = (g, ..., @pgt24+4n+1) such that |a| < k and every compact interval
I = [T1, T3] there exists a continuous increasing function

hio:R—R
such that
’Dag/.tl/(ta .’E, 5)’ S hl7a(‘€’)
for all y,v =0,....,n, x € R", t € I, £ € R™d+24,
e For every compact interval I = [I7,T3], there exist aj,ag,a3 > 0 such that for every
(t, T, g) clx Rnd+2d+n
goo(t,z,€) < —a1, gii(t,2,6) €€ > apfé|? for all € € R™,
and
n
Z \gw(t,x,ﬁﬂ < as.
H,v=0
It follows from the above definitions that if g is (C°, n, d)-admissible then g(-,-, &) is a Lorentzian

metric.

Definition 14.2. A map f : R x R® — R? has local compact support in x if for any compact
interval [T, T5] there exists a compact set £k C R™ such that

ft,z) =0, t € [11,T5], = ¢ k.

A smooth function f : R x R — R? that has local compact support in = can be regarded as an
element of

C™(R, H*(R™, RY))
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for any m, k > 0 integers. This is not necessarily the case if f has the property that for any fixed
t, f(t,-) has compact support. Consider ¢ € C°(R™), ¢ ¢ 0. Set

Flta) = ozt — %,xz,..,m") t>0,
’ 0 t<0.

Then f is smooth for ¢ > 0 and for ¢ < 0. For each (0, z), there exists a neighborhood U > (0, z)
such that f =0 in Y. Therefore, f is smooth. For fixed ¢, f(¢,-) has compact support. For ¢ <0,
£t ) 2@y =0

but for ¢ > 0
1f @ )llzz > 0,
so f ¢ CO(R, H°(R™, R)).
Definition 14.3. A C*¥-map
f . Rnd+2d+n+1 N Rd
is called a (Ck, n, d)-admissible nonlinearity, or admissible nonlinearity for short, if:

e For every multi-index o = (v, ..., @pgi2d1n+1) such that |a] < k and every compact interval
I = [Ty, T5] there exists a continuous increasing function

h],a R—=R
such that

‘Daf(t,l‘,f)’ S hl,a(‘a)

forallt € I, z € R", ¢ € R™d+24,
e The function of (¢,z) defined by f(t,z,0) has a local compact support in z.

Let Q ¢ RxR™ and u : Q — R be differentiable. Let ¢ be an admissible metric and f an admissible
nonlinearity. Define g[n] as the Lorentzian metric
glu](t,z,) = g(t, z,u(t, z), Qu(t, ), ..., Oyu(t, x))

and f[u] as the function

flul(t,x) = f(t, x, u(t,x), Owu(t, ), ..., Opu(t,z)).

Note that

cRxR"® €R? cR? cRnd
A~ S
( t,x ,u(t,x),dwu(t, x), Oru(t, ), ..., 0n(t, x)) ¢ Rnd+2d+n+l

3

explains the above choices.

Definition 14.4. A (n,d) admissible majorizer, or simply majorizer, is a map that associates
to each (C'*°, n,d)-admissible metric g, (C*°, n, d)-admissible nonlinearity f and compact interval

I = [Tl ) TZ]?
a continuous function
Zf[gvf] :R™ — [0,00),
where m is fixed, with the property that
211[g,f] < 212[97 f]

whenever I7 C Is.
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Definition 14.5. A (n,d) admissible constant, or simply admissible constant, is a map that
associates to each (C°°, n, d)-admissible metric g, (C*°, n, d)-admissible nonlinearity f and compact
interval I = [T, T»], a real number Crlg, f] > 0, with the property that C7,[g, f] < Cplg, f] if
I C Is.

We will often omit the arguments [g, f] and write z7, Cy.

Notation 14.6. We will henceforth write g, for g, [u] and g" for g"’[u]. Similarly, we will write
f for flu]. Or sometimes we write gi,”, fu, etc. Also, we can assume, without loss of generality,
that g% = —1.

We will study the Cauchy problem for the quasilinear wave equation
¢"'8,0,u= fin [0,T] x R",
u(0,-) = ugp on {t =0} x R", (14.1)
Owu(0,-) = u; on {t =0} x R".
(with ¢ = gu”, f = fu)-

Theorem 14.7. (uniqueness). Let g be a C' admissible metric and f a C' admissible nonlin-
earity. Let u and v be two solutions to (14.1) with uy = vo,u; = vi. Then u = v.

Proof. Write

9u’ OpOuu = fu
9" OuOuv = fo
SO
Ju 00 (u—v) = (9" = 91")0u0v0 + fu — fo-

By the fundamental theorem of calculus

1
fumfo= [ GOt 0=t

= /01 Vef(tu+ (1 —t)v) - (& — &)dt
= flu—v)+ ffOu(u—v)
for some continuous functions f, f", and similarly
g — g = G (u — v) + # 0 (u — v),
for some continuous function §*¥, §***. Thus, with w = u — v,
g1 9,0, = G 9,0,vw + §1,0,00\w + fw + frIw.

This is a linear wave equation for w for which our uniqueness results apply.
Notation 14.8. Denote
M[u)(t) = |lull grer(s,y + 10w gr(s,)

Nu](t) == Z ||D&agU’|Loo(zt)~

|af+5<2
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Theorem 14.9. Let g be a C°° admissible metric and f a C°° admissible nonlinearity. Let ug,u; €
CX(R™,RY), v € C®(RxR",RY). Suppose that v has local compact support in x. Set g, = g[v], fo =
f[v], and let u be the solution to

gh"0,0,u = f, in R x R",
u(0,-) =up on {t =0} x R",
Owu(0,-) =uy on {t =0} x R"

(which exists and is of local compact support in x).

Set
1 B o . .
Exlv,u](t) := 5 Z / <—980]D0‘6tu]2 + g7 DY0u - D¥0ju + ]Do‘u]2> dx.
@<k 2t
Let I =10,T].
Then, there exist admissible majorizers and constants z1.1, 22,1, C1,1, C2,1, 3,1 such that

Muul(0) < 10 Melul0) + | [ Tz (Nol) (14 Nul) Mifo] + Mkm)] dr.

Oy Ex[v,u] < 31 + 22,1 (N [u], N'o]) (MG [v] + Eglv, u]) .
00 _

If f(t,z,0) =0, cay can be omitted. (Under our conventions, g,° = —1, but it is convenient to
write it for keeping track of things.)

We will sometimes write g(t,x,v) for g(t,z,v,0v) etc. d = (9,D), D = spatial.

Proof. Note that
1 1 - i
EE,? [v,0](t) < Mg[0](t) < CrEZ [v,9](t)
provided ¢ is such that this is defined. To simplify the notation, write Ey = E[u,v], E = Ej.

Compute

g 1 g
OF = —ggoﬁtuatzu + ¢,/ 0;u 0;0iu | + = / (—8tg?}0]8tu\2 + 0rg,) Ojudju + 2u6tu)
\V-/ 2
2t by parts K

» y 1 y
—— / ggoﬁfu + g7 0i05u | Opu — / 0i9,) Ojudyu + 3 / (—8t980|8tu\2 + 0r g, Ojudju + 2u8tu)
> >

t t

=gh" 8,0,u—2gi0 8;0ru

=%8i(|6zu\2), by parts

= _ fou+ 2/ gf,o 0;0rudiu + 3 / (—8tggo|8tu\2 + 0vg,) Ojudju + 2udyu — 28igf}8ju8tu)

t t

>
1 y y .
= — / fOmu + 3 / (—8t980|8tu\2 + 0v g, Ojudju + 2udu — 20,9, Ojudyu — 28¢gf,0|8tu\2)
> >

Since |D%guu(t,x,€)| < hro(|¢]) and g depends on up to v,
095" < 21(Ni[v)).

Thus
OE < zi(N[))E + Ci|foll 2y, VE

Next, since Eg[v,u] =35 <1, Elv, D%), differentiate the equation:
9" 8,0, D% = D f, + [g4 8,0, D%]u.
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Apply the above energy inequality to this to get
OuBx < z1(N (@) Bx + Crll full e s VBr + Cr | (949,00, D

JEr.

L2(3,)

To estimate the commutator,
i’ 0,0, D“u — D(gh" 0,0, u)
note that it is a sum of terms of the form (up to constants)
DﬁangDTa dyu
where |3| + |7 = |@| — 1 (the 8; is there because at least one derivative falls on gi). Write
DP0;gh” D"0,0,u = DP8;(gh" — gb")D"0,0,u + DPd;g" D™, 0,u,

go = glv = 0]. Since 9;gh” = 0if p = v = 0, in 9,0,u at least one of the derivatives is spatial.
Then, using some of our inequalities for Sobolev spaces,

1D ur, ., D gy < cZ 1D el gy T gl ecoy
J#
loi| + ... + |ay| = k, we find (D = spatial derivative)

Ui U
I1D% it — gi) D™D 5 | < C|ID*1D(gy — g0)| [ DOwu||
Yo 90 OV UIL2(32,) = Gv = 9o)liL2(3,) UllLe=(32,)
+CD(gs — 90) | Lo () I D* " DOl 125
Since v has local compact support in x,
g(t,z,v) = g(t,z,0) = go(t,z)
for x ¢ K C ),. (k compact depending on T),
1D(g0 — g0)llze(x,) < 2r(NTv]).

Recalling another inequality:

continuous, increasing
——
IEC )l grmny < Cllulle@ny) ol e gn)
for F' such that F(x,0) =0
Dy Dy F(z,y)l < Foy(lyl)
continuous, increasing

we find ((go — g0)(t,2,0) =0)

1D 7D (g0 = g0)llz2(s,) < Cllgo = gollircs,)
< C([|l9v] =)l 0v] (s,
<z

TN v]) M [v]
(we get Jv because g = g(dv)). Therefore
IDP0,(g — ) D" 00l 25, < 21N MyIN T + 2 (N To] Myl
< zl(./\f[v])(./\/lk[u] + Nu] + Mk[v])

Write f, = (fo — fo) + fo, fo(t,z) = f(t,x,0). Since fp has a compact local support in x,
||fOHHk(Zt) < C7. Applying the above inequality for F' to f — fo:

If = follgr s,y < 21N v])) Mg [v].
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Putting it all together:
0By, <zr(N[o)) Ex, + Crl foll eV Er
+ g 2u0, D sy VB
<z/(NW)Ex + (Cr + 21(N o)) My [v])V/Ex
+ 21 (N o)) (Mi[u] + Nu] My [v])\/Ey
SZ](N(U))Ek + C[\/E>k
+ 21 (N o)) [M[v] + N [u] My [v] + My [u]] /Ey.
Using C1vEy, < CC? + CEy,
(Myfe] + Nul My [e]) /Er = (1 + Nul) Mi[e] v/ Ex
< C(1+Nu)) > Mi[v] + CE;
Mi[u]\/Ey < C1Ey,

we obtain the second inequality; for the first inequality, divide by +/E}, integrate, and use v/ Ej, ~
M;,.

0

Lemma 14.10. Let g be a C* admissible metric and f a C*° admissible nonlinearity. Let
up,i, ur; € COMRM),v; € C°(R x R",R?Y) have local compact support in x,i = 1,2. Set g; =
glvil, fi = flvi], and let u; be the solution to
91" 9,0,u; = fi in R x R,
u;(0,-) =wug; on {t =0} x R",
at’LLZ'(O, ) = U1 ON {t = 0} x R™

Let I =10,T], v=wvy —v1, and u = uz — uj.

Then, there exist majorizers z1 1, 22,1 and an admissible constant Cr such that, fort € I,

Maful) <Cres ( [ (W) ir) - [Matil©

+ /0 20 {(Nur], Nor], Moa]) Mofo] dT]

Proof. u satisfies
e OuOyu = gl 0,0yus — ghy 9,0 un
= gby OuOvuz — gy 0u0ur + (ghy' — by )0udws
= foo = fur + (9hy — 94)0u0vua

Set
1 g
5= [ (ofbiowt + giowoju+ uf)

t

and proceed as above to get
OE <z1(N(v2))E + | for = furll 2o VE
+ (9 = 50Dl 255, VE
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(recall that in the basic estimate the term in power one in the energy is multiplied by a N'(-) term
that comes from differentiating géf l)’, this is why we have N (v2) here.)

The differences can be estimated using the fundamental theorem of calculus as we did for unique-
ness; 9,0,u; gives a N(u1) term (recall that 9u; does not appear).

Thus,

~f01 g (v,0v)

< 21 (N (), N (1), N (v2)) (HU2 —villre(y,) + [[Ov2 — 6’711HL2(2t))
<z (N(ul),N(Ul)aN(UQ))MO(U)a
Similarly
[ for = forllL2cs,) < 21N (01), N (v2)) Mo().
Thus

WE < 21(N(v2))E + 21(N (u1), N(v1), N(v2)) Mo(v).

Dividing by V/E, integrating, using v'E ~ Mg[u] and involving Gronwall produces the result.
O

Theorem 14.11. Let g be a C* admissible metric and f a C*° admissible nonlinearity. Let
ug € HFY(R™, RY), uy € HE(R™,RY), where k > 5 + 1. Then, there exists a T > 0 and a unique
u € C%([0,T] x R™,R?) which is a solution to

9" 0,0,u = f in [0,T] x R",
u(0,-) =up on {t =0} x R",
O (0,-) =uy on {t =0} x R"
Moreover, u has reqularity
u e C°([0,T], H*H(R", RY)),
dyu € C*([0,T], H*(R™, RY)).
Finally, for any t € [0,T] we have
Ex(t) < (Bx(0) + Cyt)elo =rN )t

where the RHS depends only on T' and an upper bound for |luo| grsr(s ) and |lual|grs,), E(t) =
Elu, u](t).

Proof. The proof will be split into several steps.

Set-up. Let {ug;} and {u1;} be sequences of C2°(R", R?) converging to up and u; in H**! and H*,
respectively. We can assume that

llwo,ill grsr + lluill e < Co + 1,
where
Co = [luol| gr+1 + [Jua][ -
Set

vo(t, w) := ugo(x),
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which has local compact support in . Define v; 1 inductively as follows. Given v; € C®°(RxR" R?)
with local compact support in z, let v;11 € C°(R x R", Rd) be the unique solution to

95:18uauvi+1 = fir1 in R x R"™,
v;4+1(0,+) = ug 41 on {t = 0} x R",
Oi+1(0,°) = u1i41 on {t =0} x R"

where g;+1 = g[vi], fi+1 = f[vi]. Note that v;+1 has local compact support in .

Boundedness. Let us assume inductively that
Milvi—1] <C, Mglvi—2] <C
for some C and 0 < ¢ <T. We have
Nl < C|D=*v;|| 1 + C| D= 03| Lo (s,) + CllO7vill Lo (s,
< Clill gesics,) + Clowillgres,) + ClO7vill oo s,
where we used Sobolev’s embedding. Using the equation and our assumptions the last term is 92v;
is bounded by
1020l (52 < Cllgui-tllz=,) (ID%0ill (52 + 1Dl ooy + ol
(€)M [vi] + 21(C))
() (1 + My[vi])

after using Sobolev’s embedding, our assumptions on g, f the miscellaneous inequalities we used
before, and the induction hypothesis. Thus

Nvi] < 21(C)(1 + Mg[vi]).

<z
< zr

Similarly,
Nvi-1] < 21(C)(1 + Mp[vi-1])
< z(C)

using again the induction hypothesis. We now use the energy estimate

Mk[u](t) < ClJMk[u](O) + /Ot |:C2,] + 217](./\/‘[1)])((1 +N[u})Mk[v] + Mk[u])]dT,

with v — v;, v — v;_1 to get

t
/\/lk[vi] < C[Mk[vi]((]) —|—/ |:C[ + Z](N[Ui_l]) (1 + N[Uz] ) Mk[vi_l] + Mk[v,] :|d7'
0 N—— N—— ——
<z1(C) <z1(C)(A4+-Mp[vi]) <c

t
< CrMi)(0) + (C) / (1 + Myfvi])dr.

0

By Gronwall
My [vi] < Cr(My[vi](0) + tz7(C))et*1©).
Choosing C large enough, depending on Cy, C; and T small enough, depending on C we have
We need to verify the i = 1,2 case, i.e., we need My[vg] < C, Mg[v1] <C. For i = 1, we have
M [vo] = Mp[uop] < Co +1,
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so choose C > Cy+ 1 For i = 1, i.e., v1, we apply the above induction argument. For this, we need
Nvi—1] = Nvo] < z1(C), which above we obtained using the induction hypothesis for v;_o, which
would give v_; (see the above, where it says “similarly”). But here we have N vy < 27(C) directly
from the fact that vg is constant in time and from Sobolev embedding.

Lower norm convergence. From linear theory we know that

v; € CO([0, T], HEFL(R™) n CY([0, T], H*(R™)).

In the estimate for differences
t t
Mo[u](t) S C[ eXp/O ZLI(N[UQ])dT . [Mo[u](()) +A ZQ}[(N[Ul],N[Ul],N[UQ])Mo[U]dT] y

v = vy — vy, and u = ugy — u1, choose vy — v;, V1 > Vi—1, U > Vit1, Ul — v; to get

Mo[vi+1—vi] < C[ exp/o Z[(N[vi])dT I:Mo[vi+1 - vi](O) +/0 z[(/\/’[vi],/\/[vi_l])/\/lo[’l)i - Ui_l]d’r]

By the foregoing,
N[[Uz‘] < Z](C)(l + Mk[’l)z}) < Z](C),

SO
t
Cret#1(©) [./\/l [vit1 — vi](0) + ZI(C)/ Molvi — Ui—l]dT]
0

Put a; = supg<;<7 Mo[vit1 — vi](t), We can assume that T is small enough and the approximating
initial data sequence are such that

C[Gtzl(c)tZ[(C) S %
and
C[@tZI(C)Mo[’l)iJrl — ’UZ](O) S 2_i.
Then
;1
a; < 27 + Eai_l.
Then
< 1 n 1
a ~+ -a
2=t 50,
1 1 1 1 1
a3§§+§a2§§+§+1a1,
< 1—1 al
“= o tan
Thus
Molviy; — vi] < Molvigs — vigj—1] + ... + Molvip1 — vy
145 —2 al 1—1 a1
<o tomm et ot

Since ) # converges, we conclude that {v;} is Cauchy in C°([0,T], H(R™)) N C*([0, T, L*(R™)),
hence converges.

Higher norm convergence. For any 0 < I < k, interpolation

53752 527.5‘1
ol ey < Nl o ) by 51 < 52 < 53
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gives,

[vitj = vill e,y Ot — Ovvill s,
k+1—(1+1) I+1-1

< Hvi-i-J U%”Hk%l: )1 ”Ui-‘r] vl”]?;cirll(z )
—0 bounded by energy estimates

—1

k=1 0
o G =

-0
) Hatviﬂ 875”1”Hk(2

hence {v;} converges in C°([0,T], H'*1(R")) N C'([0,T], H*(R™)), | < k. Since k > % + 1, we can
take | (not necessarily integer) so that [ > § + 1. Hence, by Sobolev embedding, the sequence
converges in C°([0,T], C%2(R™))NC([0,T], C*(R™)). Using the equation we get that 9?v; converges
in C°([0, 7], C°(R™). We conclude that the sequence converges in C%([0, 7] x R"), hence we obtain
a C? solution.

Top-norm boundedness. Denote by u the above solution. We already know that u € H'*1(3",), dyu €
H!(Y>,),l < k. For each fixed t, the sequence {v;(t,-)} converges in H'*1(3",) and is bounded in
H*+1(S7)), hence the limit is in H**1(37,). Similarly, for dyu, thus u(t,-) € H*1(32,), dwul(t,-) €

H*(3Z,).

It remains to show regularity with ¢ and the energy bound.

Time-continuity: weak. Let us first show that v is weakly continuous with respect to ¢, i.e., given

a bounded linear functional ¢ on H*+1(R"™), the map ¢ ~ ¢(u(t,-)) is continuous.

¢ is represented by an element in H~*~1(R™) which we still denote by ¢, so

o= [

Let ¢; be a sequence of Schwartz functions converging to ¢ and v; as above.

(o ult, ) —(p, vilt,-))
=(p, ult, ")) = (@j, ult, ) + (@5, ult, ) — (@5, vi(t, -))
— (@, vilt, ) — (@, vilt, ),
for 0 <l <k.
(s u(t, ) = (poi(t, )] < llog = @lla-r-1@ny ult)ll e @ny
+ lojlla—1-1@ny lults ) — vilt, ) g @ny + 105 — OllE-r-1@ny Vit )| a1 (@mny
Fix j large enough so that

05 = Pllar—s- ey (It Mo gy + 0ilt, llgzen ) < e

which is possible since [|u(t, )| gr+1@mny + [|[vi(t, ) || gr+1 is bounded by the above. Then choose i
(depending on j) such that

@5l zr-1-1@myllu(t, ) = vilt, )| s mny < €
which is possible by the convergence for [ < k. Thus,
(@, ult,) —vilt, )| <2¢, 0<E<T,
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and v; converges uniformly in ¢ to w with respect to the weak topology. But the v;’s are weakly
continuous in ¢ since they belong to C°([0, T], H*+1(R")) thus u is the uniform limit of weak con-
tinuous functions, and hence weakly continuous. A similar argument applies to dyu.

Time-continuity: strong. Let us show that

tim (Jfu(t, ) = (0, ) gesn oy + 190t ) — (0, )i gy ) = 0

t—0t

i.e., right continuity at ¢ = 0. Left-continuity follows by reversing time and continuity at any ¢y by
taking u(to), Oyu(to) as initial data for the problem on [tg,T]. We will use the estimate

Ej(t) < (Ej(0) + Crt)eo 1N (w)at
that we will prove later. Set
hl](x> = gzj(()? T, U, 8“)7
i.e., = g¥(0,z,u(0,2),0u(0,z)).

Under our assumptions and the results established so far, the following is an inner product on
HFY(R™) x H*(R™) equivalent to the standard one:

1 L _ o o
V1,02), (W1, w2)) := = h'0; D%v10; D%wy + Dv1 D%wy1 + D%y D%ws ) dzx.
2 n /

&<k
Compute

((u = o, pu —ur), (u—uo, Jpu —u1)) = ((u, du) — (uo,ur), (u, du) — (uo,u1))
= ((u,@tu), (U,atu)) + ((u07u1)7 (U(),Ul))
—2((u, Bpu), (ug,w1))

Since g* = —1, g(0,z,u, du) = h, we have

Er(0) = ((uo, u1), (uo, u1)).

The map u — ((u, Ou), (ug, u1)) defines a linear functional, thus by the weak continuity established
above we have

lim ((u, dpu), (uo,u1)) = ((wo, w1), (uo, u1)) = Eg(0).

t—0t

Thus

lim sup ((v — uo, Opu — ur), (u — ug, Opu — uy))
t—0t

= lim sup ((u, ), (u, Opu) + ((uo, u1), (vo,u1)) — 2 lim sup ((u, ), (vo,u1))
t—0+ t—0+

= lim sup ((u, du), (u, Opu)) — Ex(0)

t—0+
= lim sup |(u,dwu), (u,du)) — Ek(t)} + lim sup Eg(t) — Ex(0).
t—0+ t—0t

From the energy estimate, lim; g+ sup Ex(t) < Ex(0), so

tl_i)r& sup ((u — ug, Oy — uy), (u — ug, Opu — ul)) < tl_i)lrél+ sup [((ul, o), (u, 8tu)) —Ex(t)].
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Write
((u, Bpu), (u, Opu)) — Eg(t Z / |0 D%u|? + 19 9; Dud; D% + | D%l > dx

|a|<k
- = Z / —guo\a D%|* + ¢ 9; D ud; D%u + ]D&u|2> dx
|a|<k
= Z / h” ) D; D%, - D;D%udx
|o¢|<k:

<C

—_———
<Ol = g e llull gy,

For §+1 <[ < k, by Sobolev embedding, our assumptions, the miscellaneous inequalities as above,
the fundamental theorem of calculus, and writing

g 10, z,0u(0,x)) — g~ (t,z,0u(0,z)) + g~ (t,z,0u(0,z)) — g~ (¢, z, du(t,z))
we have
W™ = g7 e (s, < 21(€)10u0 — dull s,
which goes to zero when t — 0% since we have strong continuity in the Ht! x H'-norm. Thus

0 < lim sup ((u— w0, Opu — wy), (u — ug, du — u1)) =0
t—0t

which gives the result by the inner-product equivalence.

Energy estimate for u.
It remains to show

Ex(t) < (Ex(0) + Cjt)efot 21 (N (w))dt
(Note that we have to prove this without using the strong continuity since the proof of the latter

relied on this estimate.)
Recall

O Exv,u] < ez + 22,1 (Nu], N o)) <M%[U] + Eg[v, u]>

Apply this inequality with v — v;, u = Vi1, U = ug;, U — UL,

Bu(oiy i) < Bulos, ) 0) + [ [cz T (N0 N wi4)) (M) + By (v, vis1)) ] ar

We compare

| Ex(vi, vig1) — Eg(u, vig1)| = ’ > / 99010: D%vi1|? + g3l 0;D; 110, D%vi 1 — | DV |*)da
|ad|<k
) Z / 9010: D%i1|* + 9] 0; D% 0i 110D ;i1 — [D%0iq1*)d
|a\<k‘

< gt = gu oo, Cr(C).
Since v; — u in C%([0,T] x R™), we have that the RHS — 0, thus
'lim sup Ek(u,vH_l) = llim sup Ek(vi, Ui-i-l)
1—r 00 1—00
< lim sup Ej(v;, vi11)(0)
71— 00
t
+/ [cl + lim sup Z[(N('UZ'),N(UH_l)) (./\/lz(vz) + Ek(?}i,'l}i.'.l)) dr
0

1—00



Disconzi 129

(we used the reverse Fatou’s lemma to move the lim sup inside the integral, which can be invoked
by E(vi,viy1) < C1(C)).

By the C? convergence, N (v;) — N (u) and, from how the initial data was chosen, Ej(v;, v;11)(0) —
E(0). Moreover, M2 (v;) < CrE(u,v;) by the properties of u established so far (and consequently
of gy) so

lim sup M3 (v;) < C7 lim sup E(u, v;).

71— 00

1—00

Thus .
lim sup Ex(u,vi41) < Eg(0) + / [01 + z7(N(u)) lim sup Ej(u, vz)] dr
1—00 0 1—00

Gronwalling:

7
Since v; converges in H'*! x H! and is bounded in H¥*1 x H*, it converges weakly to u in H¥*1 x H*
(this remains true for the equivalent inner product since it is bounded there too). So

im sup Fy(u, vi+1) < (Ex(0) +tCr) oo TN (w)dr
—00

1 - . L . L
Eg(u) = lim sup B Z / (—ggo&gDau&Davi + gff@lDauﬁjDau + DauDavi>

< lim sup ((u,@tu), (viaatvi))
1— 00

< lim sup [(u, dyullu || (vi; Fpvi) |l
71— 00

1 1
=E; (u) =B (uv;)
where we used the Cauchy-Schwarz inequality for the equivalent inner product (with norm denoted
|| - |)- Hence, dividing,
1 1
EZ (u) < 11;120 sup EZ (u, v;).
which implies the result. L
14.1. Continuation criterion and smooth solutions. We are interested in the following ques-

tions: if a solution is defined on [0, T, can it be continued past 7’7 If the initial data is C*°, is the
solution?

Theorem 14.12. Let g be a C*° admissible metric and f a C* admissible nonlinearity. Let
ug € H"1(R",RY), uy € H*(R",R?), where k > % + 1. Let u € C%([0,T] x R",R?) be a solution
to
g"0,0,u = f in [0,T] x R",
u(0,-) = up on {t =0} x R",
Ou(0,-) =ug on {t =0} x R"
T > 0. Then u has regularity
u e C°([0,T], H* T (R", RY)), (14)
dyu € C*([0,T], H*(R™, RY)). '
and for any t € [0, T,
Ep(t) < (Ex(0) + Cyt)elo 21NVt (14.3)

where By, is as in the previous theorem. Let Ty, be the supremum of T, for which u is a C? solution
defined on [0,T] and satisfying (14.2). Then either Ty, = co or

lim sup Nul(7) = oo.
=T, 0<r<t
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Proof. We know (14.2) and (14.3) to hold on a possibly smaller interval, i.e., the interval where
the iteration of the previous theorem converges. Let I be the set of times T € [0,7] such that
(14.2) and (14.3) hold on [0,Tp]. We already have that I is not empty. For Ty € I, we have
(u(Tv, ), Opu(Tp, ) € H*1 x H¥, so we can take it as initial data and obtain a solution defined on
[To, Ty + €] for some € > 0 and satisfying (14.2) and (14.3) on [Ty, Tp + €. Since (14.2) and (14.3)
hold on [0, Tp] by the definition of Tp, (14.2) holds on [0, T + €]. Moreover

Ei(t) < (Ex(0) + ct)eh 2N @I o <y < 1y,
t
Ei(t) < (Ex(T) + C(t — Tp))elro "Ny < < 1y 4.
Applying the first inequality with ¢ = Ty we find that the second inequality gives

E(t) < (Eg(Tp) + C(t — to))elro *Nhdr

t
< |:(Ek(0) + CTy )efoTO Z(N[u])dr + C(t _ tU):| efTO 2(Nu])dr
~~ N
<Ct since t€[Tp,To+e] <Ct

< [(E(0) + Ct)e e AVl oy # N ul)dr

< (Ex(0) + Ct)efé (W ul)dr

showing that I is open.

Let T; — Ty, T; € I. Since T; € I, (14.3) holds for each i, hence (u(T},-), u(T;,-)) € H* x H*
is uniformly bounded independent of i. Because the time of existence depends only on the size of
the data (and the structure of the nonlinearities), this uniform bound gives a solution for each data
(u(T, ), Opu(T;, )) defined on [T}, T; + €] where € > 0 is independent of i. Hence we get a solution
satisfying (14.2) past Ty and by continuity (14.3) holds as well. Hence I is closed, thus (14.2) and
(14.3) hold.

For the characterization of T}, suppose that T < oo but

lim sup Nu](T) < cc.
t—T 0<r<t
Then Nu] is bounded on [0,7%). Then (14.3) implies that E; has a uniform bound on [0,7T}).

Arguing as above, we can construct a solution past T}, contradicting the definition of T}.
O

Corollary 14.13. Under the same assumptions of the local existence and uniqueness theorem, if
ug,u1 € C°(R™) then the solution is Coo.

Proof. This follows from the fact that the data is in H* for any k and that T}, in the previous

theorem is independent of k.
O

Remark 14.14. If g does not depend on Ju, we can replace k > 5 + 1 by k > § and N[u] to
involve up to first derivatives of u only. This can be seen by inspection in the local existence and
uniqueness proof.

15. THE ROLE OF THE CHARACTERISTICS

We will now discuss the concept of characteristic manifolds, or characteristics for short. These
play a role similar to the cones in the standard wave equation. It will be important to distinguish
between elements of the tangent and cotangent space at a point, even if we will consider primarily
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equations defined on [0,7] x R™ (the generalization for manifolds will be straightforward though).
We begin with several definitions and give a motivation further below.

Definition 15.1. Consider in X = [0,7] x R™ a linear scalar differential operator L of order k
with principal part
P = g aqD”.

|a|=k
For each x € X and each £ € Ty X, we can associate a polynomial of degree k in T X, called the
characteristic polynomial of at z, by

P(z,6) = Y aa(2)E?,
|ae|=k

where £* = £°...£5™ and we abuse notation, using P for both the principal part of the operator
and its characteristic polynomial. The cone V,(P) C T} X is defined by

P(l‘,f) =0,

called the characteristic cone (at x). (Although the set need not to be a cone in all cases, but
see below).

Example 15.2. For the wave equation (more precisely, the wave operator, but we abuse terminol-

ogy).
— U + Au =0

the characteristic cone at any z is given by (the boundary of) the light-cones —&2 + \5\2 = 0.
Example 15.3. For the transport equation
owu + b-Vu=0

the characteristic cones have the form
So+0b-£=0
Identifying b with a one form:

“ (1,b)

—

(1,0) - (€0,€) =0

Va(P)

3

FIGURE 33. b and the One Form

Definition 15.4. A regular hypersurface Y C X (i.e., a hypersurface for which tangent vectors are
well-defined) is called a characteristic manifold, characteristic surface, or simply a charac-
teristics for P (or for L) if the following holds. Y can be locally represented as {z € X | ¢(z) = 0},
d¢ # 0. Setting &€ = do, £ € V,(P) for all z € {¢(z) = 0}. We also call > a null hypersurface.

It is convenient to also define characteristics when we have a curve instead of a surface. More
precisely, we say that the flow lines of the vector field u are the characteristics for the operator
u”0,, (this is motivated by the characteristic cone u¢,, = 0).
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Example 15.5. For the wave operator —us + c?ugz, the characteristics are the curves = + ¢t =
const. The characteristics cones are —&3 + 263 = 0, & = c|&|. Take, e.g., ¢(t,r) = = & ct.
dp =dx £ cdt =&, & £ cléy].

In order to generalize the above to vector-valued differential operators (i.e., for systems of PDEs)
we need to define the principal part of a mixed order operator (i.e., consider systems of PDEs where
the equations might have different orders).

Definition 15.6. Let L : C®(Q,R?) — C>=(2,R?) be a linear differential operator. Assume that
it is possible to find non-negative integers my,ny such that

(Lu)” = hi(z, D™ )ul + b (2, D™k,
reQ I,J,K =1,..,d, sum over I, K, where h{(z, D™ ~") is a homogenous linear differential
operator of order m; — ny (which could be identically zero) and b’ (x, D5~ ~1) is a linear

differential operator of order mg — ny — 1 (which could also be zero). Under these conditions,
the principal part of L is the operator

P = (h{(x,D™ ™)1 j1,. .d
and the characteristic polynomial is defined as
P(x,£) = det(hf(z,£)).
The definitions of characteristic cones and characteristics extend to this situation.

Remark 15.7. We also call hf(x, &) the characteristic matrix and det(h{(z,£)) the characteristic

determinant of P. Note that it is a homogenous polynomial (in &) of degree 2?21 mr — Z§:1 ny.
The indices my,ny are defined up to an overall additive factor.

Example 15.8. Consider the system
ut0up1 = ¢1 + P2 + B3
" 0,0y ¢ = 0p1 + 02 + O3
9" 0,0,0003 = 1 + P2 + 071
This system has the above structure with the choice
p1:m1=3,n =2 (¢goa:mo=3,n0o=1 ¢p3:mg=3,n3=0.

Then the principal part is given by the LHS,

gf)l u“@u 0 0 qbl
Plo2| = 0 gwjguazx 0 ®2
®3 0 0 ngUAauaua)\ ®3

even though there is a 0%¢1,9%¢> dependence on the RHS. To understand this, recall that we
already know the definition of the principal part if all equations have the same order. Transforming
the system into this case by taking 9% of the first equation and 0 of the second, we find

o1 = 0¢1 + s + 03

o = Pd1 + ¢ + 0793

3 = 0°¢1 + 2 + 0y
and we see that the RHS is indeed lower order.

Definition 15.9. We say that P(z,£) is a hyperbolic polynomial at x if there exists £ € T X
with the following property: given a non-zero 6 € T;X that is not parallel to &, the line A\ 4 0,
where A € R is a parameter, intersects the cone V,(P) at k distinct real points. We say that L is
a hyperbolic operator at x if P(z,¢) is a hyperbolic polynomial at . We simply say hyperbolic
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if these conditions hold at every z or on a domain that is implicitly understood. (Recall that k is
the degree of P(x,¢&).

Remark 15.10. The definition of hyperbolicity varies across the literature and sometimes qualifiers
such as strong, strict, weak hyperbolic are used to make distinctions among different definitions
(see below).

Example 15.11. For the wave equation, any £ in the interior of the light-cone satisfies this property.
For the transport equation, any & not parallel to £y + b - £ = 0 satisfies the property

A+ 0 AE
o o

™

FIGURE 34. The Light Cone and V,(P)

Theorem 15.12. (Leray). If P(x,§) is hyperbolic at x and dim X > &, then the set of &’s
satisfying the definition forms the interior of two opposite convex half-cones T'y™ (P), Iy~ (P) with
F;Z’i(P) not empty and whose boundaries belong (but need not to coincide) with V(P).

Example 15.13. Let g be a Lorentzian metric and u be a timelike unit vectorfield, i.e., gaﬁuauﬁ =
—1. The operator g u/\a,ﬁ,,a)\ is hyperbolic.

P(.T, 5) = gwju)\ay,alla)\ = 07

thus

9" €&y =0
uMy =0
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AE+0 A
)

¢
S

78"
N
3

FiGURE 35. Light Cone and Parallel X§ + 60, A¢

utE, = g u,g, = 0.

N 50
. U
g(up, &) =0
. -
S
up = one form

FI1GURE 36. Illustration

Definition 15.14. We say that L is weakly hyperbolic at z if P(x,¢) is a product
P($,£) = P1($a£)"‘PM($a£)7

where each P;(z,&) is a hyperbolic polynomial, and the intersections
o

LyH(P) = (et ()
i=1

I
T (P) =Ty (P,
=1

have non-empty interior, where Iy~ (P,) are the convex cones associated to P;(z,¢). If in addition
P is diagonal (i.e., h{ = 0 for I # J), and each diagonal entry of P is a hyperbolic operator (at z),
then we say that L is a hyperbolic operator in diagonal form (at z).
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The reason to consider the intersection of the cones can be understood with the following example.
Consider

—Utt + Ugz + Uyy = 0,

—Vzz + Vgt + Vyy = 0,
which are two wave equations, with x playing the role of a time variable for the second equation.
But

—Utt + Ugg + Uyy = U,

—Ugg + Vgt + Vyy = U,
is not a coupled system of wave equations because they do not share a common direction of evo-

lution, i.e., a common time variable. This is reflected in the corresponding cones having empty
intersections

FiGure 37. Empty Intersection

Consider, instead,
—Utt + Ugg + Uyy = U,

43 32

—2vy — 11 Uiz + ﬁvaxp + Vyy = U,

This is a system of coupled wave equations with a common evolution direction. The cones are
(omitting the y variable) depicted as:

_ V341 N
t = o1 ® t
t = |z
_ -1
V3+1
T

FicUrE 38. Cones with Omitted y Variable
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The blue cone corresponds to u and the red cone to v. To see the latter, consider the coordinate
system given by ¢ + %x =0,t—+/3 =0, i.e., consider the variables

ﬁx—lt, f:1x+§t
2 2 2 2

z

with respect to which the red cone is a standard light cone. Set

Then
1. (V3 1 2v/3 2 -
T 7‘[; = _ _ R = — 7 _
a:+3 <2+3>mx Hx 1
g 3~ ]. > — Lﬁ’ T = l
V3i— 7 =29t tzit—fx, {mx Al T
2 2 tr=%, tz = —3
V3 2
wy = Vit + v 15 = 7vt—i—ﬁv$
2
wip = T(Utttf + vipxy) + ﬁ(vxttf + Uz xy)
9 2v/3 4
- zvtt + 11 Ut + ﬁvxw
1 2V/3
Wz = Vily + Vs = 5l + BTG
1 2
Wiz = _§<'Uttti + Vi) + T(Uxtta? + Vo Tz)
L2336
= 4Utt 11 Utz 121%3:,
thus
44/3 32
Wi+ Wez = —20¢ — Ve + o7 Ve
so the v part is a wave equation with time ¢ and cones given by ¢ = |Z|, i.e., £ > 0 and = %,
1 V3, _ V3 1 VBl 7~ 1 V3, _ _ V3 1 _ 1

The next definition dualizes the above constructions.

Definition 15.15. We define the dual convex cone C; (P) at T, X as the set of v’s € T, X such
that £(v) > 0 for every ¢ € I'i*(P). We similarly define C; (P) and set C,(P) = C;H(P)UC; (P). If
the cones C;f (P) and C (P) can be continuously distinguished with respect to X then X is called
time oriented and we can define a future and past time direction. A path in X is called future
(past) timelike if its tangent at each point belongs to C;f (P) (C, (P)), and future (past) causal
if its tangent at each point belongs or is tangent to C;f (P) (C, (P)). A regular surface Y (i.e., a
surface for which tangent vectors are well defined) in X is called spacelike if its tangent vectors
at each point are exterior to Cy(P).

Remark 15.16. Despite the terminology, the above definitions are made in terms of the principal
part P of the operator L, without reference to a Lorentzian metric. The terminology captures the
close connections among hyperbolic equations and Lorentzian geometry.
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Let us now give a motivation for the definition of characteristics. Consider the linear PDE
Lu= Z ag D% = Z aaDu + Z aaD*u
lof <k laf=k o <k—1
= Pu+Qu=f,
where the a,’s are d x d matrices (so we assume the equations to all have the same order for
simplicity) and f is given. Consider the Cauchy problem for L with data given on {z° = 0}, i.e.,
Lu= fin[0,T] x R",
Du(0,-) = ug on {2 =0} x R"|a| <k — 1.

(At this point we are not assuming L to be hyperbolic or have any structure, so we do not think of

20 as time.) If the Cauchy problem is uniquely solvable, then in particular all derivatives of u on

> = {2¥ = 0} are uniquely determined in terms of the initial data (and f).

Writing
Py = Z ao D = ag D™ u + Z aoD%u,

|ae|l=k |a|=k
a#a*

where o* = (k,0, ...,0) the equation gives
aa*D“*u|E = f‘z — Z a,O(Do‘u‘E — Qu‘E

|a|=k
a#a*

The RHS is entirely determined by the data. Thus, for DO‘*u|E to be (algebraically) determined
by the data we need

det(aq+|yn) #0

Observe that if we define ¢(x) = 2%, then Y is {¢(x) = 0}, € = d¢ = (1,0,...,0), and an+ = aal?,
so the condition becomes

det(an&“|x) # 0.

Differentiating the equation and arguing as above, we can inductively algebraically find all deriva-
tives of u along > in terms of the data. L.e., we can formally solve the Cauchy problem if > is
non-characteristic.

Consider now the case where we give Cauchy data along a hypersurface > given by a level set
{¢(z) = 0}, with d¢ # 0. Let us again ask whether all derivatives of u along ).

Since d¢ # 0, in the neighborhood of each x € Y  J,é(z) # 0 for some o = 0,...,n. Let us
assume for simplicity that dy¢ # 0. Then

i {¢<x>, a=0,
€T =
% a#0

defines a change of variables. Then

ou_ ou0r 0w 0
or> 078 Oz “oxB’T T Oxe
We can write D = MD, D = (820 yeees %) Inductively we find, for |a| = k

D® = (MD)® + R*
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where R is a differential operator of order < k — 1 and (M D)a is obtained by considering M as a
constant matrix, i.e., not applying differentiation to M when we write the several terms in (M D)®,
e.g.,
0 0 0 (15 du\_,5 Ou 05 OMI Ou 5.5 0%
Ox2 Jz Oxa2 @ oxh
Then, in & coordinates P becomes

P=> aD"= > as(MD)*=: > a,D"

|a|=k |a|=k |ae|l=k

1 97898 dror | dpee 9zf  eiMangzEszs

+ Rajan

Since derivatives of order [ in x translate to derivatives of order [ in Z and vice-versa, the data on
S gives data on > = {#° = 0} for the Cauchy problem in # coordinates, and the inversibility of
the coordinate transformation implies that we can determined Du|s, in terms of the data on 3
if and only if we can determine ﬁku\i in terms of the data on 3. But the latter holds (by the
above case ¢(x) = 2") if and only if
det(aqn~) # 0,

a* = (k,0,...,0). Now,

d(kz,O,...,O) = aa(Mf)o‘ with £ = (1,0, ...,O),
ie.,

(M&)g = MEE, = MG, (ME)™ = (Mg)™...(Mp)*
(e.g., in 2d, o = (g, 1)

9%u
_ a0 240
o= MM, 5o o+

0%u 8 agr 0%u
oo Gz~ MaMas gz

But M2, = M2, & for € = (1,0, ...,0).> But

070 oo}
0 _ _ _ —

i.e., R
M¢ =dp=¢
and the condition to determine Dkuli reads
det(aq+) = det(ag(ME)Y) = det(anl®) # 0,

i.e., Y must be non-characteristic.

From this we conclude the following: Data can be freely specified only on non-characteristic hyper-
surfaces. If Y is characteristic, then there must be compatibility relations among the data, also
called constraints. E.g., consider

—a(t, x)uy + Ugy + Opu = 0 in [0,00) X R,
u(0,-) =g,
Oyu(0,-) = h.
Suppose that a(0,z) = 0. Then, if u is a solution, restricting to ¢ = 0,
Uz (0, ) 4 Ou(0, ) + goow +h =0,
so g and h cannot be freely specified.

The image starting with a non-characteristic hypersurface and “bending” becomes characteristic.



Disconzi 139

characteristic

non-characteristic

FIGURE 39. Non-characteristic to Characteristic

Since in this case we transition from the ability to freely specify data to data that is constrained,
we can imagine that this means that along the characteristic the values of the derivatives of u have
already been determined by the values assigned as data “before” we reached the characteristics.

For hyperbolic operators, something like this is true:

For weakly hyperbolic (thus also hyperbolic) operators, under very general conditions we can define
the causal part of a point (which is the analogue of the past light cone with vertex at =) and prove
a domain-of-dependence property, i.e, that a solution at x depends only on its value on the causal
past of z, and the boundary of the causal part of x is a characteristic manifold (exactly like the
boundary of the past light cone is characteristic for the wave operator).

It follows that we can roughly say that for hyperbolic operators, information “propagates” along
the characteristics. This makes the study of the characteristics important in hyperbolic problems.

One way of understanding the above domain-of-dependence property is as follows. Suppose that we
have an operator L with the property that gives Cauchy data on a subset S of non-characteristic
hypersurface >, there exists a unique local solution in a neighborhood of S. Let us not worry
about the precise hypotheses regularity, etc., but let us imagine that everything is “sufficiently well
behaved” so that what follows makes sense. If the operator is hyperbolic, or the problem satisfies
the assumptions of the Cauchy-Kovalevskaya theorem (see below) or of the Holmgren’s uniqueness
theorem (a type of generalization of the uniqueness part of the Cauchy-Kovalevskaya theorem),
then such a situation is true. Consider given initial data, so the solution is uniquely determined in
a neighborhood U of S. Let U be the largest neighborhood of S where such solution is uniquely
determined by the data. Then OU is characteristic. To see this, suppose a portion V' C 9U is not
characteristic.

The solution U induces data on V. Then, we can solve the problem and obtain a solution in
a neighborhood V' of V' that continues the solution beyond U. Since the solution in U is uniquely
determined by the data on S, so is the data induced on V', and thus the solution in V. But this

would contradict the definition of U.

The above argument is only heuristic, but gives an idea of the domain-of-dependence property.

P

F1GURE 40. Illustration
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Definition 15.17. All of the above notions generalize to quasilinear equations. In this case, given
a function v, the quasilinear operator

(Lu)J = h{(:v, W, ..., DME Ty Dmf_"J)uI + b‘](x, DmK_"J_luK)
becomes a linear operator if we replace
(Lu)? = hi(z,v, ..., DmE=w Ly pmi=niyyl 4yt (g, pmr—ns—l, Ky

so that all previous notions apply. In this case we talk about L being hyperbolic (at x) for a given
v etc. We are particularly interested in the case when v the solution if set (if it exists) or is the
initial data, which makes sense since the terms in v involve only up myg — ny — 1 derivatives of v,
although in the mixed-order case more care has to be taken in defining what derivatives must be
specified as data, and there might be compatibility conditions even for non-characteristic surfaces
(think of previous examples of the system with indices for ¢1, @2, ¢3).

Remark 15.18. The previous argument of solving D¥uly in terms of the data if 3 is non-
characteristic (which applies to quasilinear equations as well) can be used to produce solutions
(in a neighborhood of 3") as follows. Inductively we determine all derivatives D'u|s. Then (taking
3 = {2 =t = 0} for simplicity), we consider the formal expansion.

o0
u(t,z) = Z iDau(O,x)to‘
a[=0
If everything in the problem is analytic, then we can show that the above series converges and is a
solution. This is the content of the Cauchy-Kovalevskaya theorem. This procedure of solving
for D*u(0,z) can also be useful for non-analytic data: although the series will not converge in
general for non-analytic data, for data in Gevrey spaces (which is a generalization of analytic
functions) we can still work with the formal power series as a consistent tool to produce solutions.
More generally, we can consider the truncated series

N
1
u(t,x) = Z aDau(O,x)to‘,N >>1
|ar|=0
to obtain an approximate solution. Such an idea is often useful when dealing with a technique

called the Nash-Moser iteration, which can often be applied to PDEs for which energy/a priori
estimates are not directly available.

16. EINSTEIN’S EQUATIONS

Einstein’s equations are the fundamental equations of general relativity. The basic problem we
are interested is the following: find a Lorentzian manifold (M, g) where Einstein’s equations

1
Ric(g) — 5 R(g)d =T,
or, in coordinates,
1
Rap = 51igap = Tap

are satisfied. Here, Ro3 = (Ric(g))as is the Ricci curvature of the Lorentzian metric g, R is the
scalar curvature of g, and 7 is the energy-momentum tensor of matter, which contains informa-
tion about matter and energy interacting with gravity and depends on the problem (e.g., if we are
studying a fluid interacting with gravity, 7 has a certain form; if we are studying electromagnetic
fields interacting with gravity 7 has another form; see further below for examples).

When 7 = 0, we have the vacuum Einstein equations

1
Rap — 5Rgas = 0.



Disconzi 141

In relativity, a vacuum can be dynamic and quite complex, and we should not think of it as “empty
space where nothing happens.” We sometimes use the term matter Einstein equations or Ein-
stein equations with matter to refer to the case 7 # 0. The terminology “matter” is used
because in general relativity we call matter anything that is not gravity (so electromagnetic radia-
tion would be called matter).

Although Einstein’s equation can be studied in any dimension, we will consider only dim(M) = 4,
which is the case of most physical interest.

Taking the trace of Einstein’s equations,
tr(T) = g*°Top = —R.

We can thus equivalently write

1
Rag = Tap = 5tr(T)gas-
In particular, in the case of vacuum, the Einstein equations can be written as
R.p = 0.

Thus, the vacuum Einstein equations correspond to the geometric problem of finding Ricci-flat
Lorentzian four-manifolds.

We will work in local coordinates with {x®}3_, an arbitrary coordinate system (when needed,
later on, we will specify a specific coordinate system). Since we do not have a canonical system of
coordinates, we do not at this point think of 2° as a time coordinate (although there will be a way
of constructing a time coordinate later on).

Most of the features we are interested in are already present in the vacuum case, so we consider
this case in detail (later we comment on the case with matter), and by “Einstein” we will mean
“vacuum Einstein” when there is no confusion.

Since Ricci involves up to two derivatives of the metric, we see R,3 as a second-order differential
operator acting on (the component) g,3. Thus, Einstein equations are a system of second-order
nonlinear PDEs (in fact, quasilinear, see below) for g,gs.

We are interested in the Cauchy problem for Einstein’s equations. For this, we need to under-
stand which hypersurfaces are appropriate to prescribe initial data, i.e., which hypersurfaces are
non-characteristic. A direct computation using the definition of Ricci curvature gives

1 1
Raop = — §guyaual/gaﬁ - §g'wjaaaﬂg,uu
terms involving up to dg
1 1
+ 59“”801&/9,4/3 + ig‘wja#aggal, + Haﬂ(ag)
=:Rap(0%9) + Hap(99)

To make the notation more clear, first consider ag at a metric h (recall the remarks on the definition
of characteristics for quasilinear problems):

B 1 v 1 v
Ra5(82g) = - ihu auaugaﬁ - §h'u 8048,69;“/

1 1
+ §h“”8aal,gw + ih’””aﬂaﬁgw
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This is to viewed as an operator acting on the unknown variable g, which is organized as a vector
valued function (the function u taking values in R? in the previous notation) which we write as the
ten-component vector

u = (90079017 "'7933) .

(There are 16 components gq3, but it suffices to consider 10 independent components since gog =
9Ba)- Thus, the characteristic matrix of R at h acting on u is

(P(h,€u)as = — Sh"€ubuta — 5" Eaagun

1 1
+ ihuygocgug,uﬁ + ihwjg,ugﬁgow'
For any h and any £, P(h,§) always has a kernel, as we can always pick u with entries

9ap = Ealp, §F#0
SO
(P(h,&)u)ag = 0,
SO
det P(h, &) = 0.

Hence, every hypersurface is characteristic for Einstein’s equations. This can be viewed as a
consequence of the diffeomorphism invariance of the equations. One way of seeing this is as follows.
Suppose that the Cauchy problem can be uniquely solved for data given on a hypersurface >, with
the solution defined on a neighborhood U of Y. So we have a unique g satisfying

Ric(g) =0

in U and taking the correct data (we leave aside for a moment what it means to prescribe data
for Einstein’s equations, but at least considering them as PDEs for the components g,3 in local
coordinates, it is not too difficult to make sense of it). Take a diffeomorphism ¢ : U — U such that
¢ = identity on a neighborhood U of 3" with U properly contained in U. Set h = ¢*(g). Then

Ric(h) = 0.

Moreover, h = g on > (and their derivatives also agree on a coordinate chart), but h # g in U.
Thus, h and g are two different solutions to the Cauchy problem.

Of course, h and g are isometric, but from a “purely PDE” point of view, they are different metrics
hence different solutions. This tells us that when we consider solutions to Einstein’s equations we
will have to do it up to isometries.

16.1. The constraint equations. The fact that every hypersurface is characteristics for Einstein’s
equations implies that initial data cannot be prescribed arbitrarily. To understand the constraints
that the initial data has to satisfy, consider a time oriented Lorentzian manifold (M, g) with an
embedded smooth spacelike hypersurface Y . We require ) to be spacelike because it should play
the role of the t = 0 surface where we prescribe data. Let g and h the induced metric on Y and
its second fundamental form (M, g). Then § and h must satisfy the Gauss-Codazzi equations:

Do —J o =17 =6 pb 7 7.0 7 70
Raﬁ'y = Ya gg g; p RJO’T - ha'y h,@ + hB’Y hom

Vol — Vg he = RsN°g78,
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where R is the Riemann curvature of g, V the covariant derivative associated with g, N is the
future-pointing unit normal to >, and indices are raised and lowered with g.
Note that gog = gag + NolNg since

GasN? = Ny + NoNgNP =0,

=1
so given a vector field X we have
X*= —XPNgN™ + g3 X"’
— SN——
projection onto N (projection onto

orthogonal to N) =X
so that
9ap X XP = gap g5 X7 g X°
= gap(95 + NON,)(g) + NPN;) X7 X°
= (ggy + NsN,) (g5 + NP Ns) X' X°
= (g5 + N, N5 + N;N., — N,N5) XV X?
= (gps + N, Ns) X7 X°
= Gap X7 X°

as should be for the induced metric.

Observe that ) )
Rgs = "7 Ragys,
R=g’ 615%5,
where Rag and R are the Ricci and scalar curvature of g. Thus, if ¢ satisfies Einstein’s equations,
R= g gﬁa Raﬁ'y(F
= 57757 (.95 55 950 Riyr — hay hs + i s
= 97795 R, — (§%har)* + 3% 5% Mg has
N———
=(97"+NI7)(95+N"Ng)RY,, .

= g'"g§ Rysr0 + N°NgRY + N'N7g]  RY,. + N/ NTN°NyR

JoT
o

R —_RY 9V

JoT

_RY

oJt

=+ RO

JoT

=0 by R

Jor—

1
= R+ 2R,sN*N” = 2(R,5 — §Rga5)N°‘Nﬂ =0,
where we used gaggf = gos and similar identities that can be verified directly.

So )
Rt (BE)? — hash™ =0,
where the barred indices indicated that contraction is with respect to g. Also:
val_la — ?5713 = 75N5gg = 0.
But
Tl — 41T gy = (57 — NNVl — (3% — NN g
= Vah} — Vgh — N*N'Vohyg + N*N'Vgha,,
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compute
~NYN'Vohyg + N*N'Vghay = N*NV(Vghay — Vahys)
= NO{NV(@BJVJEOW - givJﬁ’yﬁ)
= N*NY(g4V ;ValNy — §iV ;VyNp)
pu— 07
where we used
Vghay = g3V shays has = VaN3
N,N?" = -1 = N'V,N, =0, N*g] =0.
Thus,
Vah§ — Vhd = 0.
We are led to the following.

Definition 16.1. An initial data set for the (vacuum) Einstein equations is a triple (>, go, h)
where > is a three-dimensional manifold, g is a Riemannian metric ), and h is a symmetric two
tensor on Y, such that the Einstein constraint equations,

Ry, — ‘h‘go + (trgoh)Q =0,
Vgotrgyh — divg h = 0,

are satisfied. The first equation is called the Hamiltonian constraint and the second the mo-
mentum constraint.

(Above, the notation should be self-explanatory, but Ry, trg, |- |g,, Vg, and divg, are, respec-
tively, the scalar curvature, trace, norm, covariant derivative, and divergence with respect to go.)

Definition 16.2. The Cauchy problem for (vacuum) Einstein’s equations consists of the
following. Given an initial data set (3, go, k), find a Lorentzian manifold (M, g) where Einstein’s
equations are satisfied and where (>, go) embeds isometrically with second fundamental form h.

Several remarks are in order.

We roughly think of ) as playing the role of the {¢ = 0} surface, go and h as g|—¢ and 9;g|i—o,
although even in a heuristic sense this cannot be quite correct. If we consider the equations in
local coordinates, we should be prescribing gngli—o and 0:gagli=o for the independent g,g, but
since ggp and h are symmetric tensors on a three-dimensional manifold, they only have six inde-
pendent components, so we can only prescribe (taking coordinates where #° = t = 0 represents
) Gijli=o = (90)ij, Otgijli=0 = hsij. We will see that the missing components go,, 0:go, can be
chosen more or less freely. This is what physicists call gauge freedom, and it reflects the fact that
FEinstein’s equations are geometric, i.e., invariant by diffeomorphisms. Thinking of diffeomorphisms
as giving locally a change of coordinates, we have four coordinate functions {z®}3_, that we can
freely reparametrize to fix go, the way we want.

Before investigating the Cauchy problem, we need to make sure initial data exists, i.e., that is
is possible to find gy and h satisfying the constraints. This turns out to be a problem on its own.
When appropriately formulated, the constraint equations become a system of nonlinear elliptic
equations for (gg, h). The solvability of this system depends, among other things, on the topology
of . Moreover, often we want more than just satisfying the constraints. For example, if ) is not
compact, we would like to find (go, n) with prescribed asymptotics.

We will not discuss how to solve the constraints. It suffices to know that there are plenty of
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situations where this can be done, so statements about initial data sets are not vacuous. The study
of the constraint equations has a long history and continues to be an active field of research.

16.2. The Cauchy problem. In this section, if regularity is omitted, it means C°°.

We will use a special system of coordinates to study the Cauchy problem.

Definition 16.3. A coordinate system {xo‘}gzo in a Lorentzian manifold (M, g) is said to form
wave coordinates if

Oy2%=0, a=0,..,3.

Uy is the wave operator with respect to 2%, i.e., U, = V#V . [, 2* means [, acting on the scalar
function z* for each a.

Remark 16.4. Notice that wave coordinates depend on the metric.

Remark 16.5. In the Riemannian case, V,V*# is the Laplacian of g, so the corresponding coordi-
nates are called harmonic coordinates. We sometimes use the term harmonic even in the Lorentzian
set. We have

Oy 2% =V, Vi
= g“yvuvyﬁla
= g"(0,V,a® =T,V a®)
= g" (0u0yx” — Ffwaw“)

~—~—
52 5

v

_ y0i 2% plet
= —g Ful/?

hence harmonic coordinates can be also characterized by
7772 plo
g I‘W = 0.

Lemma 16.6. [t is always possible to construct wave coordinates in the neighborhood of a point.

Proof. Consider coordinates {z%}3_, about a point p. We can assume x%(p) = 0 and identify a

neighborhood of p where the ’s are defined with a domain U containing the origins in R*, with

the £%’s identified with the corresponding coordinates in R*. Denote t := 2.

Consider, for each a =0, ..., 3, the Cauchy problem
Ogy" =0 in R x R3,
y'(0, 2", 2% %) = 2" on {t = 0} x R3,
oyt (0,24, 2%, 2%) = 0 on {t = 0} x R3,

Oyy° = 0in R x R,
y°(0,2', 22, 23) = 0 on {t = 0} x R,
(0,21, 2%, 2%) = 1 on {t = 0} x R?,
Uy computed with respect to ® coordinates.

(If the z%’s were wave coordinates, then y* = x® would be solutions). This problem admits a
smooth solution y®. In a sufficiently small neighborhood of the origin the y® form a coordinate
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system by the implicit function theorem (since they agree with z on the initial slice). But since
Lgy® is coordinate invariant, it also holds that

Ogy® =0

with [, coupled with respect to y-coordinates.

We will now derive a useful identity. Set

= g"Ty,
Then
2T = g g Opgrw + Ovgou — Orguw),
2000 = " (Ougow + Ovgop — oGy
= 29" 0u901 — 9" 0o G-

Thus

207 (9oal') = 29" 0,07 9o — 9" 0- 00 gy + H.;(9g)

N

depending on at most dg

Switching the roles of 7 and ¢ and adding the resulting expressions,
20, (gaara) + 20, (gTOtFa) = 2.9””8#87—901/ + 2(3#80971/ - QQMVaTaag;w + H. 4 (89)
Recalling that

1 1 1 1
Raﬂ = _igwjauaugaﬁ - Eg“yaaaﬁg/w + §gwjao¢auguﬁ + iglwauaﬂgau + Haﬁ(ag)-

Comparing to the above

1 1
Rocﬁ = _gg'uya,uaugaﬁ + 5 [aa(g,@uru) + aﬁ(gauru)] + Hocﬁ(ag)'

In wave coordinates, the term in brackets vanishes, so

1
Rop = —ig“”au&,ga/g + Hyp(0g).

The principal part now is a diagonal matrix with entries —%g’“’@#@y; i.e., Einstein’s equations in
wave coordinates read

L
—5‘9“ auaygaﬁ + Haﬁ(ag) =0

which is a system of quasilinear wave equations for which we have a local existence and uniqueness
theorem. The problem, however, is that wave coordinates depend on the metric, i.e., we need g to
construct wave coordinates, but ¢ is what we are trying to solve in the first place. We will see how
to overcome this difficulty in the next theorem using a nice trick due to Choquet-Bruhat in the
50’s, when she established the first local existence and uniqueness result for Einstein’s equations.

Definition 16.7. We call Rraeg i= —19"8,0,9ap the reduced Ricci tensor and Rgfg—f—Hag (0g) =
0 the reduced (vacuum) Einstein equation.

Theorem 16.8. Let Z = (>, go, h) be a smooth initial data set for the vacuum FEinstein equations.
Then there exists a solution to the Cauchy problem for the vacuum FEinstein equations with data Z.

Remark 16.9. We sometimes call a Lorentzian manifold (M, g) that is a solution with data Z a
development or Einsteinian development of Z.
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Proof. Consider R x >, let p € >, {x'}3_, be coordinates on an open set U about p in Y and
define coordinates on an open set U about pin R x>, with Un > cU, by {z¢ zzo, with t := 20
a coordinate on R. We can identify U with an open set in R x R? and p with the origin. In order
to apply our theorem for smooth solutions to quasilinear wave equations, we need to formulate the
problem in [0, 7] x R?, have compactly supported data, and guarantee that that the principal part
is always a metric even when the data vanishes.

N
N

FIGURE 41. V cc U N {t =0}

_Let V CC Un{t =0}, ¢ € CR3 be such that 0 < ¢ < 1, ¢ = 1 in V, ¢ = 0 outside
U N {t = 0}. Consider the following initial data on {¢t = 0}:

)
900(0) ) = -,
g()’i(07 ) = 07
095 (0, -) = kj.

To specify 0.9, (0, -), recall

1
Joal'* = glwa,ugaz/ - 59#11809“1/

; . 1 ) 1 ..
= 90900 + 6" 01 90i + 9" Digor — 590030900 — 9" 0rgoi — 59" 0593;.
For goo = —1,90; = 0 (so g°° = —1,¢% = 0) the RHS reads

1
—0¢go0 + 550900 + D,

where D, (for “data”) is D, = % 03 gy — % g% 059ij- Thus, we can choose 0;go,, such that I'“ = 0
on V. Indeed

) 1
o=1i: —0gio+ 5 9igoo +D; =0 = 0Orgio = D;.
~—~—
=0
1
o=0: —0goo + 581900 + Do =0 = 0goo = 2Do.
where D; and Dy are already known from the previous data choice.

Hence, we put
0¢gou(0,-) = ¢ x (above choice).
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This gives I'* =0 on V.

Let § = §(¢™?) (which has unknown U = (goo, ..., g33) in the previous language) be such that
G(0) = Minkowski, §(gag) = gas in a compact neighborhood of gos = gas(0, )|V, where goz(0,-)
is as above. We can also assume that the derivatives of g with respect to its arguments are bounded.

Under these conditions, there exists a unique smooth solution g.g to

1.
_igwjauauga/j + Haﬂ(ag) =0

defined on some time interval [0,7]. We can take T" so small so that g is a Lorentzian metric (since
it is one at ¢ = 0). By domain of dependence considerations and our choice of g, we have § = ¢
in some sufficiently small neighborhood W of p. Therefore, we obtained a solution to the reduced
Einstein equation in W taking the correct data on W N {t = 0}. It remains to show that this is a
solution to the full (i.e., non-reduced) Einstein equations in .

We know that I'* = 0 on V. A computation using the constraint equations, which we leave as
an exercise, shows that d;I'* = 0 on V. Since ¢ is a metric in W, we can consider its Ricci and
scalar curvatures, and the Bianchi identities give

1
Va(RE — §Rgg) =0.
Using that ng = 0, another computation that we leave as an exercise gives

1
—5950,9“”8“6”1“" + h/g =0

or
—%g“”@uﬁyfo‘ + go‘ﬁhg =0

where hg is linear in I'*, o = 0,...,3. We thus see that the I'* are solutions to a linear system
of wave equations in W. After properly setting this system as a system in [0, 7] x R? with ideas
similar as above, by uniqueness and domain of dependence considerations we conclude that I'* =0
in a domain Z ¢ W with ZNW C V, since I'*, 9,I'* = 0 on V. But if I'* = 0 then Ricci = Ricci™d,
and our solution to the reduced equations in Z is in fact a solution to the full Einstein equations.
(In other words, we showed that the coordinates {x®} we have using are in fact wave coordinates
in Z. We did this by showing that if the coordinates are wave coordinates at ¢ = 0, which as seen
we can arrange to be the case, then they remain wave coordinates for ¢ > 0. This procedure is
sometimes called “propagation of the gauge”).

Before continuing, we make the following observation. By domain of dependence properties and
our discussion of characteristics, the solution at a point r € Z in wave coordinates depends only on
the data J~(r)N>_, where J~(r) is the causal part of r with respect to g expressed in wave coordi-
nates. Using that our solution is a solution to the full Einstein equations in W and that the causal
part is invariantly defined, we can show that we have a solution to Einstein’s equations in W re-
gardless of the coordinate system and that the solution at a point r depends on the data J~(r)N) .

Summarizing, given a point p € {t = 0} x >, we obtained a solution to Einstein’s equations
in a neighborhood Z, € R x > of p taking the correct data on z N) . Moreover, the solution at
r € Zy, depends only on J~(r) N)_, where we can assume that J~(r) € Z, for all r € Z,,.

The next step will be to define (M, g) as the union of all such Z,’s. For this, we need to show that
solutions agree on intersections. More precisely, let us show the following.
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Let ¢, € ) and let Z,, Z,, be corresponding neighborhoods as above. Denote g, and and g, the
corresponding solutions. Assume that (Z,N))N(Z,N>") # 0. Then, for any w € (Z,N>_)N(Z,NY")
there must exist neighborhoods U, and U, of w in Z; and Z,, respectively, and a diffeomorphism
¢ : Uy — U, such that g, = ¥*(gr).

Take normal coordinates {y‘} at w relative to go. We can assume the normal coordinates to
be defined inside Z, N > . Construct, as in a previous lemma, wave coordinates {xa}izo in a
neighborhood Uy of w in Z,. Then (z71)*(g,) satisfies the reduced Einstein equations in a neigh-
borhood of the origin in R x R3. We carry a similar construction of wave coordinates {Z® g:o a
neighborhood of U, of w in Z, and obtain a solution (Z7!)*(g,) to the reduced Einstein equations
in a neighborhood of the origin in R x R3. Let W be the intersection of both neighborhoods of
the origin just mentioned. Because {y'} is intrinsically determined by gy and Z, and Z, induce on
(ZgN> )N (Z,NY) the same data, z and  agree on {t = 0} x V', where V' is some neighborhood
of win Y. Thus, (z71)*(g,) and (Z71)*(g,) are both solutions to the reduced Einstein equations
in W with the same data on {t = 0} N W. Therefore we have (z71)*(g,) = (Z71)*(g-) (possibly
shrinking W for uniqueness by domain of dependence) thus

9q = (T 0 2)"(gy)-
We have thus constructed (M, g), finishing the proof.
]

The above solution is not unique, even in a geometric sense, as we can take a neighborhood M’
of " in M and consider (M', g|pr) and (M', g|pr) and (M, g) and (M, g|pr) are not isometric in
general. To get uniqueness, first we need the following definition.

Definition 16.10. A closed achronal set Y C M, M endowed with a metric g, is called a Cauchy
surface if every inextendible causal curve in M intersects ), and only once if the curve is timelike.
A development (M, g) of T = (>, go, h) is called globally hyperbolic if > C M is a Cauchy
surface.

Theorem 16.11. Ewvery initial data set T = (>, go, h) admits one and only one mazximal globally
hyperbolic development.

Proof. We already know that Z admits one globally hyperbolic development (we have not showed,
but we can prove that by taking M to be a sufficiently small neighborhood of ), >  will be a
Cauchy surface). Let G be the set of all globally hyperbolic developments of Z modulo isometries.
We say that (M, g) < (N,h) if (M, g) embeds isometrically into (N, h) keeping ) fixed. This is
a partial order in G, so by Zorn’s lemma, there exists a maximal element. Uniqueness is obtained
because if there exists a (M, g) that does not embeds isometrically into (M™** g™a*) we can glue

(M, g) and (M™2* g™3*) to construct a larger solution.
O

Let us finish with some remarks.

Observe that the need for a correct choice of coordinates does not come specifically from the
fact that we are dealing with abstract manifolds. We still need to construct wave coordinates in
our proof even if 3~ = R3, where we have some a priori canonical coordinates. The wave coordinates
depend on the metric, we see that in a sense we constructed the coordinates alongside the solution.
In fact, a related approach would be to couple Einstein’s equations with the equations determining
wave coordinates, i.e., consider the coupled system

Ricci(g) = 0,
Oy 2% =0,
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with suitable initial conditions. (Note that this would be the case even in R x R?). Although we
have not done so, such a situation, where we need solution-dependent coordinates that are deter-
mined alongside the equations of motion themselves, are very common in hyperbolic PDEs.

Let us make a brief comment on the case with matter. Since
V*(Rap — %Rgaﬁ) =0,
a necessary condition to solve
Rap — %Rgaﬁ = Tap

is that

Va5 = 0.
This provides supplementary equations for the matter fields that couple to Einstein’s equations.
For example, the energy-momentum of a scalar field is

Tap = Voo Vs — 5Vu0V"00s,
so that
VaoT5 = VVapVgp + VapViVsp — VgV 0oV
= VVapVgp
since V is torsion-free. Thus, if d¢ # 0
VVap = 0.

Hence, Einstein’s equations coupled to a scalar field read

1 1
Rop — §Rga,8 =Tag = VapVp — Evusﬁvusﬁgaﬁ,
VAV i = 0.

Since T§ = —V,pV@p, we can also write

1
Raﬂ = 7715 - §tr(T)gaB = VQQOVBQO,
Vo V% = 0.

All the previous, including the propagation of the gauge, apply if we can solve the reduced coupled
System

RS = VapVisep,
VoV&% =0
for g and . The same remains true if we consider a different matter model, i.e., another energy-
momentum tensor 7: the argument boils down to solving the reduced coupled system.

17. ELEMENTS OF THE CHARACTERISTIC GEOMETRY OF QUASILINEAR WAVE EQUATIONS

Here we will present some ideas that form the basis of modern techniques for the study of quasi-
linear wave equations. These techniques are tied to the geometry of the characteristics g"“¢,,§, = 0,
and thus are loosely referred to as the study of the characteristic geometry or, since g"§,&, = 0
says that £ null (in the sense of Lorentzian geometry), also as the study of the null geometry. Unless
stated otherwise, we will work only in 3 + 1 dimensions.

We will consider wave equations of the form
gw}(so)auazﬂp + f(@a 8‘10) =0,
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where it will be convenient to call the solution ¢ instead of u. Note that we consider metrics that
depend on ¢ but not on its derivatives. We will also often omit the dependence on ¢ and write

g = g ().

Although in specific problems the form of f(p,dy) is in general relevant, for most part we will
be considering properties tied to the principal part, in which case we will consider

guy(so)au&/@ =0.

It is also convenient to consider geometric wave equations

D)o =0
where 0, is the wave operator associated with g (which depends on ¢)
1
O, = ———0a(y/det g g*°95)

Vdetg "
or equivalently
Oy =V, Ve
where V is the covariant derivative of g (which depends on ¢).

17.1. The role of decay. Having settled the question of local existence for quasilinear wave equa-
tions, the following question is natural: when is a local-in-time solution a global-in-time solution,
i.e., a solution that exists for all time? We saw that a solution can be continued past T if

limy_,p-supg<,.Np] < oo,

where N[p] ~ O¢ (recall that here g does not depend on dy). But an inspection on the proof that
something weaker is needed, i.e., it suffices to have

t
limy_ 7 supo< /0 S(Wgl)dr

i.e., we want to show that z(N|[p])dr is integrable in time on [0,7]. In particular, if it is always
integrable in time (i.e., integrable on [0, 7] for any 7' > 0) then the solution will be global.

For many cases of interest, the structure of the equations is such that the worst terms in z(N[p])

are the ones that contribute linearly. E.g., if p ~ ﬁ, which is integrable, and z is quadratic,

then ¢? is actually better when it comes to time integrability. Also, although N[p] ~ ¢ + ¢, so we
actually need integrability of both ¢ and Jy, experience shows that it is typically d¢ that it is the
vilain that is potentially non-integrable (this can be motivated partially from the theory of shocks,
where it is shown tat for large classes of equations that form singularities, ¢ remains bounded
whereas Jp blows up). Finally, working out our energy estimates in more detail for the type of
wave equations we are considering in this section shows that indeed solutions can be continued as
long as

t
hmt—>T/O [06]| oo (r3ydT < 00

which we will take as the basic continuation criterion that motivates the discussion.

This means that solutions can be continued if we can establish uniform pointwise decay (meaning:
decay in time) estimates of the form

C
(14t)tte
Is this possible? To investigate this question, let us look at the most basic problem, i.e., the
standard linear wave equation in R x R3, —9%¢ + Ag = 0. (Of course, such solutions are gobal,

0p(t, )| <
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but let us look at their decay properties as a guide for the nonlinear problem). Kirchhoff’s formula
gives
1
p(t, 1) =——m—= / vo(y) + tp1(y))do(y)
VlOB@) Jypi (o) )

1
ST 7001800

where ¢(0,:) = @o, 0p(0,-) = 1. Let us assume that ¢y and ¢; are compactly supported (It
is not difficult to see without restrictions on the support of the initial data decay might not hold.
E.g., if oo = 0 and ¢; = 1, then ¢(t,x) = t is the solution.) Then, since ¢y = ¢; = 0 outside
Br(0) for some R > 0,

1
o(t, z) ~Vol(0B,(2)) /<93t(m)ﬂBR(0) (¢o(y) +te1(y))do(y)

1
vol(0Bi(%)) JaB,(z)nBr(0) Folu) i
thus
o(t.2)] < C/ (Lt + |y — z)do(y)
7 T vol(0Bi(x)) Joasy(x)nBr(0)

vy
~ vol(0Bi(%)) Ja,(z)nBxr(0)

where we used that since we are integrating on (a portion of) the ball centered at x and of radius
t, |y — 2| = t. The area of dBy(x) N Br(0) is at most 47 R? and vol(dBy(x)) ~ t2, so

do(y),

C
Since ¢(t,x) has compact support in x for any fixed t, |p(t,x)| < C for 0 < ¢ < T for some fixed
T, so we can also write
t < —.

Since Jyp is also a solution to the wave equation, we also get

C
< —.

Therefore, the estimate we obtained is not good enough to have 0y integrable, but it is almost good:
we got a borderline estimate, and if we can improve the estimate by an € > 0, having (1 + ¢)'*¢
instead of 1 4 ¢, then we would have integrability.

To investigate this further, first notice the following. If we denote by S(¢i1) (S for solution)
the solution to the Cauchy problem with ¢g = 0, then

¢ = S(p1) + 08 (¢0)
is a solution with data (o, 1) since
—0} o+ Ap = (=07 + A)S(¢p1) + 0(=0F + A)S (o)
= 0+0,

Orp = 04S(01)+02S(¢0) = 0:S(p1)+AS (o), but S(ipp) is the solution that satisfies S(gpo)|t:0 =0,

atS(gpo)‘tZO = ¢p and S(p1) is the solution that satisfies S(p; and 8t5(901)’t:0 = 1, SO

Nemo
SD‘t:O = Yo, 81%0‘,5:0 = ¢1.
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Therefore, we can reduce the problem to the case ¢g = 0, so

1
p(t,x) = Vl(0B:(2)) /OBt(:Jc) e1(y)do(y).

Continuing to assume compactly supported data, since we always have |p(t,z)| < C for 0 <t < T,
T fixed, it suffices to obtain decay for ¢t > T, so we consider ¢ > 2R, where supp (¢1) C Br(0). In
this situation, we have the alternative formula

plt,3) = (r =1, )

where f : R x $? x [0, ] = R is smooth and vanishes for [p| > R, f = f(p,w, z). Here, r = |z| and
x =rw.

To see this, let us make a change of variables. We can take x = re;

A

FIGURE 42. Change of Variables: z = re;

]y—x|:t,x:rel, y—x:(y'—r,yQ,yg)
P=ly—af=0r -2+ @)+ @) =y =r— V2 — (112 + (13)?)

Note that /(y2)% + (y3)2 < R, since y — x € Bg(0) and if |(y?,y3)| > R that will not be the case.
Therefore, By(x) can be parameterized as

W% y?) = (r= V2 = (1% + )% v, %) =0y

Thus, from multivariable calculus

do(y) = 0,20 x 9| dy*dy®
t

= dy?dy?

S Y

Then,
t

p(t,x) = Vol(0B, () /BBt(a:) e1(y) do(y)
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t

_ " _ 2 .3 273
Tl 07 ( VE = (22 + )2, v v ) TR dy*dy
_ 1 r— _ 2 3 1 233
=4 oo o1 ( V2= (22 + (13)2), v2, ¥ ) JE G ) dy“dy

Set p=r —t. Then

r [1 _ (1 _ £)2 + (y2)2+(y3)2}

r r2

1+ ((1- 8" - sy

2p + (y2)2+£’g3)27p2

1+ ((1_5)2_M)W

r

Inspecting the above expressions we see that both are smooth functions of (p, %, y%, y3), but y?
and 33 are integrated away.

By the strong Huygens’ principle, the solution vanishes for |p| = [t — r| > R, and for ¢ > 2R
it vanishes for || < R, sor > R or % < %, as claimed. This construction is smooth on its
dependence on the base point x = rej, so for a general x we also obtain smooth dependence on w.
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FicURE 43. Huygens’ Principle

Consider the vector fields

L=0,+0., L=0 -0,
1
rsing @

1
e1 = —0p, ey =
r

where 0, = w'0; = %1 ; is the radial derivative and Jg, 04 are the derivatives in spherical coordi-

1

nates (with the convention 2! = rsinfcos ¢, ¥? = rsinfsing, x> = rcosf). If we introduce the

rotation vector fields

R1 = .%'283 — .%‘382, R2 = 1‘381 — $1a3, R3 = 331(92 — a;281,

then
R R
e = — sin¢—1 + cos ¢—2,
r r
1 Rj3
ey = —.
27 Sing r
Compute

1
Lp = (&g—i-@,);f(r—t,w,%)

1 1 1 1 1
__rfp_ﬂf+rfp_73fz_0(ﬂ>
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Rip =(2%05 — 230) 1f(?" —tw, 1)
r

o
1 a3 1 : 1
= _ —2:32837‘ + —2827" + —2? <fp83r + fiOsw' — fZ2837“>
r T r T
— ;x fpaz?” + f 0w’ — fzﬁagr
1 523 23 1 x3 x? 23 28
=yttt <$2 B ”””3> F (4 - 4)
1 A .
+ ;fwi (93283w’ — 1'3320J7’)

-o(t)

S0 %gp = (9(%2) and similarly

:% (6% —w3wi)— é (6% —w2wt)

%(pa %SD = O(r%) thus €1p, 20 = O(r%)

Finally,

1 1
Lo = (0; — 81”);]0(7“ —1,w, ;)

1 1 1 1 1
= —;fp+772f— ;f/)— ﬁfz = O(;)

Since the solution is not zero only for [t — r| < R, we have O(%) = O(4). Thus we have the decay
estimates

1 1

Lo, e1p, e2p = O(?)v Ly = O(;)

{L,L, ey, e} form a basis of R*, thus we can reexpress dy in terms of Ly, Ly, e1p, esp. Except
for L, all the other derivatives decay better than our previous % estimate. Can we get Ly = (’)(t%)?

The answer is no, because we can show that the % decay for solutions to wave equation is sharp
(i.e., it cannot be improved for arbitrary compactly supported data). To see this, consider again
Kirchhoff’s formula with ¢o = 0 and ¢; = 1 on B1(0), @1 compactly supported and ¢; > 0. Then

1
p(t,x) = Vol(0B,(2)) /8&(1) to1(y) do(y)

1 / 1
=— to1(y) do(y) + /
vol(0Bt(x)) JaB,(z)nBi(0) 1(y) do(y) vol(0B()) JaB,(x)\(B:(x)nB1(0))

non-negative

te1(y) do(y)

1 / t
> — to1(y) do(y) = / do(y
vol(0B:(x)) JaB,(z)nB (0) 1(y) do(y) vol(0B()) Jap,(z)nBi(0) )

For any |x| =t and ¢ < 1, the area of 0B(z) N B1(0) is > C' > 0.
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FIGURE 44. 0B;(x) N B1(0) and |z| = ¢

c
Thus, p(t,z) > 7.

However, we learned that the obstacle to getting better decay is the derivative in the direction
L; derivatives in the other direction decay better.

What this means for the quasi-linear problem is that we should not expect to get better decay
than %, as we should not expect the non-linear problems to behave better than the standard linear
wave equation. So, in general, we should not expect ||0¢||L to be integrable in time. Does that
mean then that we cannot get fg |0pl|LdT < 0o and hence global solutions? The key here is the
word ”general”. We know that there are examples of solutions that blow up, so we should not expect
to get fot |10p||LeedT < 00. However, we know at least one global solution: the zero solution. The
correct question then is whether we can get global solutions for small data solutions. The answer is
yes for important class equations. These include quasi-linear wave equations that satisfy a condition
called the null-condition. For small data, Einstein’s equations also admit global solutions, where
small here refers not to initial data that are perturbations of the zero a solution (since for Einstein’s
equations solutions need to be a metric) but rather to perturbations of the Minkowski space by
Christodoulou and Klainerman (the stability of Minkowski space in fact refers to more than the
existence of small data global solutions; it also says that such solutions are stable in a precise sense).

Inspired by the linear case, the first thing to do to address global existence is to understand
the obstruction to proving better decay that % Thus, we try to identify, as in the linear case, the
directions along which we have a better decay. Such derivatives, such as the L,eq, ey derivatives
in the linear case, are commonly referred to as ”good derivatives,” whereas the ones where
better decay does not hold, such as the L derivative in the linear case, are referred to as ”bad
derivatives.” Roughly, we expect the good derivatives not to cause too much trouble, and the bad
derivatives are the ones that need to be carefully estimated, and where the small data assumption
enters crucially.

In order to identify the good vs. bad derivatives, we once again take a clue for the linear
problem. Since we are interested in perturbations of the zero solution, it is natural to consider
9" ()00, + ... = 0 such that g"”(¢ = 0) = mpur, where m is the Minkowski. We expect that
atleast for small time, mur9d,0,¢ will be a good approximation for g*”0,,0, ¢ since the data for ¢
is small. In other words, if we consider, say,

guy(@)auauso =0
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we can look at its linearization at ¢ = 0, which is precisely
mpr0,0,¢ = 0.

This suggests that if good derivatives exist for the non-linear problem, they should be approximated
by L = 0;+0,, e1 = %89, and ey = ﬁ(%, at least for small time. In such a case, the bas derivative
in the non-linear problem should be something close to L = d; — d,. However, the problem with
this reasoning is that we want to prove the global existence, and we do not know that ¢ = 0 is
a good approximation for large time (in face, we can only make such a statement if we know the
solutions to be global). Thus, we try to abstract from the linear problem the geometric features
of L, L, ey, eo, that can make sense in the non-linear problem even if we do not know ¢ = 0.
For this, observe the following: L, e;, es are tangent to the light-cones, whereas L is transverse.

Moreover, L and L are null with respect to the Minkowski metric, whereas eq, e are spacelike.

J\t

L
7
/ ¥t = {t = const}

sphere
= intersection of
lightcone and 33

lightcone

L

~

FIGURE 45. L, L, and the Minkowski metric I

] i
mu LML = =1+ (5ij££ =147 fz =0
rr r
v —(L'i —xj xixi
m,ul/LuL =—1+(5w — ) =—-14 2 -0
r r r
To compute further, consider the Minkowski metric in spherical coordinates:
-1 0 0 0
m = 0 1 0 0
“— 10 0 7 0
0 0 0 r2sin’6

So

1 1
beb = 7) Oy ) =1.
M2 <rsin9 » rsing 0>
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Furthermore,

i i
My DMLY = —1 + 51-]-9”7 (f) _—

myuLtef = (—0y+ 05, €;) =0, (this is easy to see using m in spherical coordinates)

1 1
v H V: —a 8 :O
My €12 <7’ ? rsing U> ’

So, the vectors are also orthogonal.

Since the lightcones are characteristics for the operator m*”0,0,, this suggests the following ap-
proach to identify good and bad derivatives for the nonlinear problem: consider the characteristic
hypersurfaces of g"”9,,0,,, which will be null hypersurfaces for the metric g, and construct a frame
of vectors {L, L,e;1,ea} where L and L are null vectors (with respect to g), L is tangent to the
characteristics and L transverse, e; and ey are spacelike unit vectors (with respect to g) tangent
to {t = 0} N {characteristics}, all the vectors are orthogonal (with respect to g) with exception of
L, L. In particular, they form a basis of R%.

We then expect that, under reasonable assumptions, we can show that L, e;, eo are good derivatives,
i.e., Ly, e1p, eap have better decay than %

The crucial observation now is the following: since g = g(), the characteristics, and thus the
vectors L, L, e1, eo will depend on the solution . Thus, before trying to prove that we have good
derivatives and eventual global existence, we need to understand in detail the properties of these
vector fields. This leads to a study of the characteristic geometry of the g.

17.2. Null Frames. Although we are primarily interested in the case when g = ¢g(¢) comes from a
solution ¢ to a quasilinear problem, what follows applies to a general metric g. Throughout we will
consider the spacetime (R*), g, although our constructions are local and apply equally to a general
Lorentzian manifold. We write V and | - | for the covariant derivative and norm of g, writing V,
and | - | if we want to emphasize this dependence. Indices will be raised and lowered with g.

Definition 17.1. A null-frame is a basis {eu}izo to the tangent space at z (i.e., a basis of R* in
our case) vary smoothly with the base point x, such that

gler,e1) = g(eg,e2) =1, gler,e2) =0,

gleiej) =0, i=1,2, j=3,4,

g(es,e3) = gleq,eq) =0, gles,eq) = —2p, p> 0.
We often write e3 = L,eq = L.

Example 17.2. The base example is {e;, ea, L, L} constructed above for the Minkowski metric.
In that case p = 1. The choice of y should be viewed as a normalization since L, L are null, so we
cannot ”fix their length” by prescribing ¢g(L, L), g(L, L)

For another example, consider the Schwarzschild metric
2M oM\ !
g=— (1 — > dt* + (1 — > dr? + r2d6? + 12 sin? 0 d¢p?,
r r

M > 0. Then we can take eq, es as in Minkowski and

bea (122 a, poas (1205,

r r
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For the Kerr metric,
A — a?sin® 0 by
%d# + ZdTQ — 4aMr

where ¥ = 72 + a?cos?0, A = r?2 +a? —2Mr, A = (r? + a®)? — a®Asin?0. (The Kerr metric
reduces to the Schwarzschild one if a = 0), we can take

sin? 6

s dtdo + Asin? 0 d¢? + £d6?,

g==-

1 1
€1 = —=0p, g = ————(0y+ asin®0d,),
! N 6 =2 \/fSiﬂH( ¢ 2
a A
L=0+ 2+a28¢ 2 +a2r
L=+ 9,+ -2 9
T g2 T g2t

(For the Kerr metric, ey, ea are not tangent to spheres. Although this property is desirable (see our
motivation above), it is not strictly needed and is not part of the definition of a null frame.)

The dual basis of a null frame is

eli=(e1) =€y, €?:=(ex)" = en,
1 1
e’ = (e3)" = 2, et = (eq)" = 2.
where duality is defined in the usual fashion
e“(ep) = 93,

and (e®)*(eg) = g(ea,ep). In fact, if gop are the components of g relative to a null frame and g
its inverse, then

e = g’ eg
since

B B

e*(eg) = 9(9™ ey, e5) = g™ g(eq, €3)
= 979,56 = 03.
Thus, relative to a null frame
g:el®el+62®62—2u63®e4—2ue4®e3,

or in matrix form

10 0 0
o1 0 0
9= 1o 0o 0o -—2u
00 —2u 0

We can also express g in coordinates but relative to a null frame. More precisely, we have,
1 1
Gap = _ﬂLaLﬂ - ﬁLaLﬁ + gaﬂ

where ¢ is positive definite on the space orthogonal to the space spanned by L and L and it vanishes
on span{L, L}. To see this, define

1 1
JaB = Gap + ﬂLaLﬁ =+ @LQL,B-
Then . .
B _— B B B _
Jos L = gas L 1P - Lol Lyl + 5 LoL* Ly’ = 0

—~ SN—~—
=0 =0 =0
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1 1
JopL®L’ = gapL®L’ +—LoL* LgLP +— L, L* LgL’ =0
T 2,[1, ~—— 2,[1, \\6_/
= =0 =

gﬁLaﬁ—gﬁLaLﬁJr LLO‘LﬁLB—i— L,L® LgLP =0
N——

24 g = 24 — =
_72“, 72” =

Japciicl = gasclicn + @Lae@ﬁeé + @Laemeé :

(all produg‘gs are zero)
A, B = 1,2, showing the claim.

At this point, it is convenient to introduce:

Notation 17.3. We use uppercase Latin letters, A, B, ... to denote indices 1, 2. The sum convention
is adopted for such indices, including when repeated indices are both up or down. The inverse of
¢ is given in coordinates by

-1
(g )aﬁ = g e%eﬁ = e%eﬁ
A=1,2 —~
sum over A=1,2.

(see below for the notation ~! in ¢~ 1).

Induced
—1\af B 8 1 1
(¢71)" g0 = cliealgns + 5 LoLs + 5 LyLa)

= ejeig&;.

To confirm that g‘l is the inverse, we need to show that this last expression is the identity on the
space orthogonal to span{L, L} and vanishes on span{L, L}. The latter follows from

(07 gasL® = e4elgasL? = 4 €L = 0,
=0
(0P gasL® = eSelgasL® = €% efLy = 0.
——
=0
If X = X4ey = XAeiaa = X®9,, where X are the components of X relative to {614},24:1 and
X the components relative to {9, }>_;. Then

(971 gas X° = e%eligas X el
=5 X gﬁgege% = X4 = X,
———
=dac
showing the claim.

Remark 17.4. In general, the components of the inverse of ¢ are not obtained by simply raising
an index, unless ¢ is defined in terms of g and we raise and lower indices with g, which is the case
here but might not be true in general (e.g., g is the acoustical metric but we raise/lower indices
with the Minkowski metric).

This is because indices are raised and lowered with g, and ¢®? is both the inverse matrix of Jap and
gap raised indices when indices are raised with g. But here, we have the metric ¢ but are raising
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and lowering indices with g. That is why we wrote (gil)aﬁ, indicating explicitly that it is the a8
entry of the inverse matrix of ¢ (whose entries are ga5)~ In particular, go‘ﬂ means what it means
for any other tensor, namely, gqs raised the indices with the spacetime metric:

gaﬁ — ga’YgB‘sgfyé'

It is useful to see that gaﬂ is in fact the inverse of g,g only because we raise indices with g itself:
9985 = 9°° 9" gor g5

g T 1 1
9°7g" (gm + —LoL, + L L > (gﬁé‘f‘ ﬂLgéng 2;LL5L5>

1 1 1
a5 + —L“L(; + — + —L°Ls + —

1 1
af LaLﬁ 47LaLﬁ — LgLs+ —LaL
< —i— + 985 + 2 sLs + 2H7f3 5
< 21 21

2p
fa 1 1
. 7L(XL LﬂLL N 7LO‘L5L’BL +—_I°L LBL +— LBL > = 0¢.
4p2 5 57 4u2 542 QRGN — ’
=—2u =0 =0 o
Next, we claim that

1 1
B —IPL + —ILPL
0‘+2u H)‘—'—2u* ¢

projects a vector onto the space spanned by ey, es.

Induced,
X = X%+ XEL+ XL
= X4e%0, + XELYD, + XL LD,.

If we denote by X (@) the components of X relative to {ea}i:m the above can be written in concise

form
X = X@elo,

(recall e3 = L,eq = L). Then,

GQ 2U%-+ ML)X

1 1
— [ 58 B B
== (6(1 + ZL La + ZL La> X('Y)ef;

1

= XMef 4 iLBX(v) L &P 4+ —IPxM Lo.e%
Y 2,11, =ay Qqu arty
—— ——
0if v#4 0ifv#3
—2uify=4 —2pify=3

- X(V)eg _XWrp _x® s
A
= XA+ XOel 4 xWell - xW P — xBILF
but e3 =L, e = L, so eg—LB :Lﬁ, thus
A
=X eﬁ,

showing the claim.
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Notation 17.5. We denote by 17[ the projection onto span{ej,es}. By the above
1 1
Wi =024 5 Lt 5 DL

Observe that the gradient Vi, expressed relative to a null frame is

1 1
Vo = ei(p)er + ea(p)ea — @64(@63 - @63(90)64-
Indeed,
Vo = (Ve)lea+ (Vo)EL + (Vo) L, so,
1
(Vo) = g(Vp,ea), (Vo)k= *EQ(V%L),
1
L
- L).
(Vo) 2M9(V<p_)
But

9(Ve,eq) = gs, VP 0e) = 95,97 Vsoel,
= Vypel, = Oypely = €0y
= ea(p).
Similarly, given a vector field X,
X = X%+ XLL + XFL,
1 1

X4 = g(X XL~ g(X, L), XF=_"gX.L
g( 76A)7 2,U/g< y )1 2Mg( af)v

So
1 1
X =g(X ——g(X,L)L — —g(X,L)L.
g( ,6,4)6,4 2Mg( ) )7 2ug( ,7)

Let us denote the contractions of X with ea, L, and L, respectively, by

Xa:=Xeeh, Xp:=X,LY Xp:=X,L"
Then

1

1
X = Xaea— 3o XoL= oo XL

Notation 17.6. An eikonal function or optical function is a solution to the eikonal equation
g"" 0,udyu = 0.

It follows that the level sets of u are characteristic manifolds for the operator ¢g"”9,0,. Observe
that if w is an optical function, then the vector field

L =—-Vu

is null (the negative sign is conventional). Since the gradient is orthogonal to the level surfaces
(this result is also true for Lorentzian metrics), L is both orthogonal to the characteristics (below
we show it is also tangent).

Example 17.7. For the Minkowski metric, w =t — r and u = t + r are eikonal functions. Their
level sets correspond to lightcones. Note that —Vu=0; + 0, = L, —Vu=09 — 0;.
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Example 17.8. Consider g = —dt* + gijdxidxj. Let u be an eikonal function and assume that
the intersection of {u = const} with {¢ = const} is a topological sphere (this can be achieved by
choosing initial data for the eikonal equation appropriately).
Set
Srp = {(z,t) |t =7, u(t,z) = v}.
Put
L=-—Vu=0uo — gijﬁiu 0j.

O is orthogonal to >~ and L orthogonal to {u = v}, thus ¢"/9;u d; is orthogonal to Sy ,. Another

way of seeing this is to notice that g”d;u d; is the gradient of the function u(r,-) on >, whose

level sets are by assumption spheres; these spheres are precisely S;,. Write N = —g"0u 0, so

9(N,N) = gaﬁNQNﬁ = gijNiNj = Qijgikakugﬂalu
= gMOpu o = (Opu)?.
Since u satisfies 9" 9,u Oyu = —(9'u)* + g du dju = 0.

Set

Then, N = aN = &%gijﬁju 0; is a unit normal vector field to the spheres S;,. Let {e1,e2} be an
orthonormal frame on S; ,(with respect to the metric induced on S ,) and set

L—a@—N), L= 2(@ +N),

Then {ei, ea, L, L} is a null frame normalized by
g<L7 L) - g(ata 815) - g(N7 N) = -2,

where we used ¢(9;, N) = 0.

Observe that L is also tangent to C = {u = v}. Indeed, the tangent space to {u = v} at a point
p is the orthogonal complement to a normal to 7}, C. Since L = —Vu, L is orthonormal to C. But
{e1, ez, L} are linearly independent vectors orthonormal to L (L is null thus orthonormal to itself),
and since dim T},C = 3, T,,C = span{ej, ez, L}. In particular, L is tangent to C.

Since L is linearly independent with respect to {e1, e, L}, L is transverse to C. Thus, we have
obtained the analogue of the previous Minkowski space picture.
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J\t

:

U =17

L

~

FIGURE 46. L, L, and the Minkowski Metric II

17.3. The null-structure equations. We saw that we can construct a null frame adapted to the
characteristics with the help of an eikonal function. As seen, we hope to prove the decay estimates
showing that L,e4 are good derivatives. Because L, ey are themselves dependent on ¢, this turns
out to be a difficult coupled problem. With the current techniques known to date, appropriate
decay estimates for solutions can only be derived with the help of some complementary estimates
for several associated geometric tensors. Such complementary estimates are obtained with the help
of a system of elliptic and evolution equations for various geometric quantities associated with the
characteristics. Such equations are known as the null-structure equations.

Set-up. Throughout below we consider the situation where the intersections of the level sets
of u with ), are topological spheres, like in the example above (although we do not assume, like
in that example, that goo = —1, go; = 0). Let T be the future-pointing timelike unit normal to
> 4> N the unit outer normal to Sy, inside ) ,, and put L =T+ N, L =T — N. Construct a null
frame {e1, ez, L, L} by considering e;, e3 an orthonormal frame on S;,,. Note that g(L, L) = —2.

Let us begin with some basic definitions. Since V., eg is a vector field, we can express it relative
to a null frame. Thus
Ve,e5 =156y
for some (locally defined) functions I'} g known as the frame coefficients. These are exact ana-
logues of the Christoffel symbols when we express VX in a coordinate basis. However, their
symmetry properties are not the same as in the Christoffel symbols. E.g.,

glea,er) =d0aB = g(Veoea, ep) +glea, Vesep) =0
T8, g(ep, es) + T8 5 glea, ep) =0
Dey+T¢p =0.

Recall that 17[ is the projection onto span {ej,e2}, which in our case corresponds to projections
onto the spheres S;,. We can extend it to projections of arbitrary tensors. For example, if w is a

two tensor
M&)s = T2 T &5
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We say that a tensor is tangent (to Sy ,) if H§ = {. For tangent tensors, their ¢ norm is defined,
e.g.,
|§|;j = (g_l)aw(g_l)ﬁ(sgaﬂ 576-
Note that the above is also given by
(979" 60 &5 = e € € e Eap s = Ean ap.

If € is a Sy ,-tangent tensor, we can view it as a tensor defined on the entire spacetime by extending
it to be zero when contracted against L or L

We denote by ¥ the projection of the covariant derivative onto Stu i€,

Nx &= HVX5
for any vector field X and tensor £. If & denotes the connection of the metric g on Sy, and both
X and ¢ are tangent to Sy, then ¥y & = Px €.

If £ is a symmetric (0,2) tensor on Sy, its trace relative to ¢ is defined as
trg€ = (9" 6ap = Ean.

We then define the trace-free part of ¢ as

- 1

E:=¢&— itr;,gg.
Notation 17.9. We will abbreviate

Va:=Vg,

For a S ,-tangent one-form, its g-divergence and g-curl relative to {e A}124=1 are defined, respec-
tively by

HVE =X 44,
carl € = e"P¥ 4 ¢,
where 48 is anti-symmetric on AB with ¢!2 = 1.

Recall that the indices A, L, and L in the tensors represent contractions with e4, L, and L. Such
contractions are always taken after the derivatives, e.g.

¥an =% e Fas = 5 ef([[VE)as

— 5 e a5+

If £ is a St ,-tangent symmetric (0,2) tensor, its g-divergence and g-curl (relative to {ea}%_;)
are defined by

HVE =N B EaB,
carléq = ePO¥ g Eca.
We denote by H the projection onto »,. IT is not difficult to see that

[T = + 11’

We write g for the metric induced on },. For a general tensor £, we put

¢=]J¢
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We denote by L the Lie derivative. According to our conventions, we have
£x¢:= T £x¢
gxg::llcxg
Definition 17.10. Let 7' denote the unit timelike future pointing normal to ), and N the unit

outer normal to the spheres S;, = >"_N{u = v}. Consider a null frame {ey, ez, L, L} as described
above (so L=T+ N, L=T — N, g(L,L) = —2) and the above definitions and notation.

We introduce the following quantities, called connection coefficients:

Second fundamental form of ),
h(X7 Y) = 79(VXT7 Y)a
X, YeT) .

Second fundamental form of S; ,:
Oap :=9g(VaN,ep).
Null second fundamental forms of S; ,:
Xap:=9(VaL,ep), X,p:=9(VaL,ep).

Sin-tangent torsions:

1 1
SA = ig(vLIﬂeA)a §A = §Q(VLL7 €A).
The null-lapse:
1

= ﬁ, g = metric induced on Z .
glly

t

Proposition 17.11. The following relations hold: h, 0, X and X are symmetric and

h=—5Lrg= 9 Lryg,
1 1
X=-Lpf=-
2/ZLg QZL g,
1 1
&: izég = 5[@9,
VNN = *Vhlb,
X ANp = 045,
Moreover
VAL = Xspep — hanL, VALl = Xspep + hanL,
ViL = (=hny+g(VrT,L))L, V.L=2S,ea+hyNL,
ViL =285se4+ hynL, ViL=-2(¥alnb)es — hyyL,
1 1
Viea=Nrea+SuL, Vpea =Xpea=Xea+ §XABL + §XABL
Finally
Xap =04 —hap, X p=—0a— hap,

Sia = —han, S=Y1Inb+ han.
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Proof. The first properties (symmetry and identities before "moreover”) are standard. The sec-
ond ones (between ”"moreover” and "finally”) follow from direct computations and the definitions,
recalling that for any vector field:

1 1
X = g(Xa €A)€A - ig(X)L)L_ ig(Xué)L

For example

1 1
VaL =g(Val,ep)ep — 3 g(VaL,L) L — ig(VAL,L)L
N—— N——

=XaB =leg(L,L)=0

and

g(VaL,L) =g(Va(T+N),T - N)
=Llesg(N,N)=0

—_—
= g(VaT,T) — g(VAT,N) +g(VaN,T) — g(VaN,N)
—_———
=3€49(T\T)=0  =—g(VAT,N)+eAg(N,T) —g(N,VaT)=2han

=0

So VAL = XAB €Ep — hANL.

The other relations are proved similarly. The remaining relations (after ”finally”) follow from

the previous ones and the definitions.
O

For the next theorem, we introduce the volume ratio:

Vo Vdet ¢

Vdet ¢

where ¢ is the round metric on S2. V is a partial measure of how far S;, is from being round.

We also define the mass aspect function to be
M= Ltry X L try Xtry X
=L r;/ + 5 r’@/ r)gfi.

The idea of introducing M is that we want to control LtryX. However, this quantity does not
satisfy a good evolution equation, but M, which can be viewed as modifications of Ltrﬂ X, does.

The connection coefficients satisfy the following PDEs, known as the null-structure equations.
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Theorem 17.12. The connection coefficients satisfy
LY = Vtr;/X
Lb= (—knn +g(VTT,L))b

1 A
Ltrﬂ/X + = (tl“g/.)() = —‘XV— kNN trg’_RLL
. 1
N1 Xap + (try X)Xap = —knnXap — Rpars + §RLL5AB
1 . 1 1
N1Sa+ = (trﬁ//\’) = —(hpN + SB)Xap — 5 tryhan — §RALLL
1 PO
Ltrlg/&-i- itr;/.)(tr;/& =2divS + knn tr)g/& — XapXap + 2|§’;+ Rarpa
. 1 . 1 . . .
VLXAB + §tr¢&XAB = —5 tr;/X&AB + QVASB — di0So4p + hynXaB
1 L 1.
+(284S8B — !3\;5/13) + RaLLB — §RC’LLC(5AB — X 0XBC + §KCDX0D5AB
1 1 PN
LM + try XM = §L(tr¥/2(trﬂi) + 5(% X)? try X — ¥ . XapXan
+2(S4 — SA)V A tryX — LR, — Lhyy trg X — Ltrg Xkyy
. . 1
A0 X+ Xaphpy = i(yA tr;/.)( + kANtr%X) + Rprea
) 1 N . 1
,MS = 5(./\/[ — k'NN tI‘/g(X — 2’3‘; — ’X‘; — QkABXAB) — iRALLA
1 SIS 1
MS = §6AB&A0XBC — §€ABRALLB.
Above, Rng is the Ricci curvature and Ram(g the Riemann curvature of g and, according to our
conventions, Rpy = L* LBRag, RraprL = Lo‘eAeWBL“’RaM(; etc.
Proof. The proof is a series of lengthy calculations. We will derive the equation.
LtI‘/dX + = (trﬂ/X) = _“)E",d —knn tI‘/g(RLL,

known as the Raychaudhuri equation, which is one of the main equations in the study of charac-
teristic geometry. It plays an important role now only in global existence problems, but in many
other problems (see below). It is also important in the proof of the singularity theorems in general
relativity.

N1 Xap = ejeﬂB/VLXag = eAeB (HVLX>
= e%eﬁHgH%VL Vs = L7 eAeAH H5V X5,
But e J1d = €5 (62 + 3L7L, + L"Ly) = €}y, so
= L”ezleBVUst = eAeBVLXWg
= VL(G,Z}@&BXVJ) - (VLGZ;)eéBXwa - GX(VLe%)Xvé
= VLXAB — VLeAeBX ej{leeéBX,y(g
Since X' vanishes when contracted with vectors not tangent to Sy, XysVie)y = X,5¥ e}, s0

=ViX(ea,ep) — X(¥ea ep) — X(ea,¥N1ren).
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But
ViX(ea,ep) =V5g(VaL,ep)
=9(ViVaL,ep)+g(VaL,Viep)
and
9(ep,VVaL) =g(ep,VaVL+ ViLeaL + Riem(L,e4)L)
=g(eB,VaVLL) +g(ep, V(L e L) + glep, Riem(L,e4)L).
=Riem(ep,L,L,e4)

Thus

N1 Xap = g(es,VaVLL) + g(e, VL L) + 9(VaL,Viep)
+Riem(ep, L, L,eq) — X(¥rea,ep) — X(ea, ¥ 1eR).
Using, from the proposition above
Val = Xapep — hanL
Vil = (=hny +9(V7T,L))L

Vies =¥peat yXanL+ 3 Xapl
and
[L,eal =¥ 1ea+SyL — Xapep + hanL
=X 1rea — Xapep,
which follows from [X,Y] = VxY — Vy X and our previous relations, we find
9(eB,VaViL) = —Xaphnn
9(eB, Vip e L) = X(Nrea, ep) — XacXes
9(VaL,Vrep) = X(ea, ¥ rep).
Thus
N1 Xap = g(es,VaVLL) + g(e, VL L) + 9(VaL,Viep)
+Riem(ep, L, L,es) — X(¥rea,ep) — X(ea,¥1en)
becomes (X (¥ rea,ep) and X(ea, ¥ rep) cancel out):
N1 Xap = —Xaphnn — XacXcp + Rprra
Taking the trace and using that, after some algebra
P Xnc Ko = —| I}~ (i )
we find
LtrgX + %(tr;,X)Q = —| ¥y — kyn try—Rer,
which is the desired result.
O

Let us now give some intuition of why these geometric constructions are important for the prob-
lem of decay. We should warn, however, that the following discussion is very heuristic, and the
goal is only to give some idea why the geometric formation introduced above is important for the
study of quasilinear wave equations and the study of their decay properties and global existence in
particular. A more precise discussion would require a more detailed exposition.
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In our standard energy estimates, the energy we control arises from an integration by parts, e.g.,
for the linear wave equation,

—02p+ Ap =0,
multiply by O,

1
—Op D2+ Dyp Ap = _iat(at@)g + A = 0,

integrating,
1
-5 / 01 (Orp)” + / OrpAp
R3 R3
%,—/
by parts=— [3 0:V-Vo=—1 [o3 01| V|2
1
=50 [ (@) +VeP) =0
R3
Thus

B < BO). B0 =3 [ (@plta) + [Ve(t.a)P) do.

We saw that we can consider higher versions of this, where we control derivatives of ¢, and that
this generalizes also to the quasilinear case.

If we want to obtain decay for solutions, it is natural to try to control weighted energies, e.g.,
expressions of the form:

Bult) = [ w (@) + Vo) da,

where w is some ”weight”. For example, if w = 1 4+ ¢ and we can show something similar to
E,(t) < CE(0), this would mean that

2 2
< .
L, @ +190R) e < 1

This is decay of integrals of ¢, and we want point-wise decay. But we know that if we control

integrals of enough derivatives of ¢ then we control ¢ point-wise by Sovolev embedding, thus we
seek to bound something like

E, = / w (latchp\z + |Dk+1c,0]2) dx.
R3

In reality, this heuristic is too crude, and the precise way of obtaining pointwise decay from suitable
integrals requires more tools, one of which is known as the Klainerman-Sobolev inequality,
which is a generalization of the Sobolev inequality that involves decay. But even if we take the
above heuristics for granted, it remains the question of how to bound the weighted energy, i.e., how
to prove E,(t) < CE,(0). Since our goal is to show that good derivatives have better decay, this
should be encoded in our energies. That means that instead of considering the energies obtained by
multiplying the equation by 0;¢ and integrating by parts, we should multiply by X, and integrate
by parts, where X,, is some specific vector field that also carries weight. For example, since we
want to show the decay of Ly, we can choose X, = wLp, where the weight has to be a suitable
power of r or t (for technical reasons r weights, and not only ¢ weights have to be considered).
But then, when we integrate by parts, we will pick derivatives of X,,, which need to be estimated.
Since X depends on the characteristics (e.g. X ~ L), estimating it depends on the estimates for
the solution itself. This can be accomplished by decomposing d.X,, relative to a null frame: the
coefficients of this decomposition will be connection coefficients, for example,

VL =g(Ve,L,ep)ep+...
L —

=XaB
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The connection coefficients, in turn, can be estimated from the null structure equations.

In this way, we can get decay estimates, or at least decay estimates for the good derivatives.
What about the bad derivative Lyp? In general, it is not possible to show that is has integrable
decay. However, if the equation has certain special structural conditions (e.g. the null condition
previously mentioned), we can show that the bad derivative terms that spoil the integrability in
time are in fact absent, leading then to global existence.

Let is finish with the following remark. Even though we introduced the study of the charac-
teristic geometry motivated by the problem of global existence, it turned out that these geometric
techniques find applications in many other problems related to the study of quasilinear wave equa-
tions. These include the study of shocks and low regularity solutions (by which we mean local
well-posedness for data (g, 1) € HF! x H* with k < %; the classical well-posedness theory,
which we developed here, treats only k£ > %; or k> % + 1 if the metric g also depends on dyp).
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