
MATH 8110 - THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

MARCELO M. DISCONZI∗

Contents

1. Abbreviations 2
2. Notation 2
2.1. Basic notation 2
2.2. Multi-index notation 3
3. Introduction 4
4. Examples of PDEs 5
5. Laplace’s and Poisson’s equation 6
5.1. Fundamental solution 7
5.2. Properties of harmonic functions 8
5.3. Green’s function 10
5.4. Explicit formulas 12
6. The heat equation 12
6.1. Fundamental solution 13
6.2. The initial-value problem 13
6.3. The non-homogenous problem. 14
7. The wave equation 16
7.1. 1d: Dirichlet’s formula. 16
7.2. Domains of dependence of regions of influence 17
8. The wave equation in Rn 18
8.1. Reflection method 23
8.2. Solution for n = 3: Kirchhoff’s formula 25
8.3. Solution for n = 2: Poisson’s formula 26
8.4. Solution for arbitrary n ≥ 2 28
8.5. The inhomogeneous wave equation 29
9. Sobolev spaces 30
9.1. Weak derivatives 30
9.2. Sobolev spaces and their basic properties 33
9.3. Approximation by smooth functions. 34
9.4. Extensions 41
9.5. The Sobolev embedding theorem 43
9.6. Sobolev’s inequality 57
9.7. Compact embeddings 60
9.8. Traces 63
9.9. Sobolev spaces of fractional and negative order 64
9.10. Duality 66
9.11. Some miscellaneous inequalities 73
10. Necessary and sufficient condition for existence of solutions to linear PDEs 74
10.1. Egorov’s counterexample: a PDE that is not locally solvable at the origin 77

∗Vanderbilt University, Nashville, TN, USA. marcelo.disconzi@vanderbilt.edu.

1



2 MATH8110 - Theory of PDEs

11. Linear elliptic PDEs 80
11.1. Existence of weak solution 81
11.2. Elliptic regularity 86
11.3. Maximum principles 91
12. Nonlinear elliptic equations 94
12.1. The method of sub- and super-solutions 95
12.2. Implicit function theorem methods 97
12.3. The continuity method 99
13. Linear hyperbolic equations 101
13.1. Linear first-order symmetric hyperbolic systems 101
13.2. Linear hyperbolic/wave equations 113
14. Local existence and uniqueness for quasilinear wave equations 117
14.1. Continuation criterion and smooth solutions 129
15. The role of the characteristics 130
16. Einstein’s equations 140
16.1. The constraint equations 142
16.2. The Cauchy problem 145
17. Elements of the characteristic geometry of quasilinear wave equations 150
17.1. The role of decay 151
17.2. Null Frames 159
17.3. The null-structure equations 165

1. Abbreviations

• ODE = ordinary differential equation
• PDE = partial differential equation
• LHS = left hand side
• RHS = right hand side
• w.r.t = with respect to
• ⇒ = implies
• □ = end of proof
• LHS := RHS means that the LHS is defined by the RHS.
• nd (e.g. 1d, 2d, ...) = n dimensional
• DO = differential operator
• iff = if and only if
• A ⊂ B = A is a subset of B
• A ⊂⊂ B = A is compactly contained in B
• Ω = domain in Rn, unless stated otherwise

2. Notation

Unless stated otherwise, the following notation will be used throughout.

2.1. Basic notation. We denote by {xi}ni=1 rectangular coordinates in Rn. For problems involving
a time variable t, we denote (t, x) ∈ R×Rn, and let {xµ}nµ=0 be rectangular coordinates in R×Rn,
where x0 := t. Latin indices range from 1 to n and Greek indices from 0 to n. Naturally, when we
say coordinates in Rn it could be in a subset Rn etc. Sometimes we write R1+n to emphasize to
spacetime structure R× Rn, but for many general discussions we simply write Rn.
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Repeated indices, with one index up and one down, are summed over their range. E.g.:

uiσi =

n∑
i=1

uiσi

2.2. Multi-index notation. We denote:

∂µ =
∂

∂xµ
, ∂i =

∂

∂xi

Definition 2.1. A vector of the form α = (α0, ..., αn), where each αµ, µ = 0, ..., n is a non-negative
integer, is called a multi-index of order |α| := α0 + ...+ αn.

We similarly write α = (α1, ..., αn) when t is not present, and also sometimes write α⃗ =
(α1, ..., αn), calling α⃗ a spatial multi-index.

Given a multi-index α, denote

Dαu :=
∂|α|u

∂(x0)α0∂(x1)α1 ...∂(xn)αn
,

where u = u(t, x1, ..., xn). If k is a non-negative integer,

Dku = {Dαu | |α| = k},

|Dku| :=
√ ∑

|α|=k

|Dαu|2

We can identify Du with the gradient of u and D2u with the Hessian of u. These definitions have
a natural interpretation when u = u(x1, ..., xn) (so the multi-indices are spatial).

Let α, β be multi-indices. Define
α! := α0!α1!...αn!,

xα := (x0)α0(x1)α1 ...(xn)αn ,

α ≤ β means αµ ≤ βµ, where µ = 0, ..., n,(
α
β

)
:=

α!

β!(α− β)
, where β ≤ α,(

|α|
α

)
:=

|α|!
α!

Then we have:
Multi-nomial theorem:

(x0 + x1 + ...+ xn)k =
∑
|α|=k

(
|α|
α!

)
xα

Product rule:

Dα(uv) =
∑
β≤α

(
α
β

)
DβuDα−βv

Taylor’s formula:

u(x) =
∑
|α|≤k

1

α!
Dαu(0)xα +O(|x|k+1)

where we recall the big-oh notation:

f = O(g) as x→ x0

if there exists a constant C > 0 such that

|f(x)| ≤ C|g(x)|
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for all x sufficiently close to x0. Many times x0 is clear from the context and we write simply
f = O(g).

Remark 2.2. Many times we will provide a definition, introduce a concept, etc., that has a natural
generalization to a context studied later on. In these cases, such natural generalizations will be
taken for granted.

3. Introduction

PDEs are essentially a generalization of ODEs for functions of several variables.

Definition 3.1. Let Ω be an open set in Rn. We denote by C∞(Ω,Rm) the set of all infinitely
many times differentiable (i.e., smooth) maps u : Ω → Rm. We put C∞ := C∞(Ω,R) (although
we can abuse notation and write C∞(Ω) for C∞(Ω,Rm) if Rm is clear from the context). We also
extend the notation to C∞(Ω,Cm) etc.

Definition 3.2. Let Ω ⊂ Rn be an open set. A differential operator P on Ω is a map P : U →
C∞(Ω), where U ⊂ C∞(Ω), of the form

(Pu)(x) = P (Dku(x), Dk−1u(x), ..., Du(x), u(x), x),

where x ∈ Ω, u ∈ U , and P is a function

P : Rn
k × Rn

k−1 × ...× Rn × R× Ω → R.

The number k above is called the order of the operator. We often identify P with P and say “the
differential operator P .”

Remark 3.3.

• In the above definition, it is implicitly assumed that the first entry in P is not trivial, so
that the order of P is well defined. Otherwise, we could take, say, the first order operator
Pu = ∂xu and think of it as the second order operator Pu = 0 · ∂2xu+ ∂xu, etc.

• P might in fact be defined only on a subset of C∞(Ω), e.g., Pu = 1
∂xu

is not defined on
constants. Situations like this will typically be clear from the context.

• We can generalize the above to C∞(Ω,Rm).
• Differential operators will naturally extend to more general function spaces we will introduce
later on.

Example 3.4. Take Ω = R2. Then

Pu = ∂2xu+ ∂2yu+ u2

is a second-order DO. To identify the function P , denote coordinates in R22 × R2 × R × Ω by
z = (pxx, pxy, pyx, pyy, px, py, p, x, y), so P (z) = pxx + pyy + p2.

Observe that the definition of a DO takes all entries into account, ignoring, e.g., ∂xyu = ∂yxu
etc.

Definition 3.5. Let P be a DO of order k. P is called

• linear, if it has the form

(Pu)(x) =
∑
|α|≤k

aα(x)D
αu(x),

for some functions aα.
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• semi-linear, if it has the form

(Pu)(x) =
∑
|α|=k

aα(x)D
α(x) + a0(D

k−1u(x), ..., Du(x), u(x), x),

for some aα.
• quasi-linear if it has the form

(Pu)(x) =
∑
|α|=k

aα(D
k−1u(x), ..., Du(x), x)Dαu(x) + a0(D

k−1u(x), ..., Du(x), u(x), x).

• P is fully nonlinear if it depends nonlinearly on derivatives of order k.

Examples will be given below.

Definition 3.6. Let Ω ⊂ Rn be an open set and P a DO of order k in Ω. An equation of the form

Pu = 0

for an unknown function u is called a kth order PDE in Ω. The PDE is quasi-linear, etc., according
to the character of P . In the linear case, we also consider the situation where a function f : Ω → R
is given, and call the PDE Pu = f inhomogeneous and Pu = 0 homogeneous. A solution to a
PDE is a function u : Ω → R that satisfies the equation Pu = 0.

Similarly, we can define systems of PDEs (we abuse terminology and sometimes call a system of
PDEs “a” PDE).

Given a PDE, we are typically interested in questions of the form

• Does a solution exist?
• If solutions exist, are they unique?
• If solutions exist, what are their properties?

4. Examples of PDEs

Laplace’s equation:
∆u = 0,

where ∆ := ∂2

∂(x1)2
+ ∂2

∂(x2)2
+ ...+ ∂2

∂(xn)2
is the Laplacian operator.

Helmholtz’s equation:
∆u+ λu = 0

Linear transport equation:
∂tu+ bi∂iu = 0

Heat or diffusion equation:
∂tu−∆u = 0

Schrödinger’s equation:
i∂tu+∆u = 0

Wave equation:
□u = 0

where □ = −∂2t +∆ is the D’Alembertian or wave operator.

Eikonal equation:
|Du| = 1
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Minimal surface equation:

div

(
Du

(1 + |Du|2)
1
2

)
= 0

Burgers’ equation:
∂tu+ u∂xu = 0

Maxwell’s equations:
∂tE − curlB = 0

∂tB + curlE = 0

divB = divE = 0

Euler’s equations for incompressible fluids:

∂tu+ (u · ∇)u = −∇p,

div u = 0,

u · ∇ = ui ∂
∂xi

.

Navier-Stokes equations for incompressible fluids:

∂tu+ (u · ∇)u = −∇p+∆u,

div u = 0

Euler’s equations for compressible fluids:

∂tρ+ div(ρu) = 0

∂tu+ (u · ∇)u = −1

ρ
∇p

p = p(ρ)

Vacuum Einstein’s equations:

Ricαβ −
1

2
Rgαβ + Λgαβ = 0,

where g is a Lorentzian metric, Ric is the Ricci curvature of g, R the scalar curvature of g, and Λ
is a constant (the cosmological constant).

Matter Einstein’s equations:

Ricαβ −
1

2
Rgαβ + Λgαβ = Tαβ

where Tαβ is the energy-momentum tensor containing information about matter fields (e.g., elec-
tromagnetic fields).

5. Laplace’s and Poisson’s equation

We are going to study Laplace’s equation

∆u = 0,

and its non-homogeneous version, Poisson’s equation

∆u = f

Definition 5.1. A function satisfying Laplace’s equation is called a harmonic function.
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5.1. Fundamental solution. To solve ∆u = f , we first consider ∆u = 0 and try the Ansatz

u(x) = v(r),

r = |x|. Computing,

∂iu(x) = v′(r)
xi

r
,

∂2i u(x) = v′′(r)
(xi)2

r2
+ v′(r)

(
1

r
− (xi)2

r3

)
,

and summing:

∆u = v′′ +
n− 1

r
v′(r) (n = dimension)

Thus ∆u = 0 gives a ODE for v with solution

v(r) =

{
A ln r +B, n = 2,
A

rn−2 +B, n ≥ 3,

A,B constants. This motivates the definition:

Definition 5.2. The function

Γ(x) :=

{
1
2π ln |x|, n = 2,

1
n(2−n)ωn

1
|x|n−2 , n ≥ 3,

is called the fundamental solution to Laplace’s equation. Above, ωn = volume of B1(0) in
Rn.

Note that

|DΓ(x)| ≤ C

|x|n−1
, |D2Γ(x)| ≤ C

|x|n
,

where above and throughout we adopt the following:

Notation 5.3. We use C > 0 to denote a generic constant (depending on fixed data in a given
problem) that can vary line-by-line. Unless stated otherwise, Ω ⊂ Rn is an open set.

Definition 5.4. Let Ω ⊂ Rn be an open set. We denote by Ck(Ω) the space of k-times continuously
differentiable functions in Ω and by Ckc (Ω) the space of those u ∈ Ck(Ω) with compact support.

Theorem 5.5. Let f ∈ C2
c (Rn). Set

u(x) =

∫
Rn

Γ(x− y)f(y)dy

Then:

(i) u ∈ C2(Rn),
(ii) ∆u = f in Rn.

Proof. Note that u is well defined (Γdy ∼ r2−nrn−1dr). Changing variables:

u(x) =

∫
Rn

Γ(y)f(x− y)dy,

so

u(x+ hei)− u(x)

h
=

∫
Rn

Γ(y)

(
f(x+ hei − y)− f(x− y)

h

)
dy

→
∫

Γ(y)
∂f

∂xi
(x− y)dy as h→ 0



8 MATH8110 - Theory of PDEs

since the difference quotient converges uniformly to ∂if . Similarly, we obtain D2u, whose continuity
follows from that of D2f .

Fix a small ϵ > 0 and write

∆u =

∫
Bϵ(0)

Γ(y)∆xf(x− y)dy +

∫
Rn\Bϵ(0)

Γ(y)∆xf(x− y)dy

=: I1 + I2.

|I1| ≤ C∥D2f∥L∞(Rn)

∫
Bϵ(0)

|Γ(y)|dy ≤ C

{
ϵ2| ln ϵ|
ϵ2

→
ϵ→0

0

Note that ∆xf(x− y) = ∆yf(x− y). Thus, integrating by parts:

I2 = −
∫
Rn\Bϵ(0)

∇Γ(y) · ∇yf(x− y)dy +

∫
∂Bϵ(0)

Γ(y)
∂f

∂v
(x− y)dσ(y)

= I21 + I22.

I22 → 0 as ϵ→ 0, Γ(y) ∼ logϵ, ϵ2−n, dσ ∼ ϵn−1. By parts again:

I21 =

∫
Rn\Bϵ(0)

∆Γ(y)f(x− y)dy −
∫
∂Bϵ(0)

∂Γ(y)

∂v
f(x− y)dσ(y).

Note that ∆Γ(y) = 0 away from y = 0.

∂Γ

∂v
(y) = ∇Γ(y) · v =

1

nωn

y

|y|n
· v =

−1

nωn|y|n−1
,

where v = − y
|y| .

I21 =

∫
∂Bϵ(0)

1

nωnϵn−1
f(x− y)dσ(y) =

1

vol(Bϵ(x))

∫
∂Bϵ(x)

f(y)dσ(y)

→ f(x) as ϵ→ 0

□

Remark 5.6. Note that u above is not unique (need boundary conditions at ∞).

5.2. Properties of harmonic functions.

Theorem 5.7. (Mean-value formulas). If u ∈ C2(Ω) is harmonic, then

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

udσ =
1

vol(Br(x))

∫
Br(x)

udy

for any ball Br(x) ⊂⊂ Ω.

Proof. Changing variables z = (y−x)
r

1

nωnrn−1

∫
∂Br(x)

u(y)dσ(y) =
1

nωn

∫
∂Br(0)

u(x+ rz)dσ(z) =: f(r)

f ′(r) =

∫
∂Br(0)

∇u(x+ rz) · zdσ(z) = 1

nωnrn−1

∫
∂B1(x)

∇u(y) · y − x

r
dσ(y)

Note that v = y−x
r .

=
1

nωnrn−1

∫
∂B1(x)

∂u

∂v
dσ =

1

nωnrn−1

∫
Br(x)

∆udy = 0
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=⇒ f(r) = f(0) = lim
r→0

1

nωnrn−1

∫
∂Br(x)

u(y)dσ(y) = u(x).

For the other equality: ∫
Br(x)

udy =

∫ r

0

∫
∂Bτ (x)

udσdτ = ωnr
nu(x).

Note that
∫
∂Br(x)

udσ = u(x)nωnτ
n−1.

□

Theorem 5.8. (Converse of the mean value). If u ∈ C2(Ω) satisfies

u(x) =
1

nωnrn−1

∫
Br(x)

udσ

for Br(x) ⊂⊂ Ω, then u is harmonic.

Proof. If ∆u(x) ̸= 0, then ∆u > 0 in some Br(x) contradicting f
′(r) = 0.

□

Recall that a mollifier can be constructed as

φ(x) =

{
Ae

− 1
1−|x|2 , |x| < 1,

0, |x| ≥ 1

where A is a constant such that
∫
Rn φ = 1.

Then, supp(φ) ⊂ B1(0) and φ ∈ C∞(Rn).
For ϵ > 0, we put

φϵ(x) :=
1

ϵn
φ(
x

ϵ
)

so φϵ ∈ C∞(Rn), supp(φϵ) ⊂ Bϵ(0), and
∫
R φϵ = 1. If u ∈ L1

loc(Ω), the function

uϵ := φϵ ∗ u
(the regularization of u) is defined in

Ωϵ := {x ∈ Ω| dist(x, ∂Ω) > ϵ}
and uϵ ∈ C∞(Ωϵ). Moreover, uϵ → u a.e., uϵ → u in C0

loc(Ω), L
∞
loc(Ω) if u ∈ C0(Ω), L∞

loc(Ω), 1 ≤
p <∞.

Theorem 5.9. Harmonic functions are C∞.

Proof. Let u be harmonic in Ω and put uϵ := u ∗ φϵ. Then, by the mean value property:

uϵ(x) =

∫
Ω
φϵ(x− y)u(y)dy =

1

ϵn

∫
Bϵ(x)

φ

(
x− y

ϵ

)
u(y)

=
1

ϵn

∫ ϵ

0
φ

(
r

ϵ

)∫
∂Br(x)

udσdr =
u(x)

ϵn

∫ ϵ

0
φ

(
r

ϵ

)
nωnr

n−1dr

= u(x)

∫
Bϵ(0)

φϵdy = u(x).

Note that nωnr
n−1 =

∫
∂Br(0)

dσ.

□

Remark 5.10. One can show that harmonic functions are, in fact, analytic.
Using the mean value formula, we can derive decay estimates (as |x| → ∞) for harmonic func-

tions, leading to:



10 MATH8110 - Theory of PDEs

Theorem 5.11. (Liouville’s Theorem). If u : Rn → R is harmonic and bounded, then it is
constant.

Proof. Exercise.
□

Theorem 5.12. (Maximum principle). Suppose that u ∈ C2(Ω) ∩ C0(Ω) is harmonic in Ω,
where Ω is bounded. Then max

Ω
u = max

∂Ω
u. Moreover, if Ω is connected and u(x0) = max

Ω
u for

some x0 ∈ Ω, then u is constant.

Proof. The first claim is implied by the second, which we prove. Say u(x0) = M = max
Ω

u and let

r be such that 0 < r < dist(x0, ∂Ω).

By mean value,

M = u(x0) =
1

ωnrn

∫
Br(x)

udy ≤M,

so u =M in Br(x0). Thus, {x ∈ Ω|u(x) =M} is open and closed in Ω.
□

Remark 5.13. We need the boundedness assumption, e.g., u(x, y) = y in R2
+.

Remark 5.14. Changing u 7→ −u, we also get the minimum principle.

Corollary 5.15. There exists at most one C2(Ω) ∩ C0(Ω) solution to

∆u = f in Ω,

u = g on ∂Ω

with f ∈ C0(Ω), g ∈ C0(∂Ω).

Exercise: Look up Harnack inequality for ∆.

5.3. Green’s function. The Green function is the analogue of the fundamental solution in the
case of a boundary-value problem, i.e., a PDE plus a boundary condition.

In this section, we assume Ω to be bounded and with a C1-boundary. We are interested in

∆u = f in Ω,

u = g on ∂Ω

where f and g are given.

Given a C2(Ω) function u, we have (Green’s identity):∫
Ω\Bϵ(x)

(u(y)∆yΓ(y − x)− Γ(y − x)∆u(y))dy

=

∫
∂(Ω\Bϵ(x))

(u(y)
∂Γ

∂vy
(y − x)− Γ(y − x)

∂u

∂va
(y))dσ(y)

Observe the following facts:

• ∆yΓ(y − x) = 0 in Ω \Bϵ(x).
•
∫
∂Bϵ(x)

Γ(y − x)∂u∂v dσ(y) → 0 as ϵ→ 0.

•
∫
∂Bϵ(x)

u(y) ∂Φ∂vy (y − x)dσ(y) → −u(x) as ϵ→ 0.
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Thus,

u(x) =

∫
Ω
Γ(y − x)∆u(y)dy +

∫
∂Ω
u(y)

∂Γ

∂vy
(y − x)dσ(y)−

∫
∂Ω

Γ(y − x)
∂u

∂v
(y)dσ(y).

Replacing ∆u = f , u = g on ∂Ω, we get a formula for u except or the term in ∂u
∂v . To eliminate

this term, suppose that for each x, rx solves

∆rx = 0 in Ω,

rx = Γ(y − x) on ∂Ω.

Then, the function

G(x, y) = Γ(x− y)− rx(y)

satisfies ∆yG = 0 for x ̸= y and G = 0 on ∂Ω.

Repeating the above with Γ 7→ G:

u(x) =

∫
Ω
G(x, y)∆u(y)dy +

∫
∂Ω
u(y)

∂G(x, y)

∂vy
dσ(y). (5.1)

Definition 5.16. The function G above is called the Green’s function for the domain Ω.

From the above we have

Theorem 5.17. Representation Formula. If u ∈ C2(Ω) solves

∆u = f in Ω,

u = g on ∂Ω.

where Ω is bounded, f ∈ C0(Ω), and g ∈ C0(∂Ω), then u is given by (5.1).

Proposition 5.18.

G(x, y) = G(y, x), x ̸= y

Proof. Set (x ̸= y)

f(z) := G(x, z), g(z) := G(y, z)

The goal is to show f(y) = g(x). We have ∆f(z) = 0 for z ̸= x, ∆g(z) = 0 for z ̸= y, and f = 0 = g
on ∂Ω. Let U := Ω \ (Bϵ(x) ∪Bϵ(y)). Then, by Green’s identity:∫

∂Bϵ(x)
(
∂f

∂v
g − ∂g

∂v
f)dσ =

∫
∂Bϵ

(
∂g

∂v
f − ∂f

∂v
g)dσ. (5.2)

Since g is smooth near x: ∫
∂Bϵ(x)

∂g

∂v
fdσ → 0 as ϵ→ 0

Also∫
∂Bϵ(x)

∂f

∂v
gdσ =

∫
∂Bϵ(x)

∂Γ(z − x)

∂vz
g(z)dσ(z) +

∫
∂Bϵ(x)

∂rx(z)

∂v
g(z)dσ(z) → g(x) as ϵ→ 0.

So, the LHS of (5.2) → g(x). Similarly, the RHS of (5.2) → f(y). □

Remark 5.19. In the language of distributions, Γ solves

∆Γ = δx in Rn

and G solves

∆G = δx in Ω,

G = 0 on ∂Ω.
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5.4. Explicit formulas. We have not shown how to find the function rx for the construction of
G (we shall see later). However, for some special domains, it is possible to construct G “directly.”

The case Rn+. In this case, one can verify

G(x, y) = Γ(y − x)− Γ(y − x̃),

where x̃ is the reflection of x, i.e.,

x̃ = (x1, x2, ..., xn−1,−xn).

In particular,

u(x) =
2xn

nωn

∫
∂Rn

+

g(y)

|x− y|n
dy

solves

∆u = 0 in Rn+,
u = g on ∂Rn+,

for g ∈ C0(Rn−1) ∩ L∞(Rn−1). The function

κ(x, y) :=
2xn

nωn

1

|x− y|n

is called Poisson’s kernel for Rn+.
(Here, Ω is not bounded as in our assumptions above, but one can check that this G still works.)

The case Br(0). In this case,

G(x, y) = Γ(y − x)− Γ(|x|(y − x̃)),

where x̃ = x
|x|2 is the inversion through ∂Br(0). In particular,

u(x) =
r2 − |x|2

nωnr

∫
Br(0)

1

|x− y|n
dy

solves

∆u = 0 in Br(0),

u = g on ∂Br(0),

if g ∈ C0(∂Br(0)). The function

κ(x, y) :=
r2 − |x|2

nωnr

1

|x− y|n

is called Poisson’s kernel for Br(0).

6. The heat equation

We now study the heat equation

∂tu−∆u = 0

and its non-homogenous version

∂tu−∆u = f.
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6.1. Fundamental solution. The heat equation has the scaling invariance u(t, x) 7→ u(λ2t, λx),

i.e., if u solves the (homogenous) heat equation, so does v(t, x) = u(λ2t, λx). Thus, the ratios |x|2
t

plays a role in the heat equation and suggests the Ansatz

u(t, x) =
1

tα
v

(
x

tβ

)
.

solutions of this form satisfy u(t, x) = λαu(λt, λβx), λ > 0. Plugging our Ansatz into the equation

t−(α+2β)∆v(y) + βt−(α+1)y · ∇v(y) + αt−(α+1)v(y) = 0,

where y = x
tβ
. Setting β = 1

2 gives

∆v +
1

2
y · ∇v(y) + αv = 0.

Assuming now v to be radial, v(y) = ṽ(r),

ṽ′′ +
n− 1

2
ṽ′ +

1

2
rṽ′ + αṽ = 0

Setting α = n
2 :

(rn−1ṽ′)′ +
1

2
(rnṽ)′ = 0.

We can now solve this ODE and find, assuming ṽ, ṽ′ → 0 as r → ∞,

ṽ(r) = Ae−
r2

4 .

Reverting back to u, we are led to:

Definition 6.1. The function

Γ(t, x) :=

 1

(4πt)
n
2
e−

|x|2
4t , t > 0, x ∈ Rn,

0, t < 0, x ∈ Rn,

is called the fundamental solution to the heat equation.

One readily verifies that ∫
Rn

Γ(t, x)dx = 1, t > 0 (6.1)

6.2. The initial-value problem. We are interested in the initial-value problem, a.k.a. Cauchy
problem, for the heat equation:

∂tu−∆u = 0 in (0,∞)× Rn,
u = g on {t = 0} × Rn,

where g is given (the initial data).

Theorem 6.2. Let g ∈ C0(Rn) ∩ L∞(Rn). Set

u(t, x) :=
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t g(y)dy, t > 0, x ∈ Rn.

Then:

(i) u ∈ C∞((0,∞)× Rn)
(ii) ∂tu−∆u = 0 in (0,∞)× Rn
(iii) u = g on {t = 0} × Rn in the sense that lim

(t,x)→
t>0

(0,x0)
u(t, x) = g(x0) for each x0 ∈ Rn.
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Proof. For each ϵ > 0, 1

t
n
2
e−

|x|2
4t is C∞ with uniformly bounded derivatives in [ϵ,∞)× Rn and the

derivatives of the fundamental solution are integrable, so u ∈ C∞((0,∞)× Rn). Also:

∂tu(t, x)−∆u(t, x) =

∫
Rn

(∂tΓ(t, x− y)−∆Γ(t, x− y))g(y)dy = 0.

To show (iii), let ϵ > 0 and δ > 0 be such that

|g(y)− g(x0)| < ϵ if |y − x0| < δ.

|u(t, x)− g(x0)| =
∣∣∣∣ ∫

Rn

Γ(t, x− y)(g(y)− g(x0))dy

∣∣∣∣ (using (6.1))

≤
∫
Bδ(x0)

Γ(t, x− y)|g(y)− g(x0)|+
∫
Rn\Bδ(x0)

Γ(t, x− y)|g(y)− g(x0)|dy

=: I1 + I2.

For |x− x0| < δ
2 , we have

I1 ≤ ϵ

∫
Bδ(x0)

Γ(t, x− y)dy ≤ ϵ.

For I2 we have |x− x0| < δ
2 and |y − x0| ≥ δ so

|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+ δ

2

≤ |y − x|+ |y − x0|
2

=⇒ |y − x0| ≤ 2|y − x|.

I1 ≤ 2∥g∥L∞(Rn)
C

t
n
2

∫
Rn\Bδ(x0)

e−
|x−y|2

4t dy

≤ C

t
n
2

∫
Rn\Bδ(x0)

e
|y−x0|

2

16t dy =
C

t
n
2

∫ ∞

δ
e−

r2

t rn−1dr.

The RHS→ 0 as t→ 0+. Thus, choose t small such that RHS < ϵ. □

Remark 6.3.

• u ∈ C∞ : the heat equation regularizes the data.
• If g ≥ 0, ̸= 0, localized then u(t, x) > 0 for all x, t > 0 : ∞−speed of propagation

6.3. The non-homogenous problem. We now consider

∂tu−∆u = f in (0,∞)× Rn,
u = 0 on {t = 0} × Rn,

where f is given. We can reduce this to a solution of the homogenous problem. Let us denote by
C2
1 (I × Rn), I = interval, the space of functions that C1 is the t variable and C2 is the x-variable.

Theorem 6.4. Let f ∈ C2
1 ([0,∞, ] × Rn) have compact support. For each s ≥ 0, let us be the

solution to the Cauchy problem given by the previous theorem

∂tus −∆us = 0 in (s,∞)× Rn,
us = f(s, ·) in {t = 0} × Rn.

Set u(t, x) :=
∫ t
0 us(t, x)ds. Then

(i) u ∈ C2
1 ((0,∞)× Rn)

(ii) ∂tu−∆u = f in (0,∞)× Rn.
(iii) lim

(t,x)→
t>0

(0,x0)
u(t, x) = 0 for each x0 ∈ Rn.
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Proof. We can write

u(t, x) =

∫ t

0

1

(4π(t− s))
n
2

∫
Rn

e
− |x−y|2

4(t−s) f(s, y)dyds.

=

∫ t

0

∫
Rn

Γ(s, y)f(t− s, x− y)dyds

Since f has compact support and Γ(s, y) is smooth for s near s = t, t > 0, we can differentiate:

∂tu(t, x) =

∫ t

0

∫
Rn

Γ(s, y)∂tf(t− s, x− y)dyds+

∫
Rn

Γ(t, y)f(0, x− y)dy.

Similarly

D2
xu(t, x) =

∫ t

0

∫
Rn

Γ(s, y)D2
xf(t− s, x− y)dyds

we see that both ∂tu,D
2
xu are continuous.

Compute

∂u(t, x)−∆u(t, x) =

∫ t

0

∫
Rn

Γ(s, y)(∂tf(t−s, x−y)−∆xf(t−s, x−y))dyds+
∫
Rn

Γ(t, y)f(0, x−y)dy

= (

∫ t

ϵ

∫
Rn

+

∫ ϵ

0

∫
Rn

)

(
Γ(s, y)(−∂s−∆y)f(t−s, x−y)

)
dyds+

∫
Rn

Γ(t, y)f(0, x−y)dy =: I1+I2+I3.

|I2| ≤
(
∥∂tf∥L∞ + ∥D2f∥L∞

) ∫ ϵ

0

∫
Rn

Γ(s, y)dyds ≤ Cϵ.

By parts

I1 =

∫ t

ϵ

∫
Rn

Γ(s, y)(−∂s −∆y)f(t− s, x− y)dyds

=

∫ t

ϵ

∫
Rn

(∂sΓ(s, y)−∆Γ(s, y))︸ ︷︷ ︸
=0

f(t− s, x− y)dyds

−
∫
Rn

Γ(t, y)f(0, x− y)dy︸ ︷︷ ︸
=I3

+

∫
Rn

Γ(ϵ, y)f(t− ϵ, x− y)dy, so

I1 + I3 =

∫
Rn

Γ(ϵ, y)f(t− ϵ, x− y)dy

=

∫
Rn

Γ(ϵ, x− y)f(t− ϵ, y)dy.

This is the same integral as in the previous theorem with t 7→ ϵ, g 7→ f(t − ϵ, ·), so ϵ → 0+ gives
f(t, x).

□

Remark 6.5. The strategy of solving a non-homogeneous problem by reducing it to a homogeneous
one applies to many other PDEs and is known as Duhamel’s principle.

Remark 6.6. There is no uniqueness in a strict sense, in fact

∂tu−∆u = 0 in (0, T )× Rn,
u = 0 on {t = 0} × Rn,
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has ∞-many solutions. Uniqueness does hold, however, if one imposes suitable growth u ∼ e|x|
2
.

The heat equation admits further properties that are reminiscent of Laplace’s equation, such as a
mean value property and a maximum principle.

7. The wave equation

We study the Cauchy problem for the wave equation:

□u = −∂2t u+∆u = 0 in (0,∞)× Rn

u = g on {t = 0} × Rn

∂tu = h on {t = 0} × Rn

7.1. 1d: Dirichlet’s formula. In 1d,

−∂2t u+ ∂2xu = 0.

Set α := x+ t, β := x− t and put
u(t, x) = v(α, β).

Then,

∂2t u = ∂2αv − 2∂α∂βv + ∂2βv

∂2xu = ∂2αv − 2∂α∂βv + ∂2βv

So, □u = −4∂α∂βv = 0. Thus, ∂αv is a function only of α, ∂αv(α, β) = f(α), so

v(α, β) = F (α) +G(β)

for some F,G.

We see that if u is a C2 solution, then there exist F,G such that

u(t, x) = F (x+ t) +G(x− t)

Reciprocally, given C2 F,G the above is a solution of the wave equation. G and F are called
forward and backward waves (G moves the graph to the right, F to the left).

Observe that

u(0, x) = F (x) +G(x) = g(x)

∂tu(0, x) = F ′(x)−G′(x) = h(x)

=⇒ F (x)−G(x) =

∫ x

0
h(y)dy + C.

Solving for F and G:

F (x) =
1

2
g(x) +

1

2

∫ x

0
h(y)dy +

C

2

G(x) =
1

2
g(x)− 1

2

∫ x

0
h(y)dy − C

2
.

Since u(t, x) = F (x+ t) +G(x− t):

u(t, x) =
g(x+ t) + g(x− t)

2
+

1

2

∫ x+t

x−t
h(y)dy,

which is known as D’Alembert’s formula.

Theorem 7.1. Let g ∈ C2(R), h ∈ C1(R). Then, there exists a unique u ∈ C2([0,∞) × R) that
solves the Cauchy problem for the 1d wave equation with data g, h.
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Proof. Define u by D’Alembert’s formula. We easily verify the properties stated in the theorem.
□

Definition 7.2. The lines x + t = constant and x − t = constant are called the characteristics
(or characteristic curves) of the 1d wave equation.

7.2. Domains of dependence of regions of influence. Suppose h = 0 and g(x) = 0 for
x /∈ [a, b]. Since g(x + t) and g(x − t) are constant along the lines x + t = constant and x − t =
constant, respectively, we see that u(t, x) ̸= 0 only possibly for (t, x) that lie in the region determined
by the region lying between the characteristics emanating from a and b as indicated in the figure:

x

t

x+ t = a x− t = ax+ t = b x− t = b

a b

x− t ≤ x+ t < a
u(t, x) = 0

b < x− t ≤ x+ t
u(t, x) = 0

u(t, x) = 0
b < x+ t
x− t < a

a ≤
x
+
t ≤
b a

≤
x
−
t ≤
b

Figure 1. Domain of Dependence and the Characteristic Curves

Notation 7.3. Although we ordered the coordinates as (t, x), we will often draw the (t, x) plane
with the x-axis on the horizontal.

Suppose now that g = 0 and that h(x) = 0 for x /∈ [a, b]. Then
∫ x+t
x−t h(y)dy = 0 whenever we

have [x− t, x+ t] ∩ [a, b] = ∅, i.e., if x+ t < a or x− t > b. Therefore, u(t, x) ̸= 0 possibly only in
the region {x+ t ≥ a} ∩ {x− t ≤ b}, as depicted in the figure:

x

t

x+ t = a x− t = b

a b

x− t ≤ x+ t < a
u(t, x) = 0

b < x− t ≤ x+ t
u(t, x) = 0

x+ t ≥ a
and
x− t ≤ b

Figure 2. Domain of Influence
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For general g and h, we can therefore precisely track how the values of u(t, x) are influenced by
the values of the initial conditions. It follows that the values of the data on an interval [a, b] can
only affect the values of u(t, x) for (t, x) ∈ {x+t ≥ a}∩{x−t ≤ b}. This reflects the fact that waves
travel at a finite speed. The region {x+t ≥ a}∩{x−t ≤ b} is called domain of influence of [a, b].

Consider now a point (t0, x0) and u(t0, x0). Let D be the triangle with vertex (t0, x0) determined
by x+ t = x0 + t0, x− t = x0 + t0, and t = 0:

x

(t0, x0)

x
−
t =
x 0
−
t 0

x
+
t =
x
0 +
t0

D

x = x0 − t0 x = x0 + t0

Figure 3. Domain of Dependence

Then,

u(t0, x0) =
g(x0 + t0) + g(x0 − t0)

2
+

1

2

∫ x0+t0

x0−t0
h(y)dy

and we see that u(t0, x0) is completely determined by the values of the initial data on the interval
[x0 − t0, x0 + t0]. The region D is called the (past) domain of dependence of (t0, x0).

(Characteristics, domains of dependence/influence are important concepts that will be general-
ized). Contrast the domain of dependence property with the heat equation.

8. The wave equation in Rn

Here we will study the Cauchy problem for the wave equation in Rn, i.e.,
□u = 0 in [0,∞)× Rn,
u = u0 on {t = 0} × Rn,

∂tu = u1 on {t = 0} × Rn,

where □ := −∂2t +∆ is called the D’Alembertian (or the wave operator) and u0, u1 : Rn → R are
given.

The initial conditions can also be stated as:

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn

Definition 8.1. The sets

Gt0,x0 := {(t, x) ∈ (−∞,+∞)× Rn
∣∣ |x− x0| ≤ |t− t0|},

G+
t0,x0

:= {(t, x) ∈ (−∞,+∞)× Rn
∣∣ |x− x0| ≤ t− t0},

G−
t0,x0

:= {(t, x) ∈ (−∞,+∞)× Rn
∣∣ |x− x0| ≤ t0 − t},
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are called, respectively, the light-cone, future light-cone, and past light-cone with vertex
at (t0, x0). The sets

Kt0,x0 := Gt0,x0 ∩ {t ≥ 0},
K+
t0,x0

:= G+
t0,x0

∩ {t ≥ 0},
K−
t0,x0

:= G−
t0,x0

∩ {t ≥ 0},

are called, respectively, the light-cone, future light-cone, and past light-cone for positive
time with vertex at (t0, x0). We often omit “for positive time” and refer to the sets K as light-
cones. We also refer to a part of a cone, e.g, for 0 ≤ t ≤ T , as the truncated (future, past)
light-cone.

(t0, x0)

G(t0,x0)

Figure 4. Light Cone

(t0, x0)

G+
(t0,x0)

Figure 5. Future Light Cone
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(t0, x0)

G−
(t0,x0)

Figure 6. Past Light Cone

(t0, x0)

K−
(t0,x0)

t = 0

Figure 7. Truncated Past Light Cone

Lemma 8.2. (differentiation of moving regions). Let Ω(τ) ⊂ Rn be a family of bounded domains
with smooth boundary depending smoothly on the parameter τ . Let v be the velocity of the moving
boundary ∂Ω(τ) and v the unit outer normal to ∂Ω(τ). If f = f(τ, x) is smooth, then

d

dτ

∫
Ω(τ)

fdx =

∫
Ω(τ)

∂τfdx+

∫
∂Ω(τ)

fv · vdσ

Proof. Change of variables.
□

Theorem 8.3. (finite propagation speed). Let u ∈ C2([0,∞) × Rn) be a solution to the Cauchy
problem for the wave equation. If u0 = u1 = 0 on {t = 0} × Bt0(x0), then u = 0 within K−

(t0,x0)
.

(Thus, the solution at (t0, x0) depends on the data on Bt0(x0) and the cone K−
(t0,x0)

is also called a

domain of dependence).

Proof. Define the ”energy”,

E(t) =
1

2

∫
Bt0−t(x0)

((∂tu)
2 + |∇u|2)dx, 0 ≤ t ≤ t0.

Then,

dE

dt
=

∫
Bto−t(x0)

(∂tu∂
2
t u+∇u · ∇∂tu)dx+

1

2

∫
∂Bto−t(x0)

((∂tu)
2 + |∇u|2)v · vdσ

The points on the boundary move inward orthogonally to the spheres ∂Bt0−t(x0) and with a linear
speed in t, thus v = −v.
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(t0, x0)

Bt0−t′(x0) , t′ > t

Bt0−t(x0)

K−
(t0,x0)

Figure 8. Boundaries on the Light Cone

Bt0−t(x0)

v(t)

Bt0−t′(x0)

v(t′)

Figure 9. Moving Boundaries

Integrating by parts:∫
Bto−t(x0)

∇u · ∇∂tudx = −
∫
Bto−t(x0)

∆u∂tudx+

∫
∂Bto−t(x0)

∂u

∂v
∂tudσ.

Thus,

dE

dt
=

∫
Bto−t(x0)

(∂2t u−∆u︸ ︷︷ ︸
=0

)∂tux+

∫
∂Bto−t(x0)

∂u

∂v
∂tudσ − 1

2

∫
∂Bt0−t(x0)

((∂tu)
2 + |∇u|2)dσ

=

∫
∂Bto−t(x0)

(
∂u

∂v
∂tu− 1

2
(∂tu)

2 − 1

2
|∇u|2)dσ

≤
∫
∂Bto−t(x0)

(|∇u∥∂tu| −
1

2
(∂tu)

2 − 1

2
|∇u|2)dσ = 0,

which implies the result.
□

The name, energy, above comes from the fact that E(t) := 1
2

∫
Rn((∂tu)

2 + |∇u|2)dx indeed rep-

resents the total energy of the system at time t, 1
2(∂tu)

2 corresponding to the (local) kinetic energy

and 1
2 |∇u|

2 the (local) potential energy. Restoring all units we can check that E in fact has units
of energy.
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Alternatively, one could imagine “discovering” the energy as follows. Multiply the wave equation
−∂2t u+∆u = 0 by ∂tu and integrate over Rn:∫

Rn

(−∂tu∂2t u+ ∂tu∆u)dx = 0

Integrating the last term by parts,
∫
Rn ∂tu∆udx = −

∫
Rn ∂t∇u · ∇udx, where we assume that u

decays fast enough as |x| → ∞ so there are no boundary terms. Thus,

0 =

∫
Rn

(∂tu∂
2
t u+ ∂tu∇u · ∇u)dx =

1

2
∂t

∫
Rn

((∂tu)
2 + |∇u|2)dx,

i.e.,

E(t) =
1

2

∫
Rn

((∂tu)
2 + |∇u|2)dx

is conserved.

Remark 8.4. Inspired by the above, it is customary to call “energy” any quantity that is quadratic
on derivatives of the solution, integrated over a region, even if they do not have a direct physical
meaning. Such energies are typically obtained by multiplying the equation by a suitable term and
integrating by parts, as above, and they play a key role in the study of certain PDEs.

Notation 8.5. Henceforth, we assume that n ≥ 2. Set

U(t, x; r) :=
1

vol(∂Br(x))

∫
∂Br(x)

u(t, y)dσ(y),

U0(x; r) :=
1

vol(∂Br(x))

∫
∂Br(x)

u0(t, y)dσ(y),

U1(x; r) :=
1

vol(∂Br(x))

∫
∂Br(x)

u1(t, y)dσ(y),

which are spherical averages over ∂Br(x).

Proposition 8.6. (Euler-Poisson-Darboux equation). Let u ∈ Cm([0,∞) × Rn), m ≥ 2, be a
solution to the Cauchy problem for the wave equation. For fixed x ∈ Rn, consider U = U(t, x; r) as
a function of t and r. Then, U ∈ Cm([0,∞)×[0,∞)) and U satisfies the Euler-Poisson-Darboux
equation: 

∂2t U − ∂2rU − n− 1

r
∂rU = 0 in (0,∞)× (0,∞),

U = U0 on {t = 0} × (0,∞),

∂tU = U1 on {t = 0} × (0,∞).

Proof. Differentiability with respect to t is immediate, as is the differentiability w.r.t. r for r > 0.

Arguing as in the proof of the mean value formula for Laplace’s equation:

∂rU(t, x; r) =
r

n

1

vol(Br(x))

∫
Br(x)

∆u(t, y)dy.

This implies limr→0+ ∂rU(t, x; r) = 0. Next,

∂2rU(t, x; r) =
1

n

1

vol(Br(x))

∫
Br(x)

∆u(t, y)dy

+
r

n
∂r

(
1

vol(Br(x))

)∫
Br(x)

∆u(t, y)dy +
r

n

1

vol(Br(x))
∂r

(∫
Br(x)

∆u(t, y)dy

)
.
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But ∂r

(∫
Br(x)

∆u(t, y)dy

)
=

∫
∂Br(x)

∆u(t, y)dσ(y), and recall that vol(Br(x)) = ωnr
n, so

r

n

1

vol(Br(x))
=

1

nωnrn−1
=

1

vol(∂Br(x))
,

r

n
∂r

(
1

vol(Br(x))

)
=
r

n
∂r

(
1

ωnrn

)
= − 1

ωnrn
= − 1

vol(Br(x))
,

so

∂2rU(t, x; r) =

(
1

n
− 1

)
1

vol(Br(x))

∫
Br(x)

∆u(t, y)dy +
1

vol(∂Br(x))

∫
∂Br(x)

∆u(t, y)dσ(y).

This implies that limr→0+ ∂2rU(t, x; r) = 1
n∆u(t, x).

Proceeding this way we compute all derivatives of U w.r.t. r and conclude that U ∈ Cm([0,∞)×
[0,∞)). Returning to the expression for ∂rU :

∂rU =
r

n

1

vol(Br(x))

∫
Br(x)

∆u =
r

n

1

vol(Br(x))

∫
Br(x)

∂2t u.

Thus,

∂r(r
n−1∂rU) = ∂r

(
rn

nvol(Br(x))

∫
Br(x)

∂2t u

)
= ∂r

(
1

nωn

∫
Br(x)

∂2t u

)
=

1

nωn

∫
∂Br(x)

∂2t u =
rn−1

vol(∂Br(x))

∫
∂Br(x)

∂2tu

= rn−1∂2t

(
1

vol(∂Br(x))

∫
∂Br(x)

u

)
= rn−1∂2t U.

On the other hand:
∂r(r

n−1∂rU
=rn−1∂2t U

) = (n− 1)rn−2∂rU + rn−1∂2rU,

which gives the result.
□

8.1. Reflection method. We will use the function U(t, x; r) to reduce the higher dimensional wave
equation to the 1d wave equation, for which D’Alembert’s formula is available, in the variables t and
r. However, U(t, x; r) is defined only for r ≥ 0, whereas D’Alembert’s formula is for −∞ < r <∞.
Thus, we first consider: 

utt − uxx = 0 in (0,∞)× (0,∞),

u = u0 on {t = 0} × (0,∞),

∂tu = u1 on {t = 0} × (0,∞),

u = 0 on (0,∞)× {x = 0},
where u0(0) = u1(0) = 0. Consider odd extensions, where t ≥ 0:

ũ0 =

{
u0(x), x ≥ 0,

−u0(−x), x ≤ 0,
ũ1(x) =

{
u1(x), x ≥ 0,

−u1(x), x ≤ 0.

A solution to the problem on (0,∞, )× (0,∞) is obtained by solving
ũtt − ũxx = 0 in (0,∞)× R,

ũ = ũ0 on {t = 0} × R,
∂tũ = ũ1 on {t = 0} × R,
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and restricting to (0,∞, )× (0,∞) where ũ = u. (D’Alembert’s formula implies that ũ will be odd,
thus satisfying ũ(t, 0) = 0, if ũ0 and ũ1 are odd, i.e., if u0 and u1 vanish at x = 0.)

D’Alembert’s formula gives

ũ(t, x) =
1

2
(ũ0(x+ t) + ũ0(x− t)) +

1

2

∫ x+t

x−t
ũ1(y)dy.

Consider now t ≥ 0 and x ≥ 0, so that ũ(t, x) = u(t, x). Then, x+t ≥ 0 so that ũ0(x+t) = u0(x+t).
If x ≥ t, then the integration variable y satisfies y ≥ 0, since y ∈ [x − t, x + t]. In this case
ũ1(y) = u1(y). Thus,

u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t
u1(y)dy

for x ≥ t. If 0 ≤ x ≤ t, then ũ0(x− t) = −ũ0(−(x− t)) and∫ x+t

x−t
ũ1(y)dy =

∫ 0

x−t
ũ1(y)dy +

∫ x+t

0
ũ1(y)dy = −

∫ 0

x−t
u1(−y)dy +

∫ x+t

0
u1(y)dy

=

∫ 0

−x+t
u1(y)dy +

∫ x+t

0
u1(y)dy =

∫ x+t

−x+t
u1(y)dy.

Thus,

u(t, x) =
1

2
(u0(x+ t)− u0(t− x)) +

1

2

∫ x+t

−x+t
u1(y)dy

for 0 ≤ x ≤ t.

Summarizing:

u(t, x) =

{
1
2(u0(x+ t) + u0(x− t)) + 1

2

∫ x+t
x−t u1(y)dy, x ≥ t ≥ 0,

1
2(u0(x+ t)− u0(t− x)) + 1

2

∫ x+t
−x+t u1(y)dy, 0 ≤ x ≤ t.

Note that u is not C2 except if u′′(0) = 0. Note also that u(t, 0) = 0.

This solution can be understood as follows: for x ≥ t ≥ 0, finite propagation speed implies that the
solution “does not see” the boundary. For 0 ≤ x ≤ t, the waves traveling to the left are reflections
on the boundary where u = 0.

x

t

x ≤ t x ≥ t

domain of
dependence

Figure 10. Reflection Across the t-axis
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8.2. Solution for n = 3: Kirchhoff’s formula. Set Ũ = rU , Ũ0 = rU0, Ũ1 = rU1, where
Ũ, Ũ0, Ũ1 are as above. Then,

∂2t Ũ = r∂2t U = r

(
∂2rU +

3− 1

r
∂rU

)
= r∂2rU + 2∂rU

= ∂2r (rU) = ∂2r Ũ,

so Ũ solves the 1d wave equation on (0,∞, ) × (0,∞) with initial conditions Ũ(0, r) = Ũ0(r),

∂tŨ(0, r) = Ũ1(r).

By the reflection method discussed above, we have

Ũ(t, x; r) =
1

2
(Ũ0(r + t)− Ũ0(t− r)) +

1

2

∫ r+t

−r+t
Ũ1(y)dy

for 0 ≤ r ≤ t, where we used the notation Ũ0(r + t) and Ũ1(y) for Ũ0(x; r + t), Ũ1(x; y).

From the definition of Ũ and U and the above formula:

u(t, x) = lim
r→0+

1

vol(∂Br(x))

∫
∂Br(x)

u(t, y)dσ(y)

= lim
r→0+

U(t, x; r)

= lim
r→0+

Ũ(t, x; r)

r

= lim
r→0+

1

2

Ũ0(t+ r)− Ũ0(t− r)

r
+ lim
r→0+

1

2r

∫ t+r

t−r
Ũ1(y)dy.

Note that

lim
r→0+

Ũ0(t+ r)− Ũ0(t− r)

2r
= lim

r→0+

Ũ0(t+ 2r)− Ũ0(t)

2r
= Ũ ′

0(t)

and

lim
r→0+

1

2r

∫ t+r

t−r
Ũ1(y)dy = Ũ1(t)

(this equality is simply limr→0+
1

vol(Br(x))

∫
Br(x)

f(y)dy = f(x) for n = 1). So,

u(t, x) = Ũ ′
0(t) + Ũ1(t)

Invoking the definition of Ũ0 and Ũ1:

u(t, x) =
∂

∂t

(
t

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)dσ(y)

)
+

t

vol(∂Bt(x))

∫
∂Bt(x)

u1(y)dσ(y).

Making the change of variables z = y−x
t (recall that we are treating the n = 3 case, so in the

calculations that follow n = 3, but we write n for the sake of a cleaner notation):

1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)dσ(y) =
1

nωntn−1

∫
∂Bt(x)

u0(y)dσ(y)

=
1

nωntn−1

∫
∂B1(0)

u0(x+ tz)tn−1dσ(z)

=
1

nωn

∫
∂B1(0)

u0(x+ tz)dσ(z).
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Then,
∂

∂t

(
1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)dσ(y)

)
=

1

nωn

∂

∂t

(∫
∂B1(0)

u0(x+ tz)dσ(z)

)
=

1

nωn

∫
∂B1(0)

∇u0(x+ tz) · zdσ(z).

Changing variables back to y, i.e., y = x+ tz and recalling that dσ(y) = tn−1dσ(z):

∂

∂t

(
1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)dσ(y)

)
=

1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (
y − x

t
)dσ(y).

Using this in the above expression for u(t, x) :

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(
u0(y) + tu1(y)

)
dσ(y)

+
1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (y − x)dσ(y),

which is known as Kirchhoff’s formula.

Theorem 8.7. Let u0 ∈ C3(R3) and u1 ∈ C2(R3). Then, there exists a unique u ∈ C2([0,∞)×R3)
that is a solution to the Cauchy problem for the wave equation in the three spatial dimensions.
Moreover, u is given by Kirchhoff’s formula.

Proof. Define u by Kirchhoff’s formula. By construction it is a solution with the stated regularity.
Uniqueness follow from the finite speed propagation property.

□

8.3. Solution for n = 2: Poisson’s formula. We now consider u ∈ C2([0,∞) × R2) a solution
to the wave equation for n = 2. Then

v(t, x1, x2, x3) := u(t, x1, x2)

is a solution for the wave equation in n = 3 dimensions with data v0(x
1, x2, x3) := u(x1, x2) and

v1(x
1, x2, x3) := u1(x

1, x2). Let us write x = (x1, x2) and x̄(x1, x2, 0). Thus, from the n = 3 case:

u(t, x) = v(t, x̄) =
∂

∂t

(
t

vol(∂B̄t(x̄))

∫
∂B̄t(x̄)

v0dσ̄

)
+

t

vol(∂B̄t(x̄))

∫
∂B̄t(x̄)

v1dσ̄,

where B̄t(x̄) = ball in R3 with center x̄ and radius t, dσ̄ = volume element on ∂B̄t(x̄). We now
rewrite this formula with integrals involving only variables in R2.

The integral over ∂B̄t(x̄) can be written as∫
∂B̄t(x̄)

=

∫
∂B̄+

t (x̄)
+

∫
∂B̄−

t (x̄)
,

where ∂B̄+
t (x̄) and ∂B̄

−
t (x̄) are, respectively, the upper and lower hemispheres of ∂B̄t(x̄).

The upper cap ∂B̄+
t (x̄) is parametrized by

f(y) =
√
t2 − |y − x|2, y = (y1, y2) ∈ Bt(x), x = (x1, x2),

where Bt(x) is the ball of radius t and center x in R2. Recalling the formula for integrals along a
surface given by a graph:

1

vol(∂B̄t(x̄))

∫
∂B̄+

t (x̄)
v0dσ̄ =

1

4πt2

∫
Bt(x)

u0(y)
√

1 + |∇f(y)|2dy,
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where we used that v0(x
1, x2, x3) = u0(x

1, x2). This last fact also implies that∫
∂B̄+

t (x̄)
v0dσ̄ =

∫
∂B̄−

t (x̄)
v0dσ̄,

v0(x
1, x2, x3)

v0(x
1, x2,−x3)

u0(x
1, x2)

=

=

Figure 11. 3D Ball

Thus,

1

vol(∂B̄t(x̄))

∫
∂B̄t(x̄)

v0 dσ̄ =
2

4πt2

∫
Bt(x)

u0(y)
√
1 + |∇f(y)|2 dy

=
1

2πt

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy.

In the last step we used

1 + |∇f(y)|2 = 1 +
|y − x|2

t2 − |y − x|2
=

t2

t2 − |y − x|2

Similarly,
t

vol(∂B̄t(x̄))

∫
∂B̄t(x̄)

v1dσ̄ =
1

2π

∫
Bt(x)

u1(y)√
t2 − |y − x|2

dy.

Hence,

u(t, x) =
∂

∂t

(
1

2π

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy

)
+

1

2π

∫
Bt(x)

u1(y)√
t2 − |y − x|2

dy

=
1

2

∂

∂t

(
t2

vol(Bt(x))

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy

)
+

1

2

t2

vol(Bt(x))

∫
Bt(x)

u1(y)√
t2 − |y − x|2

dy.

Changing variables y−x
t = z in the first integral (so dy = t2dz)

∂

∂t

(
t2

vol(Bt(x))

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy

)
=

∂

∂t

(
t

vol(B1(0))

∫
B1(0)

u0(x+ tz)√
1− |z|2

dz

)
=

1

vol(B1(0))

∫
B1(0)

u0(x+ tz)√
1− |z|2

dz +
t

vol(B1(0)

∫
B1(0)

∇u0(x+ tz) · z√
1− |z|2

dz

=
t

vol(Bt(x))

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy +
t

vol(Bt(x))

∫
Bt(x)

∇u0(y) · (y − x)√
t2 − |y − x|2

dy,
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where in the last step we changed variables back to y. Hence,

u(t, x) =
1

2

1

vol(Bt(x))

∫
Bt(x)

(
tu0(y) + t2u1(y)√

t2 − |y − x|2

)
dy

+
1

2

1

vol(Bt(x))

∫
Bt(x)

t∇u0(y)(y − x)√
t2 − |y − x|2

dy

which is known as Poisson’s formula.

Theorem 8.8. Let u0 ∈ C3(R2) and u1 ∈ C2(R2). Then, there exists a unique u ∈ C2([0,∞)×R2)
that is a solution to the Cauchy problem for the wave equation in two spatial dimensions. Moreover,
u is given by Poisson’s formula.

Proof. Define u by Poisson’s formula. By construction, it is a solution with the stated regularity.
Uniqueness follows from the finite-speed propagation property.

□

8.4. Solution for arbitrary n ≥ 2. The above procedure can be generalized for any n ≥ 2: for
n odd, we show that the suitably radial averages of u satisfies a 1d wave equation for r > 0 and
invoke the reflection principle; for n even, we view u as a solution in n + 1 dimensions, apply the
result for n odd, and then reduce back to n dimensions. The finite formulas are

n odd:

u(t, x) =
1

βn

∂

∂t

(
1

t

∂

∂t

)n−3
2
(

tn−2

vol(∂Bt(x))

∫
∂Bt(x)

u0dσ

)

+
1

βn

(
1

t

∂

∂t

)n−3
2
(

tn−2

vol(∂Bt(x))

∫
∂Bt(x)

u1dσ

)
where

βn := 1 · 3 · 5 · · · (n− 2),

n even:

u(t, x) =
1

rn
∂

∂t

(
1

t

∂

∂t

)n−2
2
(

tn

vol(Bt(x))

∫
Bt(x)

u0(y)√
t2 − |y − x|2

dy

)

+
1

rn

(
1

t

∂

∂t

)n−2
2
(

tn

vol(Bt(x))

∫
Bt(x)

u1(y)√
t2 − |y − x|2

dy

)
,

where

rn := 2 · 4 · · · (n− 2) · n.

Remark 8.9. The method of using the solution in n+ 1 to obtain a solution in n dimensions for
n even is known as method of descent.

Remark 8.10. We already know that solutions to the wave equation at (t0, x0) depend only on
the data on Bt0(x0). For n ≥ 3 odd, the above shows that the solution depends only on the data
on the boundary ∂Bt0(x0). This fact is known as the strong Huygens’ principle.
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8.5. The inhomogeneous wave equation. We now consider
□u = f in (0,∞)× Rn,
u = u0 on {t = 0} × Rn,

∂tu = u1 on {t = 0} × Rn

where f : [0,∞) → Rn, u0, u1 : Rn → R are given. f is called a source and this is known as the
inhomogeneous Cauchy problem for the wave equation. Since we already know how to solve the
problem when f = 0, by linearity it suffices to consider

□u = f in (0,∞)× Rn,
u = 0 on {t = 0} × Rn,

∂tu = 0 on {t = 0} × Rn,

Let us(t, x) be the solution of 
□us = 0 in (s,∞)× Rn,
us = 0 on {t = s} × Rn,

∂tus = f on {t = s} × Rn,

This problem is simply the Cauchy problem with data on t = s instead of t = 0, so the previous
solutions apply.

For t ≥ 0, define:

u(t, x) :=

∫ t

0
us(t, s)ds.

Note that u(0, x) = 0. We have

∂tu(t, x) = us(t, x)
∣∣
s=t

+

∫ t

0
∂tus(t, x)ds.

Since us(t, x) = 0 for t = s, the first term vanishes, so

∂tu(t, x) =

∫ t

0
∂tus(t, x)ds.

Then, ∂tu(0, x) = 0. Taking another derivative:

∂2t u(t, x) = ∂tus(t, x)
∣∣
s=t

+

∫ t

0
∂2t us(t, x)ds.

Since ∂tus(t, x)
∣∣
s=t

= f(s, x)
∣∣
s=t

= f(t, x) and ∂2t us = ∆us:

∂2t u(t, x) = f(t, x) +

∫ t

0
∆us(t, x)ds

= f(t, x) + ∆

∫ t

0
us(t, x)ds

= f(t, x) + ∆u(t, x), i.e.,

∂2t u−∆u = f.

Therefore, we conclude that u satisfies the inhomogeneous wave equation with zero initial con-
ditions. We summarize this in the following theorem:
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Theorem 8.11. Let f ∈ C [n
2
]+1([0,∞) × Rn), where [n2 ] is the integer part of n

2 . Let us be the
unique solution to: 

□us = 0 in (s,∞)× Rn,
us = 0 on {t = s} × Rn,

∂tus = f on {t = s} × Rn,
and define u by

u(t, x) =

∫ t

0
us(t, x)ds.

Then, u ∈ C2([0,∞) × Rn) and is a solution to the Cauchy problem for the wave equation with
source f and zero initial conditions.

Remark 8.12. The procedure of solving the inhomogeneous equation by solving a homogeneous
one with initial condition f , as seen in the case of the heat equation, is known as the Duhamel
principle.

9. Sobolev spaces

We will now introduce and study properties of certain function spaces, called Sobolev spaces,
that are very useful for the study of PDEs.

Unless stated otherwise, in this section Ω denotes a domain Ω ⊂ Rn.

9.1. Weak derivatives.

Definition 9.1. Let u, v ∈ L1
loc(Ω) and α be a multi-index. We say that v is a α-weak partial

derivative v, and write Dαu = v, if∫
Ω
uDαφdx = (−1)|α|

∫
Ω
vφdx

for every φ ∈ C∞
c (Ω).

The intuition is that the integration by parts formula holds. Functions in C∞
c (Ω) are often called

test functions. The space of functions whose all derivatives exist up to order k is denotedW k(Ω).

Example 9.2. If v(x) =

{
1, −1 < x < 0,

x+ 1, 0 ≤ x < 1,
then v′(x) =

{
0, −1 < x < 0,

1, 0 < x < 1,
is a weak-

derivative. ∫ 1

−1
v(x)φ′(x)dx =

∫ 0

−1
φ′(x)dx+

∫ 1

0
(x+ 1)φ′(x)dx

= φ(0)−
∫ 1

0
φ(x)dx− φ(0) = −

∫ 1

−1
v′(x)φ(x)dx.

If, however, v(x) =

{
1, −1 < x < 0,

x+ 2, 0 ≤ x < 1,
then, as we shall see, weak derivatives do not exist.

Lemma 9.3. Weak derivatives, if they exist, are unique.

Proof. If v, w are weak derivatives of u, then∫
Ω
uDαφ = (−1)|α|

∫
Ω
vφ = (−1)|α|

∫
Ω
wφ,

∫
Ω
φ(v − w) = 0

for all test functions φ, v = w a.e..
□



Disconzi 31

Thus, weak and classical derivatives agree when the latter exists.

Lemma 9.4. Let u ∈ L1
loc(Ω) and suppose that Dαu exists, where α is a multi-index. Then, if

ϵ <dist(x, ∂Ω),
(Dαuϵ)(x) = (Dαu)ϵ(x),

where (·)ϵ is the regularization.

Proof.

Dαuϵ(x) = Dα

[
1

ϵn

∫
Ω
φ

(
x− y

ϵ

)
u(y)dy

]
=

1

ϵn

∫
Ω
Dα
x

(
φ

(
x− y

ϵ

))
u(y)

= (−1)|α|
1

ϵn

∫
Ω
Dα
y

(
φ

(
x− y

ϵ

))
u(y)dy =

1

ϵ

∫
Ω
φ

(
x− y

ϵ

)
Dαu(y)dy

= (Dαu)ϵ(x)

□

Theorem 9.5. Let u, v ∈ L1
loc(Ω). Then, Dαu = v iff there exists a sequence of C∞(Ω) functions

uk →
L1
loc(Ω)

u such that Dαuk →
L1
loc(Ω)

v.

Proof. If Dαu = v, we take a sequence of regularizations suitably multiplied by cut-off functions
(uϵ ∈ C∞(Ωϵ)).

If uk → u and Dαuk → v in L1
loc(Ω), let φ ∈ C∞

c (Ω).∫
κ
vφ =

∫
Ω
Dαukφ = (−1)|α|

∫
Ω
ukD

αφ = (−1)|α|
∫
κ
ukD

αφ,

where κ is a compact set such that supp(φ) ⊂ κ ⊂ Ω. Passing to the limit, we have the result.
□

Using this approximation property and the definition, we can prove a series of basic properties.

Theorem 9.6. We have

(i) D(uv) = uDv + vDu, if u, v, uv, uDv + vDu ∈W 1(Ω).
(ii) DαDβu = DβDαu = Dα+βu if u ∈ W k(Ω), |α| + |β| ≤ k (More generally, if any two of

these weak derivatives exist, then they all exist and coincide.)
(iii) If u, v ∈W k(Ω), so do linear combinations
(iv) u ∈W k(Ω) =⇒ u ∈W k(Ω′), Ω′ ⊂ Ω, Ω′ open.
(v) φu ∈W k(Ω) if u ∈W k(Ω), φ ∈ C∞

c (Ω), and the product rule holds.
(vi) If ψ : Ω → Ω′ is a C1 diffeomorphism, u ∈ W 1(Ω), then v := u ◦ ψ−1 ∈ W 1(Ω′) and

∂iu(x) =
∂yj

∂xi
∂jv(y).

Proof. (ii), (iii), (iv) are trivial. (v) by induction on k. (i) and (vi) by approximation by smooth
functions. □

Theorem 9.7. (Chain rule). If ψ ∈ C1(R), ψ′ ∈ L∞(R), u ∈ W 1(Ω), then ψ ◦ u ∈ W 1(Ω) and
D(ψ ◦ u) = ψ′(u)Du.

Proof. Let uk, Duk → u, Du in L1
loc(Ω). Fix κ ⊂⊂ Ω. Then,∫

κ
|ψ(uk)− ψ(u)| ≤ ∥ψ′∥L∞(R)

∫
κ
|uk − u| → 0∫

κ
|ψ′(uk)Duk − ψ′(u)Du| ≤ ∥ψ′∥L∞(R)

∫
κ
|Duk −Du|︸ ︷︷ ︸

→0

+

∫
κ
|ψ′(uk)− ψ′(u)||Du|
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Up to a subsequence, uk → u a.e. in κ, so ψ′(uk) → ψ(u) a.e. in κ since ψ is C1. So
∫
κ |ψ

′(uk) −
ψ′(u)||Du| → 0 by dominated convergence. Thus, ψ(uk) → ψ(u) and D(ψ ◦ uk) = ψ′(uk)Duk →
ψ′(u)Du in L1

loc(Ω), so D(ψ ◦u) = ψ′(u)Du by our characterization (which works for finitely many
derivatives).

□

Recall that u+ = max{u, 0}, u− = −min{u, 0}, so u = u+ − u−, |u| = u+ + u−.

Proposition 9.8. If u ∈W 1(Ω) then u+, u−, |u| ∈W 1(Ω), and

Du+ =

{
Du if u > 0

0 if u ≤ 0
, Du− =

{
0 if u ≥ 0,

−Du if u < 0,

D|u| =


Du if u > 0,

0 if u = 0,

−Du if u < 0.

Proof. Fix ϵ > 0 and set

ψϵ(u) =

{
(u2 + ϵ2)

1
2 − ϵ, u > 0,

0, u ≤ 0

so ψϵ ∈ C1(R), ψ′(R) ∈ L∞(R). By the previous theorem,

D(ψϵ ◦ u) = ψ′
ϵ(u)Du =

{
u

(u2+ϵ2)
1
2
Du, u > 0,

0, u ≤ 0.

For ψ ∈ C∞
c (Ω), ∫

Ω
ψϵ(u)Dψ = −

∫
{u>0}

u

(u2 + ϵ2)
1
2

Duψyϵ→ 0
yϵ→ 0∫

Ω
u+Dψ −

∫
{u>0}

Duψ = −
∫
Ω
χ{u>0}Duψ.

The remaining results follow from u− = (−u)+, |u| = u+ + u−.
□

Corollary 9.9. Let u ∈W 1(Ω). Then Du = 0 a.e. on any set where u is constant.

Proof. Du = Du+ −Du−.
□

The converse is also true: Du = 0, then 0 = (Du)ϵ = Duϵ =⇒ uϵ = constant = cϵ. uϵ → u is
L1
loc(Ω); this convergence can only happen if the numerical sequence cϵ converges. So u = constant

a.e..

We also have:

Lemma 9.10. Let ψ be continuous and have piecewise continuous first derivatives with ψ′ ∈ L∞(R).
If u ∈W 1(Ω), then f ◦ u ∈W 1(Ω) and

D(y, u) =

{
ψ′(u)Du, u /∈ L,

0, u ∈ L,

where L is the set of corner points of ψ.
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Proof. By induction and translations we can reduce it to the case of one corner at the origin. If
ψ1, ψ2 ∈ C1(R) ∩ L∞(R) and ψ(u) = ψ1(u), ψ(u) = ψ2(u) for u ≥ 0, u ≤ 0, respectively, then
ψ(u) = ψ1(u

+)− ψ2(u
−) and the result follows.

□

Thus, if u is weakly differentiable, so is u2, f(u), etc.

Notation 9.11. From now on, D will always denote weak derivatives unless explicitly said other-
wise.

9.2. Sobolev spaces and their basic properties.

Definition 9.12. Let 1 ≤ p ≤ ∞ and k be an integer. We define the Sobolev space

W k,p(Ω) :=
{
u : Ω → R

∣∣Dαu ∈ Lp(Ω), |α| ≤ k
}
,

where Dα are weak derivatives of u. We endow W k,p(Ω) with the norm

∥u∥Wk,p(Ω) = ∥u∥k,p :=
( ∑

|α|≤k

∫
Ω
|Dαu|pdx

) 1
p

=

( ∑
|α|≤k

∥Dαu∥pLp(Ω)

) 1
p

, 1 ≤ p <∞,

∥u∥Wk,∞ = ∥u∥k,∞ :=
∑
|α|≤k

ess sup
Ω

|Dα|

=
∑
|α|≤k

∥Dαu∥L∞(Ω).

If p = 2, we denote W k,2(Ω) = Hk(Ω) with the inner product

(u, v)k :=
∑
|α|≤k

∫
Ω
DαuDαvdx,

where again Dα are weak derivatives. The corresponding norm is denoted ∥ · ∥k. We also define

W k,p
0 (Ω) := closure of C∞

c (Ω) in W k,p(Ω).

We also define W k,p
loc (Ω) in the usual way.

Remark 9.13.

• W 0,p(Ω) = Lp(Ω)

• W 0,p
0 (Ω) = Lp(Ω) if 1 ≤ p ≤ ∞ since C∞

c (Ω) is dense in Lp(Ω) for 1 ≤ p ≤ ∞.
• We have the embeddings

W k,p
0 (Ω) ↪→W k,p(Ω) ↪→ Lp(Ω)

• u ∈ W k,p
0 (Ω) iff there exists a sequence C∞

c (Ω) ∋ uk → u in W k,p(Ω). Thus, we think of

W k,p
0 (Ω) as the set of u ∈W k,p(Ω) such that “Dαu = 0” on ∂Ω for |α| ≤ k− 1 (this will be

given a precise interpretation later on).
• We have obvious generalizations to C, vector-valued functions, etc.
• Dα is a bounded operator from W k,p(Ω) to W k−|α|,p(Ω).

Example 9.14. Let Ω = B1(0) and set

u(x) =
1

|x|l
, x ̸= 0.
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Then, |Du(x)| = l
|x|l+1 . Let φ ∈ C∞

c (Ω).∫
Ω\Bϵ(0)

u∂iφ = −
∫
Ω\Bϵ(0)

∂iuφ+

∫
∂Bϵ(0)

uφvi.

Assume l < n− 1. Then,∣∣∣∣ ∫
∂Bϵ(0)

uφvi
∣∣∣∣ ≤ ∥φ∥L∞(Ω)

∫
∂Bϵ(0)

1

ϵl
dσ︷ ︸︸ ︷

= ϵn−1dω

→ 0, ϵ→ 0.

If l < n− 1, then Du ∈ L1(Ω) so ∫
Ω
u∂iφ = −

∫
Ω
∂iuφ

Also, l
|x|l+1 ∈ Lp(Ω) iff (l + 1)p < n. Thus, u ∈W 1,p(Ω) iff l < n−p

p .

Example 9.15. Let {ak} ⊂ Ω = B1(0) be a dense countable subset. Put u(x) =
∑∞

k=1
1
2k
|x−ak|−l.

For l < n−p
p , n ∈W 1,p(Ω). Note that u is unbounded on each open set for 0 < l < n−p

p .

Theorem 9.16. W k,p(Ω) is a Banach space. Hk(Ω) is a Hilbert space.

Proof. Obviously ∥ · ∥k,p is indeed a norm and ∥u∥k,p = 0 iff u = 0 a.e..

Let {uk} be a Cauchy sequence in W k,p(Ω). Then {Dαuk} is Cauchy in Lp(Ω) for each |α| ≤ k, so
there exist functions uα such that Dαuk → uα in Lp(Ω). Let φ ∈ C∞

c (Ω),∫
Ω
uDαφ = lim

∫
Ω
ukD

αφ = (−1)|α| lim

∫
Ω
Dαukφ = (−1)|α|

∫
Ω
uαφ,

so uα = Dαu and u ∈W k,p(Ω).
□

Theorem 9.17. W k,p(Ω) is separable if 1 ≤ p < ∞, and is uniformly convex and reflexive if
1 < p <∞.

Proof. Let µ(k, n) be the number of multi-indices α such that |α| ≤ k, and for each α let Ωα be a
copy of Ω, so the µ(k, n) domains Ωα are disjoint. Set

Ω(k) :=
⋃

|α|≤k

Ωα.

Given u ∈ W k,p(Ω), let v be the function on Ω(k) that coincides with Dαu in Ωα. The map

Γ :W k,p(Ω) → Lp(Ω(k))u 7→ v is an isometry. Because W k,p(Ω) is complete, the image X of Γ is a

closed subspace of Lp(Ω(k)). The result follows from W k,p(Ω) = Γ−1(X).
□

9.3. Approximation by smooth functions. Given a subset A ⊂ Rn and a collection O of open
sets covering A, A ⊂

⋃
U∈O U, recall that a (smooth) partition of unity of A subordinate to O is a

collection Ψ of C∞
c (Rn) functions ψ such that

(i) 0 ≤ ψ ≤ 1;
(ii) If κ ⊂⊂ A, all but finitely many ψ vanish identically on κ;
(iii) For every ψ ∈ Ψ there exists a U ∈ O such that supp(ψ) ⊂ U ;
(iv) For every x ∈ A,

∑
ψ∈Ψ ψ(x) = 1.

It is a standard theorem in topology that smooth partitions of unit exist.

Proposition 9.18. If u ∈W k,p(Ω), 1 ≤ p <∞, then uϵ → u in W k,p
loc (Ω) as ϵ→ 0, where uϵ is the

regularization of u.
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Proof. This follows immediately from the properties of uϵ. □

The previous proposition is a local approximation by smooth functions. The next theorem
improves this to a global approximation.

Theorem 9.19. C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω), 1 ≤ p <∞.

Proof. For j = 1, 2, . . . set

Ωj :=

{
x ∈ Ω

∣∣ |x| < j and div(x, ∂Ω) >
1

j

}
and Ω−1 = Ω0 = ∅. Set

Uj := Ωj+1 ∩ (Rn \ Ω̄j−1)

Then O = {Uj} covers Ω. Let Ψ be a corresponding partition of unity and let ψj be the sum of
the (finitely many) ψ ∈ Ψ whose supports are in Uj . Then ψj ∈ C∞

c (Uj) and
∞∑
j=1

ψj(x) = 1.

If 0 < ϵ < 1
(j+1)(j+2) , then (ψju)ϵ has support in

Vj := Ωj+2 ∩ (Rn \ Ωj−2) ⊂⊂ Ω.

1
j−2

1
j−1

1
j

1
j+1

1
j+2

1
j−2 − 1

j−2

=

1
(j−2)(j−1)

>
1

(j+2)(j+1)

1
j+1 − 1

j+2 = 1
(j+1)(j+2)

Uj = Ωj+1 ∩ (Rn \ Ω̄j−1)

Vj = Ωj+2 ∩ (Rn \ Ω̄j−2)

Ωj+1

Ωj+2

∂Ω

Figure 12. Visual Demonstration of Ω

And since ψju ∈W k,p(Ω), we can choose (by previous local proposition) ϵj such that

∥(ψju)ϵj − ψju∥k,p = ∥(ψju)ϵj − ψju∥Wk,p(vj) <
ϵ

2j
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where ϵ > 0 is given. Set

ψ =
∞∑
j=1

(ψju)ϵj

Then ψ ∈ C∞(Ω) since for any Ω′ ⊂⊂ Ω only finitely many terms in the sum are non-zero. Now,
for x ∈ Ωj

u(x) =

j+2∑
i=1

ψi(x)u(x), ψ(x) =

j+2∑
i=1

(ψiu)ϵi(x)

Therefore,

∥u− ψ∥Wk,p(Ωj) ≤
j+2∑
i=1

∥(ψiu)ϵi − ψiu∥k,p < ϵ,

and the result follows from the monotone convergence theorem. (Apply it to fj := χΩj

∑
|α|≤k |Dα(u−

ψ)|p to get

∥u− ψ∥Wk,p(Ωj) → ∥u− ψ∥Wk,p(Ω)

as j → ∞.
□

One often sees Sobolev spaces defined as

W̃ k,p(Ω) := completion of Ck(Ω) with respect to the ∥ · ∥k,p norm.

We observe that W̃ k,p(Ω) ⊂ W k,p(Ω). For the set X := {u ∈ Ck(Ω)
∣∣ ∥u∥k,p < ∞}, it is contained

in W k,p(Ω). Because W k,p(Ω) is complete, the identity map on X extends to an isometry between

W̃ k,p(Ω) and the closure of X in W k,p(Ω). We identify W̃ k,p(Ω) with this closure.

In view of the previous theorem, any element in W k,p(Ω) is a limit point of a sequence of smooth
functions, i.e., any u ∈W k,p(Ω) belongs to the closure of C∞(Ω) w.r.t. the ∥ · ∥k,p norm. Thus,

W k,p(Ω) ⊂W k,p(Ω̃), 1 ≤ p <∞

Hence

W k,p(Ω) =W k,p(Ω̃)

This equivalence was first proven by Meyers and Serrin in ’64.

This theorem cannot be extended to p = ∞:

Example 9.20. Ω = (−1, 1), u(x) = |x|. u′(x) = x
|x| for x ̸= 0. If 0 < ϵ < 1

2 , there does not exist

a ψ ∈ C1(Ω) such that ∥ψ′ − u′∥L∞(Ω) < ϵ.

−1

1
1

−1



Disconzi 37

The density C∞(Ω)∩W k,p(Ω) →W k,p(Ω) makes no assumption on ∂Ω. On the other hand, the
derivatives of the smooth functions approximating u ∈Wk, p(Ω) can become unbounded near ∂Ω.
We thus ask if it is possible to show that C∞(Ω̄)∩W k,p(Ω) is dense in W k,p(Ω) or, more generally,
if Cm(Ω̄) ∩W k,p(Ω) is dense in W k,p(Ω). Without further assumptions on ∂Ω, the answer is no.

Example 9.21. Ω = {(x, y) ∈ R2
∣∣0 < |x| < 1, 0 < y < 1} (strictly speaking this is not a domain,

but the argument can be adapted to a domain).

Ω1 Ω2

Ω = Ω1 ∪ Ω2

Figure 13. Graph of Ω

Put u(x, y) =

{
1, x > 0,

0, x < 0.
Then, u ∈ W 1,p(Ω). Suppose that there exist ψ ∈ C1(Ω̄) such

that ∥u − ψ∥1,p < ϵ. Let L = Ω̄1, R = Ω̄2, so Ω̄ = L ∪ R. We have ∥ψ∥L1(L) ≤ ∥ψ∥Lp(L) <

ϵ, ∥1− ψ∥L1(R) ≤ ∥1− ψ∥Lp(R) < ϵ. Set φ =
∫ 1
0 ψ(x, y)dy. Since∫ 0

−1
φ(x)dx =

∫ 0

−1

∫ 1

0
ψ(x, y)dydx ≤ ∥ψ∥L1(L) < ϵ,∫ 1

0
φ(x)dx =

∫ 1

0

∫ 1

0
ψ(x, y)dydx =

∫ 1

0

∫ 1

0
(ψ − 1)dydx+ 1

≥ −
∫ 1

0

∫ 1

0
|ψ − 1|dydx+ 1 = −∥ψ − 1∥L1(R) + 1 > −ϵ+ 1

We conclude that there must exist −1 ≤ a < 0 and 0 < b ≤ 1 such that φ(a) < ϵ, φ(b) > 1 − ϵ.
Thus

1− ϵ− ϵ < φ(b)− φ(a) =

∫ b

a
φ′(x)dx ≤

∫
Ω̄
|∂xψ(x, y)|dxdy

≤ 2
1
q ∥∂x(ψ)∥Lp(Ω̄) = 2

1
q ∥∂xψ − ∂xu∥Lp(Ω)

≤ 2
1
q ∥ψ − u∥W 1,p(Ω) < 2

1
q ϵ,

where we used 1
q +

1
p = 1 and Du = 0. Thus 1 < (2 + 2

1
q )ϵ, which cannot be true for small ϵ > 0.

The problem above is caused by the fact that Ω is on both sides of part of its boundary. The
following condition prevents this.

Definition 9.22. A domain Ω satisfies the segment condition if for every x ∈ ∂Ω there exists a
neighborhood Ux and a nonzero vector yx such that if z ∈ Ω̄ ∩ Ux, then z + tyx ∈ Ω, 0 < t < 1.
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z

x

∂Ω

Ω

Figure 14. Segment Condition I

Look at points z on ∂Ω and move a bit inside the domain along the segment z + tyx, we stay
inside the domain, and this is uniform on each Ux.

z

z

x

Ω1 Ω2

∂Ω

Ω = Ω1 ∪ Ω2

Figure 15. Segment Condition II

No matter how small we fix Ux and yx, for some z close to ∂Ω the line crosses ∂Ω. (yx has to be
uniform on Ux).

If the segment condition is satisfied, then ∂Ω must be n − 1 dimensional and Ω cannot lie on
both sides of ∂Ω. (for ∂Ω ̸= ∅).

Theorem 9.23. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in
C∞
c (Rn) is dense in W k,p(Ω), 1 ≤ p <∞. In particular, C∞(Ω̄) is dense in W k,p(Ω), 1 ≤ p <∞.

Proof. We begin with some reductions.

Let ψ ∈ C∞
c (Rn) satisfy: ψ(x) = 1 if |x| ≤ 1, ψ(x) = 0 if |x| ≥ 2, |Dαψ(x)| ≤ C for |α| ≤ k.

Set ψϵ(x) := ψ(ϵx). Then, ψϵ(x) = 1 for |x| ≤ 1
ϵ , ψϵ(x) = 0 for |x| ≥ 2

ϵ , |D
αψϵ(x)| ≤ Cϵ|α| ≤ C for

0 < ϵ ≤ 1. If u ∈W k,p(Ω), then uϵ := ψϵu ∈W k,p(Ω), has bounded support, and

|Dαuϵ| ≤ C
∑
β≤α

DβuDα−βψϵ ≤ C
∑
β≤α

Dβu.

Set Ωϵ := {x ∈ Ω
∣∣ |x| > 1

ϵ},
∥u− uϵ∥k,p = ∥u(1− ψϵ)︸ ︷︷ ︸

=0,|x|≤ 1
ϵ

∥k,p = ∥u− uϵ∥Wk,p(Ωϵ)
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≤ C∥u∥Wk,p(Ωϵ) + C∥uϵ∥Wk,p(Ωϵ) ≤ C∥u∥Wk,p(Ωϵ) → 0

as ϵ → 0. Thus, u can be approximated by functions with compact support (but not smooth at
this point).

We can thus assume that κ := {x ∈ Ω
∣∣ u(x) ̸= 0} has a bounded support. Set

F := κ̄ \
⋃
x∈∂Ω

Ux,

where Ux are the sets in the definition of the segment condition. F is compact and contained in Ω.
So, we can find U0 such that F ⊂⊂ U0 ⊂⊂ Ω and among the Ux’s finitely many U1, ..., Ul such that
κ̄ ⊂ U0 ∪ ...∪Ul. We can find further open sets vj , j = 0, ..., l, such that vj ⊂⊂ Uj , κ̄ ⊂ v0 ∪ ...∪ vl.

K

U0

Ux’s

vjF

∂Ω

Figure 16. Compact F ⊂⊂ U0 ⊂⊂ Ω

Let Ψ be a partition of unity subordinate to the vj ’s. Let ψj be the sum of the (finitely many)
ψ’s whose supports are in vj . Let uj := ψju. If for each j = 0, .., l we can find ψj ∈ C∞

c (Rn) such
that ∥uj − ψj∥k,p < ϵ

l+1 , then we are done since, with ψ :=
∑l

j=0 ψj ,

∥u− ψ∥k,p =
∥∥∥∥ ∑
ψ∈Ψ

ψu−
l∑

j=0

ψj

∥∥∥∥
k,p

=

∥∥∥∥ l∑
j=0

(uj − ψj)

∥∥∥∥
k,p

≤
l∑

j=0

∥uj − ψj∥k,p < ϵ.

For j = 0, we find ψ0 by direct regularization (see above Prop. prior to the theorem on density of
C∞(Ω) functions).

Fix a j ∈ {1, ..., l}. Since uj has support in vj ∩ κ̄, we can extend it to be ≡ 0 outside Ω. In

particular, uj ∈W k,p(Rn \ Γ), where
Γ := v̄j ∩ ∂Ω
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Let y be the non-zero vector corresponding to Uj in the segment condition. Pick t such that

0 < t < min

{
1,

dist(vj ,Rn \ Uj)
|y|

}
and set Γt := {x− ty | x ∈ Γ}.

supp(uj)

K

Ω

vj

Uj

∂Ω

Γt
Γ

x+ ty

y
x

Figure 17. Segment Condition III

The segment condition gives that Γt ∩ Ω̄ = ∅, and our choice of t also guarantees that Γt ⊂ Uj .

Since uj ∈W k,p(Rn \ Γ), the function

uj,t(x) := uj(x+ ty)

belongs to W k,p(Rn \Γt). Translations are continuous in Lp, so Dαuj,t → Dαuj in L
p(Ω) as t→ 0.

Hence uj,t → uj in W
k,p(Ω) as t→ 0. It thus suffices to find ψj ∈ C∞

c (Rn) such that ∥uj,t − ψj∥k,p
is small. Since

Ω ∩ Uj ⊂⊂ Rn \ Γt,
we can take a regularization of uj,t as in the proposition mentioned above.

□

The key idea of the proof is that we want to regularize u to get a C∞ function. As we want to
include boundary points, the usual regularization would involve averaging u outside Ω. However,
we do not need to make the regularization at x ∈ ∂Ω with an average centered at x; we can average
about another point in the interior. This is what the translations of the boundary does. This is a
useful idea when dealing with boundaries.

Corollary 9.24.

W k,p
0 (Rn) =W k,p(Rn)

Remark 9.25. The corollary is in general not true for Ω. Also, since Lipchitz boundaries (properly
defined for non-compact ∂Ω) satisfy the segment condition, we obtain the density result when ∂Ω
is Lipschitz.

We will now use the density of smooth functions to study coordinate transformations.

Theorem 9.26. Let Ω,D be domains in Rn. Suppose that there exists a one-to-one and onto
Ψ : Ω → D such that Ψj ∈ Ck(Ω), (Ψ−1)j ∈ Ck(D) have bounded derivatives, j = 1, ..., n, and
1
C ≤ |det DΨ|+ |det DΨ−1| ≤ C, for some C > 1, k ≥ 1. Given u ∈ W k,p(D), define Ψ̃(u) : Ω → R
by Ψ̃(u)(x) = u(Ψ(x)). Then, Ψ̃ transforms W k,p(Ω) boundedly onto W k,p(D) and has bounded
inverse, 1 ≤ p <∞.
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Proof. The map is well-defined for a.e. defined functions since k ≥ 1. Let {uj} ⊂ C∞(Ω) converge

to u in W k,p(D). Let |α| ≤ k be a multi-index. Successive applications of the chain rule and
product rule give that (y = Ψ(x))

DαΨ̃(uj)(x) =
∑
p≤α

pαβ(x)D
β
yuj(y)

=
∑
p≤α

pαβ(x)Ψ̃(Dβuj)(x),

where pαβ is a polynomial of degree ≤ |β| in derivatives of Ψj , j = 1, ..., n of order ≤ |α|. Let
ψ ∈ C∞

c (Ω).

(−1)|α|
∫
Ω
Ψ̃(uj)(x)D

αψ(x)dx

=(−1)|α| ∫
D Ψ̃(uj)(Ψ

−1(y))︸ ︷︷ ︸
uj(y)

Dαψ(Ψ−1(y))|det DΨ−1(y)|dy

=
∑
β≤α

∫
Ω
pαβ(x)Ψ̃(Dβuj)(x)ψ(x)dx

∑
β≤α

∫
D pαβ(Ψ−1(y))Ψ̃(Dβuj)(Ψ

−1(y))︸ ︷︷ ︸
Dβuj(y)

ψ(Ψ−1(y))|det DΨ−1(y)|dy

Since Dβuj → u, we can replace uj by u above and change variables back to get

(−1)|α|
∫
Ω
Ψ̃(u)(x)Dαψ(x)dx =

∑
βp≤α

∫
Ω
pαβ(x)Ψ̃(Dβu)(x)ψ(x)dx,

so Ψ̃(u) is W k(Ω) and

DαΨ̃(u)(x) =
∑
β≤α

pαβ(x)Ψ̃(Dβu)(x).

Then, ∫
Ω
|DαΨ̃(u)(x)|pdx ≤ C max

|β|≤|α|
sup
x∈Ω

|pαβ(x)|p
∫
Ω
|Ψ̃(Dβu)(x)|p︸ ︷︷ ︸
|(Dβu)(Ψ(x))|p

dx

≤ C max
|β|≤|α|

∫
D
|Dβu(y)|p|det DΨ−1(y)|dy

≤ C∥u∥Wk,p(D) =⇒ ∥Ψ̃(u)∥Wk,p(Ω) ≤ C∥u∥Wk,p(D).

Repeating the argument for Ψ−1 gives the result. □

9.4. Extensions. Given u ∈ W k,p(Ω), can we extend outside Ω? In other words, does there exist
ũ ∈W k,p(Rn) such that ũ = u in Ω? We begin by making this notion more precise:

Definition 9.27. Let Ω ⊂ Rn be a domain, k ≥ 0 an integer and 1 ≤ p < ∞. A linear map
E :W k,p(Ω) →W k,p(Rn) is called a (k, p)-extension (or simply extension if k, p are understood),
in Ω if there exist a constant κ = κ(k, p) such that

(i) Eu(x) = u(x) a.e. in Ω
(ii) ∥Eu∥Wk,p(Rn) ≤ κ∥u∥Wk,p(Ω)

for all u ∈ W k,p(Ω). E is called a strong k-extension (or strong extension if k is understood)
in Ω if it is a linear operator mapping a.e. defined functions in Ω to a.e. defined functions in
Rn, and such that, for every 1 ≤ p < ∞ and every 0 ≤ m ≤ k, the restriction of E to Wm,p(Ω)
is a (k, p)-extension. E is called a total extension in Ω if it is a strong extension for every k
(necessarily extends from Ck(Ω̄) to Ck(Rn)).

Lemma 9.28. Let Ω = Rn+ =
{
x ∈ Rn | xn > 0

}
. Then, there exists a strong k-extension operator

in Ω. Moreover, for every multi-index α, |α| ≤ k, there exists a strong (k− |α|)-extension operator
Eα in Ω such that

DαEu = EαD
αu.
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Proof. Set

Eu(x) =

{
u(x), xn > 0,∑k+1

j=1 λju(x
1, ..., xn−1,−jxn), xn < 0,

Eαu(x) =

{
u(x), xn > 0,∑k+1

j=1(−j)αnλju(x
1, ..., xn−1,−jxn), xn < 0,

where λ1, ..., λk+1 are the unique solution to

k+1∑
j=1

(−j)lλj = 1, l = 0, ..., k

If u ∈ Ck(R̄n+), then Eu ∈ Ck(Rn) and

DαEu = EαD
αu, |α| ≤ k.

(E.g., k = 1, λ1+λ2 = 1,−λ1−2λ2 = 1, λ1 = 3, λ2 = −2, Eu(X) = 3u(x1, ...,−xn)−2u(x1, ...,−2xn)
=⇒ Eu|{xn=0} = u, ∂iEu|{xn=0} = ∂iu, i < n, ∂nEu|{xn=0} = ∂uu|{xn=0}).

Then, ∫
Rn

|DαEu|p =
∫
Rn
+

|Dαu|p +
∫
Rn
−

∣∣∣∣ k+1∑
j=1

(−j)αnλjD
αu(x1, ..., xn−1,−jxn)

∣∣∣∣p
≤ C

∫
Rn

|Dαu|p

By density of C∞(R̄n+) in W k,p(Rn+), we obtain that the inequality is valid for u ∈ W k,p(Rn),
0 ≤ m ≤ k, so E is a strong k-extension. A similar argument, noting that DβEα = Eα+βu, shows
that Eα is a strong (k − |α|)-extension.

□

To obtain the result for general Ω, we need conditions on ∂Ω.

Definition 9.29. A domain Ω ⊂ Rn satisfies the strong local Lipschitz condition if there exist
δ > 0, M > 0, a locally finite open cover {Uj} of ∂Ω, for each j a real valued function fj of n− 1
variables, such that

(i) for some finite R, every collection of R+ 1 open sets Uj has empty intersection;
(ii) for every pair

x, y ∈ Ωδ :=
{
z ∈ Ω | dist(z, ∂Ω) < δ

}
such that |x− y| < δ, there exists j such that

x, y ∈ Vj :=
{
z ∈ Uj | dist(z, ∂Uj) > δ

}
(iii) each fj satisfies a Lipschitz condition with constant M
(iv) For some Cartesian coordinate system

(θj,1, ..., θj,n) in Uj , Ω ∩ Uj =
{
θj,n < fj(θj,1, ..., θj,n−1)

}
.

Remark 9.30. For bounded Ω, these conditions reduce to the requirement that Ω has a locally
Lipschitz boundary.

Definition 9.31. A domain Ω ⊂ Rn satisfies the uniform Ck condition if there exists a locally
finite open cover {Uj} of ∂Ω, a sequence {ψj} of Ck functions taking Uj onto B1(0), with Ck

inverses ψ−1
j = ϕj such that

(i) for some finite R, every collection of R+ 1 open sets Uj has empty intersection;
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(ii) for some δ > 0,

Ωδ :=
{
z ∈ Ω | dist(z, ∂Ω) < δ

}
⊂

∞⋃
j=1

ϕj(B 1
2
(0))

(iii) for each j,
ψj(Uj ∩ Ω) = B1(0) ∩ {zn > 0}

(iv) there exists a constant M such that

|Dαϕij(x)| ≤M ∀x ∈ Uj

|Dαψij(y)| ≤M ∀y ∈ B1(0)

and every |α| ≤ k.

Theorem 9.32. Let Ω satisfy the uniform Ck condition and ∂Ω be bounded. Then, there exists
a strong k-extension operator E in Ω. Moreover, if α and β are multi-indices with |β| ≤ |α| ≤ k,
then there exists a linear operator Eαβ continuous from W l,p(Ω) into W l,p(Rn), 1 ≤ l ≤ k − |α|,
1 ≤ p <∞, such that

Dα(Eu)(x) =
∑

|β|≤|α|

Eαβ(D
βu)(x)

for all u ∈W |α|,p(Ω).

Theorem 9.33. Let Ω satisfy the strong Lipschitz condition. Then, there exists a total extension
operator in Ω.

The proofs can be found in Stein, E. ”Singular integrals and differentiability properties of func-
tions.” For the first theorem, the basic idea is to use our theorem on coordinate transformations
to reduce the problem to Rn+, for which we already have the result. For the second theorem,
the key idea is to use that the distance function to ∂Ω is Lipschitz, and then work with suitable
approximations of the distance function.

Remark 9.34.

• The assumption of ∂Ω bounded in the first theorem is not essential and can be removed in
most reasonable cases.

• We have the implications:
uniform Ck regularity (k ≥ 2) =⇒ strong local Lipschitz =⇒ segment condition.

9.5. The Sobolev embedding theorem. Our goal in this section is to answer the following
question: if u ∈W k,p(Ω), does u belong (in a non-trivial way) to some other function space?

In order to answer this question, it is helpful to establish some conventions about Ck(Ω̄). So
far, we have only considered Ck(Ω̄) when Ω is bounded, in which case Ck(Ω̄) is a Banach space.
(An exception was the density of C∞(Ω̄) in W k,p(Ω) when Ω satisfies the segment condition. But
in that case the statement was that restrictions from C∞

c (Rn) to Ω are dense in W k,p(Ω), in which
case we can entirely avoid talking about C∞(Ω̄).) For our purposes, we are interested in considering
other function spaces that are Banach spaces. However, the set of functions continuously differen-
tiable up to order k on Ω̄ might not be a Banach space if Ω is not bounded. Thus, we henceforth
adopt the following.

Definition 9.35. Let Ω ⊂ Rn be a domain and k ≥ 0 an integer. We define Ck
B(Ω) as the space

of all u ∈ Ck(Ω) such that Dαu is bounded, 0 ≤ |α| ≤ k. CkB(Ω) is a Banach space with norm

∥u∥Ck
B(Ω) =

∑
|α|≤k

sup
x∈Ω

|Dαu(x)|.
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If u ∈ C0(Ω) is bounded and uniformly continuous, it admits a unique, bounded continuous exten-
sion to Ω̄. We define Ck(Ω̄) to be the space of those u ∈ Ck(Ω) such that Dαu is bounded and
uniformly continuous on Ω (so in particular Dαu extends to Ω̄), 0 ≤ |α| ≤ k. Ck(Ω̄) is a Banach
space with the norm

∥u∥Ck(Ω̄) =
∑
|α|≤k

sup
x∈Ω̄

|Dαu(x)|.

Let 0 < γ ≤ 1. We define the Hölder space Ck,γ(Ω̄) as the subspace of Ck(Ω̄) of those u such
that Dαu satisfies a Hölder condition with exponent γ, i.e., those u for which there exist a
constant M > 0 such that

|Dαu(x)−Dαu(y)| ≤M |x− y|γ ,
0 ≤ |α| ≤ k. Ck,γ(Ω̄) is a Banach space with the norm

∥u∥Ck,γ(Ω̄) := ∥u∥Ck(Ω̄) + max
0≤|α|≤k

sup
x,y,∈Ω
x ̸=y

|Dαu(x)−Dαu(y)|
|x− y|γ

.

The quantity [u]γ,Ω = supx,y,∈Ω
x̸=y

|u(x)−u(y)|
|x−y|γ is called the γ Hölder semi-norm.

Remark 9.36.

• The notation Ck(Ω̄) can be confusing if Ω̄ is not bounded, as we can have u ∈ Ck(Ω′),
Ω̄ ⊂⊂ Ω′ (so u is k-times continuously differentiable up to ∂Ω) but u /∈ Ck(Ω̄) because the
derivatives are not bounded. In other words, by Ck(Ω̄) we always mean the Banach space.

• It is common to write ∥ · ∥Ck
B(Ω) = ∥ · ∥Ck(Ω).

• C0,1(Ω̄) is the space of Lipschitz functions on Ω̄.
• If 0 < δ < γ ≤ 1, it is not true that Ck,γ(Ω̄) ⊂ Ck,δ(Ω̄) and, more generally, if k+γ < m+δ,
it is not true that Cm+δ(Ω̄) ⊂⊂ Ck+γ(Ω̄). For example, take Ω =

{
(x, y) ∈ R2 | y <

|x|
1
2 , x2 + y2 < 1

}
.

x

y

Ω

Figure 18. Ω =
{
(x, y) ∈ R2 | y < |x|

1
2 , x2 + y2 < 1

}
Pick 1 < β < 2. Set

u(x, y) =

{
sign x yβ, y > 0,

0, y ≤ 0.

Then, u ∈ C1(Ω̄), but if β2 < γ ≤ 1 then u /∈ C0,γ(Ω̄), so C1(Ω̄) ̸⊂ C0,α(Ω̄).
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• We also have Ck,1(Ω̄) ̸⊂ Ck+1(Ω̄) (since Lipschitz functions need not to be differentiable
everywhere e.g., |x|) and Ck+1(Ω̄) ̸⊂ Ck,1(Ω̄) (above example).

• For nice domains, however, the above expected inclusions hold.
• But it does hold that Ck,α(Ω̄) ⊂ Ck,β(Ω̄), β < α

• Hölder spaces capture functions like x
1
2 (which ∈ C0, 1

2 (R)): not differentiable, but better
than just continuous.

• The following is also used in the literature to define the Hölder norm:

∥u∥C̃k,α(Ω̄) = ∥u∥Ck(Ω̄) + max
|α|=k

sup
x,y,∈Ω
x ̸=y

|Dαu(x)−Dαu(y)|
|x− y|γ

.

The C̃k,α(Ω̄) and Ck,α(Ω̄) norms are not equivalent for arbitrary domains. However, since
∥ · ∥C̃k,α(Ω̄) ≤ ∥ · ∥Ck,α(Ω̄), the embeddings into Ck,α(Ω̄) that we establish below will auto-

matically give embeddings into C̃k,α(Ω̄).

We now introduce the types of domains we will consider.

Definition 9.37. Let y be a non-zero vector in Rn. For each x ̸= 0, let ∢(x, y) be the angle
between the position vector x and y. Given ϱ > 0 and 0 < θ ≤ π, the set

C = Cy,ϱ,θ :=
{
x ∈ Rn | x = 0 or 0 < |x| ≤ ϱ, ∢(x, y) ≤ θ

2

}
.

is called a finite cone of height ϱ, axis direction y, and (aperture) angle θ with vertex at the origin.
The set z + C is a cone with the same properties but vertex at z.

yϱ

θ

z

yϱ

θ

Figure 19. Finite Cones C and z + C of Heights ρ

Definition 9.38. A domain in Rn satisfies the cone condition if there exists a finite cone C such
that each x ∈ Ω is the vertex of a cone Cx contained in Ω and congruent to C (i.e., each Cx is
obtained from C by rigid motions).

The intuition is that, up to rigid motions, we can fit the cone C inside Ω, with a vertex on ∂Ω.
Thus, the domain can have corners with uniform aperture but cannot become arbitrarily this in
one direction. (see examples below).
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Definition 9.39. A domain Ω ⊂ Rn satisfies the uniform cone condition if there exists a locally
finite open cover {Uj} of ∂Ω and a corresponding sequence {Cj} of finite cones, each congruent to
some fixed finite cone C (i.e., each Cj is obtained from C by rigid motions), such that

(i) There exists a constant M <∞ such that every Uj has diam(Uj) < M ;
(ii) There exists a 0 < δ <∞ such that Ωδ ⊂

⋃∞
j=1 Uj , where Ωδ :=

{
x ∈ Ω | dist(x, ∂Ω) < δ

}
;

(iii) For every j,

Qj :=
⋃

x∈Uj∩Ω
(x+ Cj) ⊂ Ω;

(iv) For some finite R, every collection of R+ 1 of the sets Qj has empty intersection.

We have the following implications: uniform Ck regularity (k ≥ 2) =⇒ strong local Lipschitz
=⇒ uniform cone condition =⇒ segment condition.

Note that all these four conditions imply that ∂Ω is (n − 1) dimensional and that Ω lies on one
side of its boundary (since the segment condition implies so). But this is not the case of the cone
condition since. In particular, the cone condition does not imply the segment condition. However,
uniform cone condition =⇒ cone condition

Example 9.40. Ω = {(x, y) ∈ R2 | 0 < |x| < 1, 0 < y < 1} (not a domain, but we can modify it).
However, a bounded domain satisfying the cone condition can be decomposed into a finite union
of subdomains each of which satisfies the strong local Lipschitz condition (and hence the segment
condition).

Ω1 Ω2

Ω = Ω1 ∪ Ω2

Figure 20. Condition Check Example 1

Cone condition? Yes. Uniform cone condition? No. Segment condition? No.

Ω

Figure 21. Condition Check Example 2

Cone condition? Yes. Uniform cone condition? Yes. Segment condition? Yes.
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y = 1
x

Ω =
{
x > 1, 0 < y < 1

x

} 1
x

y

Figure 22. Condition Check Example 3

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

θj

Ω θj → 0

· · ·

Figure 23. Condition Check Example 4

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

y = x2

Ω =
{
0 < x < 1, 0 < y < x2

} x

y

Ω

Figure 24. Condition Check Example 5

Cone condition? No. Uniform cone condition? No. Segment condition? Yes.

We need one more definition before we can answer the question posed above.

Definition 9.41. Let X,Y be normed spaces. We say that X is (continuously) embedded in
Y , and write X ↪→ Y , if X is a vector subspace of Y and the identity map on X is continuous, i.e.,
there exists a constant M > 0 such that ∥x∥Y ≤M∥x∥X for all x ∈ X.

Theorem 9.42. (Sobolev’s embedding theorem). Let Ω be a domain in Rn. Let j ≥ 0 and
k ≥ 1 be integers. Let 1 ≤ p <∞.

Case I. Suppose that Ω satisfies the cone condition.
Case I.A. If either kp > n or k = n and p = 1:

W k+j,p(Ω) ↪→ CjB(Ω).
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Moreover,
W k+j,p(Ω) ↪→W j,q(Ω), p ≤ q <∞

In particular, W k,p(Ω) ↪→ Lq(Ω), p ≤ q <∞.

Case I.B. If kp = n:
W k+j,p(Ω) ↪→W j,q(Ω), p ≤ q <∞.

In particular, W k,p(Ω) ↪→ Lq(Ω), p ≤ q <∞.

Case I.C. If kp < n:

W k+j,p(Ω) ↪→W j,q(Ω), p ≤ q ≤ p∗ :=
np

n− kp

(i.e., 1
p −

1
p∗ = k

n)

In particular, W k,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ p∗ := np
n−kp .

The constants in these embeddings depend only on n, k, p, q, j and the dimensions of the cone C
in the cone condition.

Case II. Suppose that Ω satisfies the strong local Lipschitz condition. Then, the target space
in the first embedding above can be replaced with Cj(Ω̄). If, moreover, kp > n > (k − 1)p, then

W k,p(Ω) ↪→ Cj,p(Ω̄), 0 < p ≤ k − n

p

and if kp > n = (k − 1)p, then

W k,p(Ω) ↪→ Cj,p(Ω̄), 0 < p < 1.

Also, if n = k − 1 and p = 1, then this last embedding holds for r = 1 as well. The constants in
these embeddings depend only on n, k, p, j and the data on the strong local Lipschitz condition.

Case III. All the above embeddings hold for arbitrary Ω if the W space being embedded is re-
placed by W0.

Note that it suffices to prove the above embeddings for j = 0. The other cases follow by applying
the j = 0 case to Dαu, |α| ≤ j. We begin estimating u by some suitable weighted averages.

Lemma 9.43. Let Ω ⊂ Rn be a domain satisfying the cone condition and k ≥ 1 be an integer.
Then, there exists a constant K depending only on n, k, and the parameters ϱ and θ of the cone
condition such that

|u(x)| ≤ K
∑

|α|≤k−1

r|α|−n
∫
Cx,r

|Dαu(y)|dy

+K
∑
|α|=κ

∫
Cx,r

|Dαu(y)∥x− y|k−ndy

for all u ∈ C∞(Ω), every x ∈ Ω, and every 0 < r ≤ ϱ, where Cx,r :=
{
y ∈ Cx

∣∣ |x − y| ≤ r
}
, Cx =

cone with vertex at x as in the cone condition.

Proof. Set f(t) = u
(
tx+ (1− t)y

)
for x ∈ Ω, y ∈ Cx,r. Recall Taylor’s formula:

f(1) =
k−1∑
j=0

1

j!
f (j)(0) +

1

(k − 1)!

∫ 1

0
(1− t)k−1f (k)(t)dt

But

f (j)(t) =
∑
|α|=j

j!

α!
Dαu

(
tx+ (1− t)y

)
(x− y)α,
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so t = 1 gives

|u(x)| ≤
∑

|α|≤k−1

1

α!
|Dαu(y)||x− y||α|

+
∑
|α|=k

k

α!
|x− y|k

∫ 1

0
(1− t)k−1|Dαu

(
tx+ (1− t)y

)
|dt.

Integrate over Cx,r w.r.t y and using |x− y| ≤ r

arn|u(x)| ≤
∑

|α|≤k−1

r|α|

α!

∫
Cx,r

|Dαu(y)|dy

+
∑
|α|=k

k

α!

∫
Cx,r

|x− y|k
∫ 1

0
(1− t)k−1|Dαu

(
tx+ (1− t)y

)
|dtdy.

Here, a is the constant in vol(Cx) = aϱn, so vol(Cx,r) = arn. Next,∫
Cx,r

|x− y|k
∫ 1

0
(1− t)k−1|Dαu

(
tx+ (1− t)y

)
|dtdy

=

∫ 1

0
(1− t)k−1

∫
Cx,r

|Dαu
(
tx+ (1− t)y

)
||x− y|kdydt

=

∫ 1

0
(1− t)−n−1

∫
Cx,(1−t)r

|z − x|k|Dαu(z)|dzdt

where z = tx+ (1− t)y =⇒ dz = (1− t)ndy and z − x = (1− t)(y − x).

t

z

r

1

(1− t)r = z
0 ≤ t ≤ 1, 0 ≤ z ≤ (1− t)r

0 ≤ t ≤ 1− z
r , 0 ≤ z ≤ r

Figure 25. z = (1− t)r

General: 0 ≤ t ≤ 1− |z−x|
r

z ∈ Cx,r

=

∫
Cx,r

|z − x|k|Dαu(z)|
∫ 1− |z−x|

r

0
(1− t)−n−1dtdz︷ ︸︸ ︷

=
rn|z − x|−n

n
− 1

n

≤ rn

n

∫
Cx,r

|z − x|k−n|Dαu(z)|dz.
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Divide by rn to get the result.
□

Proof. of case I.A. We will show that (recall that it suffices to show the j = 0 case):

|u(x)| ≤ C∥u∥k,p.

Take u ∈ W k,p(Ω) ∩ C∞(Ω). The above inequality is a direct consequence of the previous Lemma
if k = n, p = 1. For kp > n, if p = 1, then k > n and again the inequality follows from the previous
Lemma. Consider thus kp > n, p > 1. Apply Hölder’s inequality with 1

p +
1
q = 1 and r = ϱ in the

Lemma ∫
Cx,ϱ

|Dαu(y)|dy ≤ vol(Cx,ϱ)
1
q ∥Dαu∥Lp(Cx,ϱ)

= a
1
q ϱ

n
q ∥Dαu∥Lp(Cx,ϱ)∫

Cx,ϱ
|Dαu(y)∥x− y|k−ndy ≤

(∫
Cx,ϱ

(
|x− y|k−n

)q
dy

) 1
q

∥Dαu∥Lp(Cx,ϱ)

The integral is finite if k ≥ n. If k < n, then, as kp > n, (k−n)q = (k−n) p
p−1 = ( kp︷︸︸︷

> n

−np) 1
p−1 >

−n, so (since we can assume ϱ < 1)

|x− y|(k−n)q = 1

|x− y|(n−k)q
≤ 1

|x− y|n−ϵ
⇐⇒ |x− y|n−ϵ ≤ |x− y|(n−k)q

⇐⇒ (n− k)q ≤ n− ϵ ⇐⇒ −n+ ϵ ≤ −(n− k)q = (k − n)q,

i.e., −n < (k − n)q. Thus,∫
Cx,ϱ

(
|x− y|k−n

)q
dy ≤ C

∫
Bϱ(0)

r−n+ϵrn−1dr <∞.

Thus,

|u(x)| ≤ κ
∑

|α|≤k−1

ϱ|α|−n
∫
Cx,ϱ

|Dαu(y)|dy + κ
∑
|α|=k

∫
Cx,ϱ

|Dαu(y)||x− y|k−ndy

≤ C
∑

|α|≤k−1

ϱ
|α|−n

p ∥Dαu∥Lp(Cx,ϱ) + C
∑
|α|=k

∥Dαu∥Lp(Cx,ϱ)

≤ C∥u∥k,p since Cx,ϱ ⊂ Ω.

If u ∈W k,p(Ω), then there is a uj → u in W k,p(Ω), uj ∈W k,p(Ω) ∩ C∞(Ω). By the above,

|uj(x)− ul(x)| ≤ C∥uj − ul∥k,p
so uj → u in C0

B(Ω) and thus u C0
B(Ω). The second embedding follows from interpolation: u ∈

Lp(Ω), now we know that u ∈ L∞(Ω), so u ∈ Lq(Ω), 1
q = θ

p +
1−θ
∞ = θ

p , 0 < θ < 1, i.e., u ∈ Lq(Ω),

p ≤ q <∞ and ∥u∥Lq(Ω) ≤ ∥u∥θLp(Ω)∥u∥
1−θ
L∞(Ω) ≤ C∥u∥k,p.

□

To continue and prove cases I.B. and I.C., let us introduce χr to be the characteristic function
of Br(0), and Gk(x) = |x|k−n. Note that

χrG(x) =

{
|x|k−n, |x| < r,

0, |x| ≥ r,

If k ≤ n and 0 < r ≤ 1,
χr(x) ≤ χrGk(x) ≤ Gk(x)
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Lemma 9.44. Let p ≥ 1 and k ≥ 1 be an integer. There exists a constant κ > 0 such that
χrGk ∗ |u| ∈ Lp(Rn) and

∥χrGk ∗ |u|∥Lp(Rn) ≤ κrk∥u∥Lp(Rn)

for every r > 0 and every u ∈ Lp(Rn). In particular

∥χ1 ∗ |u|∥Lp(Rn) ≤ ∥χ1Gk ∗ |u|∥Lp(Rn) ≤ κ∥u∥Lp(Rn)

Proof. Write

χrGk ∗ |u|(x) =
∫
Rn

|u(y)| χr(x− y)|x− y|k−ndy

=

∫
Br(x)

|u(y)||x− y|k−ndy =

∫
Br(x)

|u(y)||x− y|−m|x− y|m+k−ndy.

If p > 1, use Hölder, 1
p +

1
q = 1,

≤
(∫

Br(x)
|u(y)|p|x− y|−mpdy

) 1
p
(∫

Br(x)
|x− y|(m+k−n)qdy

) 1
q

Since dy ∼ tn−1dt, the second term is finite if (m+ k − n)q + n− 1 > −1 ⇐⇒ (m+ k)p− n > 0,
in which case it gives

C
(
r(m+k−n)q+n) 1

q = Cr
m+k−n

p .

If p = 1, then |x− y|m+k−n ≤ rm+k−n if m+ k − n ≥ 0, thus∫
Br(x)

|u(y)||x− y|−m|x− y|m+k−ndy ≤ rm+k−n
∫
Br(x)

|u(y)∥x− y|−mdy.

Thus in either case we have

χrGk ∗ |u|(x) =
∫
Br(x)

|u(y)∥x− y|k−ndy ≤ Cr
m+k−n

p

(∫
Br(x)

|u(y)|p|x− y|−mpdy
) 1

p

for m in the above range. Then,∫
Rn

|χrGk ∗ |u|(x)|pdx ≤ Cr(m+k)p−n
∫
Rn

∫
Br(x)

|u(y)|p|x− y|−mpdydx

= Cr(m+k)p−n
∫
Rn

∫
Rn

|u(y)|pχBr(x)(y)|x− y|−mpdydx

= Cr(m+k)p−n
∫
Rn

∫
Rn

|u(y)|pχr(x− y)|x− y|−mpdydx

Observe that

|u|p ∗
(
χr|x|−mp

)
=

∫
Rn

|u(y)|pχr(x− y)|x− y|−mpdy

∥|u|p ∗ (χr|x|−mp)∥L1(Rn) =

∫
Rn

∫
Rn

|u(y)|pχr(x− y)|x− y|−mpdydx

Applying Young’s inequality

∥f ∗ g∥Lp3 (Rn) ≤ ∥f∥Lp1 (Rn) ∥g∥Lp2 (Rn),

1
p1

+ 1
p2

= 1
p3

+ 1 with p1 = p2 = p3 = 1, f = |u|p, g = χr|x|−mp, we find

∥|u|p ∗ (χr|x|−mp)∥L1(Rn) ≤ ∥|u|p∥L1(Rn)∥χr|x|−mp∥L1(Rn)

= ∥u∥pLp(Rn)∥χr|x|
−mp∥L1(Rn)

∥χr|x|−mp∥L1(Rn) =

∫
Br(0)

|x|−mpdx ≤ Crn−mp
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provided −mp+ n− 1 > −1, i.e., n > mp. Hence,

∥χrGk ∗ |u|∥pLp(Rn) ≤ Cr(m+k)p−n∥u∥pLp(Rn)r
n−mp

= Crkp∥u∥pLp(Rn)

Thus, we get the result provided we can find m satisfying all the above conditions, i.e.,

(m+ k)p− n > 0 and n > mp,

i.e.,
n

p
− k < m <

n

p
.

Since by assumption k ≥ 1, this is possible.
□

We need the following.

Lemma 9.45. Let p > 1, kp < n, p∗ = np
n−kp . There exists a constant κ > 0 such that

∥χ1 ∗ |u|∥Lp∗ (Rn) ≤ ∥χ1Gk ∗ |u|∥Lp∗ (Rn) ≤ ∥Gk ∗ |u|∥Lp(Rn) ≤ κ∥u∥Lp(Rn)

for all u ∈ Lp(Rn).

Proof. The proof is like in the previous Lemma, by a careful (albeit more complicated) analysis of
convolutions. □

Proof. of case I.C., p > 1. Recall: j = 0, kp < n, p ≤ q ≤ p∗ := np
n−kp , and we want to show

W k,p(Ω) ↪→ Lq(Ω).

Let u ∈ C∞(Ω) ∩W k,p(Ω), extend u to Rn by making it identically zero in Rn \ Ω. Recall the
estimate

|u(x)| ≤ κ
∑

|α|≤k−1

r|α|−n
∫
Cx,r

|Dαu(y)|dy

+ κ
∑
|α|=k

∫
Cx,r

|Dαu(y)||x− y|k−ndy

Taking r = ϱ, and writing (ϱ ≤ 1)∫
Cx,ϱ

|Dαu(y)||x− y|m−ndy ≤
∫
B1(x)

|Dαu(y)||x− y|m−ndy

=

∫
Rn

|Dαu(y)|χB1(x)(y)|x− y|m−ndy

=

∫
Rn

|Dαu(y)|χ1(x− y)|x− y|m−ndy

= (χ1Gm) ∗ |Dαu|(x)

for m = n or m = k. Then,

|u(x)| ≤ C
∑

|α|≤k−1

χ1 ∗ |Dαu|(x) +
∑
|α|=k

(χ1Gk) ∗ |Dαu|u(x).
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Then,

∥u∥Lp(Ω) ≤ C
∑

|α|≤k−1

∥χ1 ∗ |Dαu|∥Lp(Ω) + C
∑
|α|=k

∥(χ1Gk) ∗ |Dαu|∥Lp(Ω)

≤ C
∑

|α|≤k−1

∥χ1 ∗ |Dαu|∥Lp(Rn) + C
∑
|α|=k

∥(χ1Gk) ∗ |Dαu|∥Lp(Rn)

By the next-to-previous Lemma above:

≤ C
∑

|α|≤k−1

∥Dαu∥Lp(Rn) + C
∑
|α|=k

∥Dαu∥Lp(Rn)

= C
∑

|α|≤k−1

∥Dαu∥Lp(Ω) + C
∑
|α|=k

∥Dαu∥Lp(Ω)

≤ C∥u∥Wk,p(Ω).

Similarly, using the last Lemma:

∥u∥Lp∗ (Ω) ≤ C∥u∥Wk,p(Ω)

(Here is where we use p > 1, since the last Lemma requires p > 1).

Let 1
q = θ

p +
(1−θ)
p∗ , 0 ≤ θ ≤ 1, so p ≤ q ≤ p∗. Interpolating

∥u∥Lq(Ω) ≤ ∥u∥θLp(Ω) ∥u∥
1−θ
Lp∗ (Ω)

≤ C∥u∥Wk,p(Ω).

The immediate inequality extends to an arbitrary u ∈ W k,p(Ω) via approximation by smooth
functions.

□

Proof. of remaining cases I. To complete the proof of case I, we need to establish case I.C.
for p = 1 and case I.B. The proofs are somewhat lengthy, but again involve ideas like averaging,
interpolation, and exploiting the cone condition. We will omit their proofs for the sake of brevity.

□

Proof. of case II. Recall that it suffices to prove the case j = 0, so we need to show

W k,p(Ω) ↪→ C0,γ(Ω̄),

where kp > n and

(a) 0 < γ ≤ k − n
p for n > (k − 1)p,

(b) 0 < γ < 1 for n = (k − 1)p, p > 1,
(c) 0 < γ ≤ 1 for n = (k − 1)p, p = 1.

In particular, we have the embedding in C0(Ω̄). Since the strong local Lipschitz condition implies
the segment condition, by part I, we know that

sup
x∈Ω

|u(x)| ≤ C∥u∥k,p.

So it remains to show

sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|γ

≤ C∥u∥k,p

with γ as above. We claim that we can reduce the problem to proving this inequality for the case
k = 1. For, if k > 1, then case I.C. with j = 1 gives

(ã) W (k−1)+1,p(Ω) ↪→W 1,p∗(Ω), p∗ = np
n−(k−1)p , for (k − 1)p < n.

Case I.B. gives
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(b̃) W (k−1)+1,p(Ω) ↪→W 1,q(Ω), p ≤ q <∞, for (k − 1)p = n
Case I.A. with p = 1 gives

(c̃) W (k−1)+1,1 ↪→W 1,∞(Ω), for (k − 1) = n.

Cases (ã), (b̃), and (c̃) correspond to the relation between k, p and n in (a), (b), (c) above. Thus,
we see that all cases are covered by the following statement: If u ∈W 1,p(Ω), n ≤ p <∞, then

sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|γ

≤ C∥u∥1,p, 0 < γ ≤ 1− n

p
.

Assume first that u ∈ C∞(Ω) and Ω is a cube with unit edges. For 0 < t < 1, let Qt be a closed
cube with edges having length t and faces parallel to Ω.

Ω

Qt

Figure 26. Qt ⊂ Ω

If x, y ∈ Ω, |x− y| = σ < 1, then there exists Qσ such that x, y ∈ Qσ. For z ∈ Qσ:

u(z)− u(x) =

∫ 1

0

d

dt

(
u
(
x+ t(z − x)

))
dt.

|u(x)− u(z)| ≤
∫ 1

0
|∇u

(
x+ t(z − x)

)
||z − x|dt

Since the diagonal of a n-dim cube of edge σ has length σ
√
n:

|u(x)− u(z)| ≤ σ
√
n

∫ 1

0
|∇u

(
x+ t(z − x)

)
|dt

|u(x)− 1

σn

∫
Qσ

u(z)dz| ≤ 1

σn

∫
Qσ

|u(x)− u(z)|dz

≤
√
n

σn−1

∫
Qσ

∫ 1

0
|∇u

(
x+ t(z − x)

)
|dtdz

=

√
n

σn−1

∫ 1

0

∫
Qσ

|∇u
(
x+ t(z − x)

)
|dzdt.

Set θ = x+ t(z − x), so

=

√
n

σn−1

∫ 1

0

∫
Qtσ

|∇u(θ)|t−ndθdt =
√
n

σn−1

∫ 1

0

(∫
Qtσ

|∇u(θ)|dθ
)
t−ndt
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Applying the Hölder to the Qtσ integral, 1
p +

1
q = 1,

≤
√
n

σn−1

∫ 1

0
∥∇u∥Lp(Qtσ) (vol(Qtσ))

1
q︷ ︸︸ ︷

= (tσ)
n
q = (tσ)

n−n
p

t−ndt

≤
√
nσ

1−n
p ∥∇u∥Lp(Ω)

∫ 1

0
t
−n

p dt︷ ︸︸ ︷
<∞ since p > n

.

The same inequality holds with y instead of x, so

|u(x)− u(y)| ≤
∣∣∣∣u(x)− 1

σn

∫
Qσ

u(z)dt

∣∣∣∣+ ∣∣∣∣u(y)− 1

σn

∫
Qσ

u(z)dz

∣∣∣∣
≤ Cσ

1−n
p ∥∇u∥Lp(Ω) ≤ C|x− y|1−

n
p ∥∇u∥Lp(Ω),

thus
|u(x)− u(y)|

|x− y|r
≤ C|x− y|1−

n
p
−r∥u∥1,p,

and the desired inequality holds when Ω is a cube since 0 < r ≤ 1− n
p . Any parallelepiped can be

transformed into a cube, implying that the inequality holds for parallelepipeds as well.

We now consider a general Ω satisfying the strong local Lipschitz condition. Let δ,M,Ωδ, Uj ,
and Vj be as in the definition of such domains. We recall here the definition for convenience:
Ω ⊂ Rn satisfies the strong local Lipschitz condition if there exist δ > 0, M > 0, a locally finite
open cover {Uj} of ∂Ω, for each j a real valued function fj of n− 1 variables, such that

(i) for some finite R, every collection of R+ 1 open sets Uj has empty intersection;
(ii) for every pair

x, y ∈ Ωδ :=
{
z ∈ Ω | dist(z, ∂Ω) < δ

}
such that |x− y| < δ there exists j such that

x, y ∈ Vj :=
{
z ∈ Uj | dist(z, ∂Uj) > δ

}
(iii) each fj satisfies a Lipschitz condition with constant M
(iv) For some Cartesian coordinate system

(θj,1, ..., θj,n) in Uj , Ω ∩ Uj =
{
θj,n < fj(θj,1, ..., θj,n)

}
.

There exists a parallelepiped P , whose dimensions depend only on δ and M , with the following
properties:

• For each j, there exists a parallelepiped Pj congruent to P and having one vertex at the
origin such that for every x ∈ Vj ∩ Ω, we have x+ Pj ⊂ Ω.

• There exist constants δ0 and δ1, δ0 ≤ δ, such that if x, y ∈ Vj ∩ Ω and |x − y| < δ0, then
there exists a z ∈ (x+ Pj) ∩ (y + Pj) satisfying |x− z|+ |y − z| ≤ δ1|x− y|.

Let x, y ∈ Ω. We consider the following possibilities:
• |x− y| < δ0 ≤ δ and x, y ∈ Ωδ. Then,

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|,
where z ∈ (x+Pj)∩ (y+Pj). We can apply the previous inequality in x+Pj and y+Pj so

|u(x)− u(y)| ≤ C|x− z|r∥u∥1,p + C|y − z|r∥u∥1,p
≤ |x− y|r∥u∥1,p

since |x− z|, |y − z| ≤ δ1|x− y|.
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• |x − y| < δ0, x ∈ Ωδ, y ∈ Ω \ Ωδ. Then x ∈ Vj for some j and we can again apply the
inequality in x+ Pj , y + Pj .

• |x− y| < δ0, x, y ∈ Ω \ Ωδ. Then we apply the inequality to x+ P̃, y + P̃ where P̃ is any
parallelepiped congruent to P with a vertex at the origin.

• |x− y| ≥ δ0. Then,

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ C∥u∥1,p ≤ Cδ−r0 |x− y|r∥u∥1,p.

An approximation by smooth functions produces the result for a general u ∈W 1,p(Ω).
□

The following pictures illustrate the above ideas.

f([θ1, . . . , θn])

[θ1, . . . , θn−1]

δ

δ

x
z

y

Uj

Vj

Uj+1
Vj+1 Ω

∂Ω

δ
Ωδ

Figure 27. Strong Local Lipschitz Condition
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x

x+ pj
y

y + pj

z

Uj

Uj+1

Vj
Vj+1

∂Ω

Ω

Ωδ

δ

δ
δ

Figure 28. Proof of Case II:

Proof. of case III. The operator that maps u : Ω → R to ũ : Rn → R by extending u to be zero

outside Ω is an isometry of W k,p
0 (Ω) into W k,p(Rn). We can then apply cases I and II to W k,p(Rn).

□

9.6. Sobolev’s inequality. We have the embedding W k,p(Rn) ↪→ Lq(Rn) for some values of q
depending on the cases kp >,=, < n. We will now refine this embedding:

Theorem 9.46. (Sobolev’s inequality). Let k ≥ 1 be an integer and p satisfy kp < n. Then
there exists a constant κ > 0 such that

∥u∥Lq(Rn) ≤ κ
∑
|α|=k

∥Dαu∥Lp(Rn)

for every u ∈ C∞
c (Rn) if and only if

q = p∗ =
np

n− kp
.

Proof. We start proving the if-part. It suffices to prove the case k = 1, since higher k cases can be
obtained by induction. Moreover, if suffices to prove the following inequality for ϱ = 1:

∫
Rn

|u|
n

n−1dx ≤ κ

( n∑
j=1

∫
Rn

|∂ju|dx
) n

n−1

.
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For, if 1 < p < n, p∗ = np
n−p , then we apply the above to |u|r, r = (n− 1)p

∗

n , to get∫
Rn

(|u|r)
n

n−1dx =

∫
Rn

|u|p∗dx ≤ C

( n∑
j=1

∫
Rn

∣∣∂j |u|r∣∣dx) n
n−1

≤ C

( n∑
j=1

∫
Rn

|u|r−1|∂ju|dx
) n

n−1

, apply Hölder

≤ C

{ n∑
j=1

[ ∫
Rn

(
|u|r−1

) p
p−1dx

] p−1
p
[ ∫

Rn

|∂ju|pdx
] 1

p
} n

n−1

= C

(∫
Rn

|u|p∗dx
)n(p−1)

p(n−1)
( n∑
j=1

[ ∫
Rn

|∂ju|pdx
] 1

p
) n

n−1

after using (r − 1) p
p−1 = ((n− 1)p

∗

n − 1) p
p−1 = (n−1

n
np
n−p − 1) p

p−1 = ((n−1)p−n+p)
n−p

p
p−1 = np

n−pp
∗. Also,

r n
n−1 = (n− 1)p

∗

n · n
n−1 = p∗,

∥u∥p
∗

Lp∗ (Rn)
≤ C

(
∥u∥Lp∗

) p∗n(p−1)
p(n−1)

( n∑
j=1

[ ∫
Rn

|∂ju|pdx
] 1

p
) n

n−1

,

which gives the result since

1− n(p− 1)

p(n− 1)
=

(n− 1)p− n(p− 1)

p(n− 1)
=

n− p

p(n− 1)
,

p∗
(n− 1)

n

(n− p)

p(n− 1)
=

np

n− p

n− p

np
= 1.

So let’s prove the inequality. Since

u(x) =

∫ xi

−∞
∂iu(x

1, ..., xi−1, ti, xi+1, ..., xn)dti,

we have

|u(x)| ≤
∫ ∞

−∞

∣∣∇u(x1, ..., xi−1, ti, xi+1, ..., xn)
∣∣dti.

Thus

|u(x)|
n

n−1 ≤
n∏
i=1

(∫ ∞

−∞

∣∣∇u(x1, ..., xi−1, ti, xi+1, ..., xn)
∣∣dti) 1

n−1

.

Integrating in x1 and omitting the argument (x1, ..., xi−1, ti, xi+1, ..., xn)∫ +∞

−∞
|u(x)|

n
n−1dx1 ≤

∫ +∞

−∞

n∏
i=1

(∫ +∞

−∞
|∇u|dti

) 1
n−1

dx1

=

(∫ ∞

−∞
|∇u|dt1

) 1
n−1

∫ ∞

−∞

n∏
i=2

(∫ ∞

−∞
|∇u|dti

) 1
n−1

dx1

Apply Hólder’s inequality ∫
|u1...ul|dx ≤

l∏
i=1

∥ui∥Lpi ,
1

p1
+ ...+

1

pl
= 1
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in the x1 variable to the n− 1 functions(∫ ∞

−∞
|∇u|dt1

)
i = 2, ..., n with pi = n− 1,

≤
(∫ ∞

−∞
|∇u|dt1

) 1
n−1

n∏
i=2

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dtidx1

) 1
n−1

,

Integrate w.r.t. x2:∫ ∞

−∞

∫ ∞

−∞
|u|

n
n−1dx1dx2 ≤

∫ ∞

−∞

{(∫ ∞

−∞
|∇u|dt1

) 1
n−1

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dt2dx1

) 1
n−1

n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dtidx1

) 1
n−1

}
dx2

=

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dt2dx1

) 1
n−1

∫ ∞

−∞

{(∫ ∞

−∞
|∇u|dt1

) 1
n−1

n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dtidx1

) 1
n−1

}
dx2.

Apply again Hölder’s inequality to the n− 1 functions on the right in the x2 variable:

≤
(∫ ∞

−∞

∫ ∞

−∞
|∇u|dt2dx1

) 1
n−1

(∫ ∞

−∞

∫ ∞

−∞
|∇u|dt1dx2

) 1
n−1

n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|∇u|dtidx1dx2

) 1
n−1

.

If u = 2, we are done. Otherwise, we continue to get∫
Rn

|u|
n

n−1dx ≤
(∫

Rn

|∇u|dx
) n

n−1

.

Now we prove the only if part. If

∥u∥Lq(Rn) ≤ C
∑
|α|=k

∥Dαu∥Lp(Rn)

holds for all u ∈ C∞
c (Rn), then it holds for ut(x) = u(tx), t > 0. Changing variables we find

∥ut∥Lq(Rn) ≤ Ct
k−n

p
+n

q

∑
|α|=k

∥Dαut∥Lp(Rn).

Since we must have k − n
p + n

q = 0, we find q = p∗.

□

Remark 9.47. If Ω is bounded, we can get

∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω),

which is known as Poincaré’s inequality, u ∈ C∞
c (Ω). Thus, ∥∇u∥Lp(Ω) is a norm on W 1,p

0 (Ω)
equivalent to ∥ · ∥1,p. There are other related inequalities which are also known as Poincaré’s
inequality.
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9.7. Compact embeddings.

Definition 9.48. Let X and Y be Banach spaces. We say that X is compactly embedded into
Y if X is continuously embedded into Y and X and each bounded sequence in X is pre-compact
in Y (so bounded sequences in X have convergent subsequences in Y ).

We recall the following theorem from analysis:

Theorem 9.49. Pre-compactness in Lp(Ω). A bounded subset B ⊂ Lp(Ω), 1 ≤ p < ∞, is
pre-compact if and only if for every ϵ > 0 there exists a δ > 0 and a subset κ ⊂⊂ Ω such that∫

Ω
|ũ(x+ h)− ũ(x)|pdx < ϵp

and ∫
Ω\κ̄

|u(x)|pdx < ϵp

for every u ∈ B and every h ∈ Rn with |h| < δ, where

ũ(x) =

{
u(x), x ∈ Ω,

0, x /∈ Ω.

Theorem 9.50. Reillich-Kondrachov theorem. Let Ω be a domain in Rn and Ω0 ⊂ Ω a
bounded subdomain. Let k ≥ 1 and j ≥ 0 be integers, and 1 ≤ p < ∞. The embeddings below are
compact under the stated hypotheses:

Case I. Ω satisfies the cone condition, kp ≤ n,

W k+j,p(Ω) ↪→W j,q(Ω0), kp < n, 1 ≤ q < p∗ =
np

n− kp

or kp = n, 1 ≤ q <∞.
Case II. Ω satisfies the cone condition, kp > n,

W k+j,p(Ω) ↪→ CjB(Ω0)

W k+j,p(Ω) ↪→W j,q(Ω0), 1 ≤ q <∞.

Case III. Ω satisfies the strong local Lipschitz condition,

W k+j,p(Ω) ↪→ Cj(Ω̄0), kp > n

W k+j,p(Ω) ↪→ Cj,r(Ω̄0), kp > n ≥ (k − 1)p and 0 < r < k − n

p
.

Case IV. Ω is an arbitrary domain. Then all of the above embeddings hold with W k+j,p(Ω)

replaced by W k+j,p
0 (Ω). In particular, if Ω is bounded, we can take Ω0 = Ω above.

Proof. As for the previous embeddings, it suffices to prove the case j = 0. We can also assume Ω0

to satisfy the cone condition. For, if C is a cone for the cone condition of Ω, let Ω′ be the union of
all cones congruent to C that are contained in Ω and have non-empty intersection with Ω0. Then
we have Ω0 ⊂ Ω′ ⊂ Ω. Ω′ is bounded and satisfies the cone condition. If W k,p(Ω) ↪→ X(Ω̃) is
compact, so is W k,p(Ω) ↪→ X(Ω0) by taking the restriction. We will also use that the composition
of a continuous embedding with a compact one is compact.

Proof of case I. Consider the case when

kp < n and 1 ≤ q < p∗ =
np

n− kp
.

We will reduce the proof to q = 1 by the following claim:
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Claim 9.51. If W k,p(Ω) ↪→ Lq
∗
(Ω0) and W

k,p(Ω) ↪→ Lq1(Ω0) compactly, then W k,p(Ω) ↪→ Lq(Ω0)
compactly for q1 ≤ q < q∗, where q∗ <∞.

To prove the claim, interpolate

∥u∥Lq(Ω0) ≤ ∥u∥θLq1 (Ω)∥u∥
1−θ
Lq∗ (Ω0)

≤ C∥u∥θLq1 (Ω0)
∥u∥1−θ

Wk,p(Ω)

If {uj} is bounded in W k,p(Ω), then it has a subsequence converging in Lq1(Ω0) by assumption, so
it is Cauchy in Lq(Ω0).

In our case, we have the embedding

W k,p(Ω) ↪→ Lp
∗
(Ω)

by Sobolev embedding (case I.C.), so it suffices to get compactness W k,p(Ω) ↪→ L1(Ω0).

Let B be a set of bounded functions in W k,p(Ω). We will use the Lp-precompactness theorem
above, so let

ũ(x) =

{
u(x), x ∈ Ω,

0, x /∈ Ω.

and ϵ > 0 be given.

Let

Ωj =
{
x ∈ Ω | dist(x, ∂Ω) > 2

j

}
,

j = 1, 2, .... We have:

∫
Ω0\Ωj

|u(x)|dx ≤
(∫

Ω0\Ωj

|u(x)|p∗dx
) 1

p∗

vol(Ω0 \ Ωj)1−
1
p∗

≤ C∥u∥Wk,p(Ω) vol(Ω0 \ Ωj)1−
1
p∗

Since p∗ > 1, we have that for every u ∈ B∫
Ω0\Ωj

|u(x)|dx < ϵ

if j is large enough. Similarly, if j is large enough∫
Ω0\Ωj

∣∣ũ(x+ h)− ũ(x)
∣∣dx < ϵ

2
.

Now, let |u| < 1
j . Then x ∈ Ωj =⇒ x+ th ∈ Ω2j , 0 ≤ t ≤ 1.
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2
j

1
j ∼ h

1
j

Ωj

Ω2j

∂Ω

Figure 29. Ωj , Ω2j , ∂Ω

Then, ∫
Ωj

∣∣u(x+ h)− u(x)
∣∣dx ≤

∫
Ωj

∫ 1

0

∣∣∣∣ ddtu(x+ th)

∣∣∣∣dtdx
≤ |h|

∫
Ω2j

|∇u(x)|dx

≤ C|h||u∥Wk,p(Ω).

(prove the above inequality for C∞ first).

So
∫
Ωj

|u(x + h) − u(x)|dx < ϵ
2 if |h| is sufficiently small, and we get

∫
Ω0

|ũ(x + h) − ũ(x)|dx < ϵ.

Thus B is pre-compact in L1(Ω0).

The case kp = n is proven with similar ideas. For example, if then we have, with 1 ≤ r < p,

W k,p(Ω) ↪→W k,p(Ω0) ↪→W k,r(Ω0) ↪→ Lq(Ω0),

and the latter is compact as showed above (recall that Ω0 can be assumed to satisfy the cone
condition).

Proof of case III. Consider Ω satisfying the strong local Lipschitz condition and

kp > n ≥ (k − 1)p and 0 < γ < k − n

p
.

Let β be such that γ < β < k − n
p . We have

W k,p(Ω) ↪→
Sobolev, case II

C0,β(Ω̄) ↪→
by restriction

C0,β(Ω̄0) ↪→
compact by Ω̄0 bounded and Arzelá-Ascoli

C0,γ(Ω̄0)

If kp > n, let l ≥ 0 be an integer such that

(k − l)p > n ≥ (k − l − 1)p.

Then

W k,p(Ω) ↪→W k−l,p(Ω) ↪→ C0,α(Ω̄0) ↪→ C0(Ω̄0)

where the last two embeddings are similar to above with the last one compact.
Proof of case II. Since Ω0 can be assumed to satisfy the cone condition and is bounded, we

can write

Ω0 =

M⋃
j=1

Ωj
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where each Ωj satisfies the strong local Lipschitz condition (this is a property of the cone condition
that we will not prove). Then

W k,p(Ω) ↪→W k,p(Ωj) ↪→ C0(Ω̄j)

where the last embedding is compact as above. If {ui} is bounded in W k,p(Ω), we can then select a
subsequence whose restriction to Ωj converges in C

0(C̄l) for each j. But then it converges in C0
B(Ω0).

The other embedding follows from Hölder’s inequality since Ω0 is bounded, so C0(Ω0) ↪→ Lq(Ω0)
for any q.

Proof of case IV. This follows from the embedding W k+j,p
0 (Ω) ↪→ W k+j,p(Rn) obtained from

extending functions to be zero outside Ω.
□

9.8. Traces. In order to treat boundary value problems, we need to be able to talk about the
restriction of Sobolev to ∂Ω.

Theorem 9.52. (trace theorem). Assume that Ω is bounded and ∂Ω is C1. There exists a
bounded linear operator T : W 1,p(Ω) → Lp(∂Ω), 1 ≤ p <∞, such that Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩
C0(Ω̄). (Tu is called the trace of u on ∂Ω).

Proof. Suppose first that u ∈ C1(Ω̄) and that ∂Ω is flat near a point z ∈ ∂Ω and such that

Br(z) ∩ {xn ≥ 0} ⊂ Ω̄, Br(z) ∩ {xn < 0} ⊂ Rn \ Ω̄
for some r > 0. Let ψ ∈ C∞

c (Br(z)) be such that ψ ≥ 0 and ψ = 1 on B r
2
(z). Let Γ := ∂Ω∩B r

2
(z)

and y = (x1, ..., xn−1). Then,∫
Γ
|u|pdy ≤

∫
{xn=0}

ψ|u|pdx

= −
∫
Br(z)∩{xn≥0}

∂u(ψ|u|p)dx

= −
∫
Br(z)∩{xn≥0}

|u|p∂uψdx−
∫
Br(z)∩{xn≥0}

ψp|u|p−1(sign u)∂uudx.

≤ C

∫
Br(z)∩{xn≥0}

|u|pdx+ C

∫
Br(z)∩{xn≥0}

|u|p−1|∇u|dx

≤ C∥u∥p1,p
since |u|p−1|∇u| ≤ C(|u|(p−1)q + |∇u|p) = C(|u|p + |∇u|p).

Since ∂Ω is compact and each z ∈ ∂Ω has a neighborhood where ∂Ω can be flattened, we get
the inequality for C1(Ω̄) functions. Using an approximation we get the inequality for u ∈W 1,p(Ω).

If u ∈ W 1,p(Ω) ∩ C0(Ω̄), observe first that Tu does not depend on which sequence we use to
approximate u. If we take the sequence we constructed in our poof of the density of C∞(Ω̄), that
sequence converges uniformly to a limit u ∈ C0(Ω̄), so Tu = u|∂Ω.

□

In the case of W 1,p
0 (Ω), we have:

Theorem 9.53. Let Ω be bounded and ∂Ω be C1. Let u ∈W 1,p(Ω). Then u ∈W 1,p
0 (Ω) if and only

if Tu = 0.

Proof. We will omit the proof, but this should not be surprising since u ∈ W 1,p
0 (Ω) is the limit of

functions compactly supported in Ω.
□
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It is possible to define Sobolev spaces W s,p(Ω) with s not an integer. In fact, we will do this for
p = 2. In this case the trace theorem can be strengthened to

T :W 1,p(Ω) →W
1− 1

p
,p
(∂Ω).

If ∂Ω is sufficiently regular, we get similar results for W s,p(Ω), s > 1. In particular, for p = 2:

T : Hs(Ω) → Hs− 1
2 (∂Ω).

9.9. Sobolev spaces of fractional and negative order. It is possible to generalize the defini-
tion of Sobolev spaces for W s,p(Ω) with s ∈ R. Here, we will do this in the case p = 2 and Ω = Rn.
First, we recall some basic facts about the Fourier transform.

Facts about the Fourier transform.

• A function u ∈ C∞(Rn,C) is called a Schwartz function if for every pair of multi-indices
α and β there exists a constant κα,β such that for all x ∈ Rn

|xαDβu(x)| ≤ κα,β

The space of Schwartz functions is denoted by S = S(Rn).
• If u ∈ S, the Fourier transform of u is defined by

û(ξ) ≡ F(u)(ξ) :=

∫
Rn

e−ix·ξu(x)dx.

The inverse Fourier transform of û ∈ S is

u(x) ≡ F−1(û)(ξ) :=
1

(2π)n

∫
Rn

e−ix·ξû(ξ)dξ.

F and F−1 are continuous maps (with respect to the Schwartz topology) S → S that are
in fact inverses of each other.
(The topology on S is given by the metric

d(u, v) =

∞∑
j=1

2−j
pj(u− v)

1 + pj(u− v)

where {pj} is the (countable) set of all semi-norms

pα,β(u) = sup
x∈Rn

|xαDβu(x)|. )

• Parseval’s formula

1

(2π)n

∫
Rn

û(ξ)¯̂v(ξ)dξ =

∫
Rn

u(x)v̄(x)dx.

Observe that

D̂αu = i|α|ξαû

This will motivate the definition of Hs(Rn) for s ∈ R.

Definition 9.54. A continuous linear form on S (a.k.a. continuous functional, i.e. a linear map
f : S → C that is continuous, f(uj) → f(u) if uj → u in S) is called a tempered distribution.
The space of tempered distributions is denoted S ′.

Definition 9.55. The Fourier transform of f ∈ S ′ is defined by

f̂(u) = f(û), u ∈ S.
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Definition 9.56. Let s ∈ R. We define the Sobolev space Hs = Hs(Rn) as the space of u ∈ S ′

such that û is a measurable function with the property that û(ξ)(1 + |ξ|2)
s
2 is square-integrable.

We sometimes write H(s) if we want to stress that s can be any real number. A norm in Hs is
given by

∥u∥s ≡ ∥u∥(s) :=
(

1

(2π)n

∫
Rn

|û(ξ)|2
(
1 + |ξ|2

)s
dξ

) 1
2

and an inner product by

(u, v)s ≡ (u, v)(s) :=
1

(2π)n

∫
Rn

û(ξ)¯̂v(ξ)
(
1 + |ξ|2

)s
dξ.

To see the definition, notice that if k ≥ 0 is an integer, then D̂ku = ik|ξ|kû, so

∥Du∥L2 = ∥ |ξ|kû ∥L2 =

(∫
Rn

(|ξ|2)k |û(ξ)|2dξ
) 1

2

.

More generally, we have

1

C
(1 + |ξ|2)k ≤

∑
|α|≤k

ξ2α ≤ C(1 + |ξ|2)k.

So the norms ∥u∥k and ∥u∥(k) are equivalent. One can also show that if u ∈ H(s) then u is |α|-
times weakly differentiable, |α| ≤ s. These observations show that H(s) agrees with the previous
definition of Hs when s is a non-negative integer.

All the basic properties Hk, k ≥ 0 integer, remain valid for H(s), including

• Density of C∞
c (Rn). We also have density of S.

• Dα : H(s) → H(s−|α|) is bounded.
• (u,Dαv)0 = (−1)|α|(Dαu, v), u, v ∈ H(s), |α| ≤ s.

• The Sobolev embedding theorems and compact embeddings hold for H(s), where s replace
k in the statements and the inequalities among s, n, and p are interpreted accordingly
(including p∗ = np

n−sp).

Definition 9.57. Let u ∈ H(s). We define (1 −∆)tu as the tempered distribution whose Fourier
transform is (1 + |ξ|2)tû(ξ), i.e.,

( ̂(1−∆)tu)(ξ) =
(
1 + |ξ|2

)t
(ξ).

We obtain that

∥(1−∆)
t
2u∥(s−t) = ∥u∥(s),

so
(
1 − ∆

) t
2 is a bounded linear map from H(s) to H(s−t). It has a bounded inverse given by

(1−∆)−
t
2 . Thus, we see that

Hs(Rn) = (1−∆)−
s
2 (L2(Rn)).

We also have (
(1−∆)

t
2u, v

)
0
=

(
u, (1−∆)

t
2 v

)
0

for u, v ∈ H(s), s ≥ 0, t ≤ s.
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9.10. Duality. We will now investigate the dual space of W k,p(Ω).

Notation 9.58. Given 1 ≤ p <∞, we set

p′ =


∞, p = 1,
p
p−1 , 1 < p <∞,

1, p = ∞.

We recall the following construction used in the proof that W k,p(Ω) is reflexive for 1 ≤ p <∞:

Let µ(k, n) be the number of multi-indices α such that |α| ≤ k, and for each α let Ωα be a
copy of Ω, so the µ(k, n) domains Ωα are disjoint. Set

Ω(k) :=
⋃

|α|≤k

Ωα.

Given v : Ω(k) → R, we write vα for v|Ωα , so we can identify v with a vector (vα), vα : Ωα → R.
Given u ∈ W k,p(Ω), let v be the function Ω(k) that coincides with Dαu in Ωα. The map Γ :

W k,p(Ω) → Lp(Ω(k)) u 7→ v is an isometry. Because W k,p(Ω) is complete, the image X of Γ is

a closed subspace of Lp(Ω(k)) and we have W k,p(Ω) = Γ−1(X). We will use these constructions
below.

The dual space of W k,p(Ω) is defined in the usual way as dual of a Banach space:

Definition 9.59. The dual space of W k,p(Ω), denoted (W k,p(Ω))′, is defined as the space of
continuous linear forms on W k,p(Ω).

Our goal is to characterize the (W k,p(Ω))′. We will use certain dualities realized by the L2 inner
product so it will be convenient to denote

⟨u, v⟩ =
∫
Ω
u(x)v(x)dx

provided the RHS makes sense.

Lemma 9.60. To every f ∈ (Lp(Ω(k)))
′, 1 ≤ p < ∞, there corresponds a unique v ∈ Lp

′
(Ω(k)),

such that

f(u) =

∫
Ω(k)

v(x)u(x)dx =
∑
|α|≤k

∫
Ωα

vα(x)uα(x)dx =
∑
|α|≤k

⟨vα, uα⟩

for all u ∈ Lp(Ω(k)). So (Lp(Ω(k)))
′ = Lp

′
(Ω(k)).

Proof. This is simply the Riesz representation theorem applied to Lp(Ω(k)) under our notational
conventions.

□

Theorem 9.61. (Riesz representation for Sobolev spaces). Let 1 ≤ p <∞, k ≥ 1 an integer.

For every f ∈ (W k,p(Ω))′, there exists a v ∈ Lp
′
(Ω(k)) such that

f(u) =
∑
|α|≤k

⟨v,Dαu⟩ (9.1)

for all u ∈W k,p(Ω). Furthermore

∥f∥(Wk,p(Ω))′ = inf
U

∥v∥Lp′ (Ω(k))
= min

U
∥v∥Lp′ (Ω(k))

(9.2)

where U is the set of all v ∈ Lp
′
(Ω(k)) for which (9.1) holds for all u ∈ W k,p(Ω), and the last

equality in (9.2) indicates that the infimum is attained. If 1 < p < ∞, then the v satisfying (9.1)
and (9.2) is unique.
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Proof. Define, for elements in X:

f∗(Γu) = f(u).

so f∗ ∈ X ′ since Γ is an isometric isomorphism. Then,

∥f∗∥X′ = sup
∥Γu∥X≤1

f∗(Γu) = sup
∥u∥

Wk,p(Ω)
≤1
f(u) = ∥f∥(Wk,p(Ω))′ .

By Hahn-Banach, there exists a (norm-preserving) extension f̂ of f to Lp(Ω(k)). By the previous

Lemma, there exists a unique v ∈ Lp
′
(Ω(k)) such that

f̂(u) =
∑
|α|≤k

⟨vα, uα⟩, u ∈ Lp(Ω(k))

Thus, for u ∈W k,p(Ω)

f(u) = f∗(Γu) = f̂(Γu) =
∑

0≤|α|≤k

⟨vα, (Γu)α⟩

=
∑
|α|≤k

⟨vα, Dαu⟩.

This proves (9.1). (Observe that uniqueness of v is guaranteed for f̂ , i.e., such that f̂(u) =∑
|α|≤k⟨vα, uα⟩ for all u ∈ Lp(Ω(k)), but not necessarily for f , i.e., not for all u ≈ Γu ∈ X.)

As seen, ∥f∥(
Wk,p(Ω)

)′ = ∥f∗∥X′ , but the later equals

∥f̂∥(
Lp(Ω(k))

)′ = ∥v∥Lp′ (Ω(k))
.

Now we have to show that

∥f∥(
Wk,p(Ω)

)′ = inf
U

∥w∥Lp′ (Ω(k))
= min

U
∥w∥Lp′ (Ω(k))

.

We have already identified a v ∈ Lp
′
(Ω(k)) such that ∥f∥(

Wk,p(Ω)
)′ = ∥v|∥Lp′ (Ω(k))

. Thus, it suffices

to show that if w ∈ Lp
′
(Ω(k)) is such that

f(u) =
∑
|α|≤k

⟨wα, Dαu⟩

for all u ∈W k,p(Ω), then ∥w∥Lp′ (Ω(k))
≥ ∥v∥Lp′ (Ω(k))

. But such a w agrees with f∗ on X, so it will be

an extension of f∗ to Lp(Ω(k)), and thus it must have norm at least equal to ∥f∗∥X′ = ∥v∥Lp′ (Ω(k))
.

It remains to show uniqueness when 1 < p < ∞. Suppose the conclusion holds for v1 and v2
attaining the minimum, so ∥v1∥Lp′ (Ω(k))

= ∥f∥(Wk,p(Ω))′ = ∥v2∥Lp′ (Ω(k))
= 1, where we can assume

= 1 upon redefining f as f/∥f∥(Wk,p(Ω))′ , and for all u ∈W k,p(Ω),

f(u) =
∑
|α|≤k

⟨v1, Dαu⟩ =
∑
|α|≤k

⟨v2, Dαu⟩

First we claim that there exists a unique x ∈ X such that

f∗(x) = ∥x∥Lp(Ω(k)) = 1.

Since ∥f∥(Wk,p(Ω(k)))
′ = ∥f∗∥X′ = 1, there exists {xi} ⊂ X such that ∥xi∥Lp

(Ω(k))
= 1 and |f∗(xi)| →

1. Modifying {xi} if needed (multiply by −1) we can assume that f∗(xi) → 1.
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Because Lp(Ω(k)) is uniformly convex for 1 < p < ∞, given 0 < ϵ ≤ 2, there exists a δ > 0 such

that (since ∥xi∥ = 1) if ∥xi − xj∥Lp(Ω(k)) ≥ ϵ, then
∥xi+xj∥

2 Lp(Ω(k))
≤ 1− δ, thus if

∥xi+xj∥
2 Lp(Ω(k))

>

1− δ we must have ∥xi − xj∥Lp(Ω(k)) < ϵ.

For large i we have f∗(xi) > 1 − δ thus for large i, j we also have f∗(
xi+xj

2 ) > 1 − δ. Then,
because f∗ is continuous with norm 1:

1− δ < f∗
(
xi + xj

2

)
≤ ∥xi + xj∥

2 Lp(Ω(k))
.

Hence ∥xi − xj∥Lp(Ω(k)) < ϵ, and {xi} is Cauchy and xi → x in Lp(Ω(k)). Since X is closed, x ∈ X.

Clearly ∥x∥Lp(Ω(k)) = 1 and f∗(x) = 1. To obtain uniqueness, suppose that there are two such

x’s, x1 and x2. Then we apply the above argument to the sequence {x1, x2, x1, x2, ...} which must
converge.

Since by assumption v1 and v2 are two representatives of f∗, we have

f∗(x) = 1 =
∑
|α|≤k

⟨(v1)α, xα⟩ =
∑
|α|≤k

⟨(v2)α, xα⟩.

Next, consider the claim: given w ∈ Lp(Ω(k)) with ∥w∥Lp(Ω(k)) = 1, there exists at most one

l ∈ (Lp(Ω(k)))
′ such that ∥l∥(Lp(Ω(k)))

′ = 1 and l(w) = 1.

Let ṽ1 and ṽ2 be the extensions of v1 and v2, considered linear functionals on X, to Lp(Ω(k))
given by Hahn-Banach. Thus ∥ṽ1∥Lp′ (Ω(k))

= 1 = ∥ṽ2∥Lp′ (Ω(k))
(observe that though ṽ1 = f∗ = ṽ2

on X, we cannot claim ṽ1 = ṽ2 because the Hahn-Banach extension might not be unique), and by
foregoing we have ṽ1(x) = 1 = ṽ2(x). Thus, ṽ1 = ṽ2 by the claim.

It remains to prove the claim. Suppose there are two such l’s, l1 and l2, l1 ̸= l2. Then l1(u) ̸= l2(u)
for some u ∈ Lp(Ω(k)). We can assume that

l1(u)− l2(u) = 2

upon replacing u by multiple of itself, and that

l1(u) = 1 and l2(u) = −1

by replacing u with its sum with a suitable multiple of w. Thus

l1(w + tu) = 1 + t,

l2(w − tu) = 1 + t, t > 0.

Since ∥l1∥Lp(Ω(k))
′ = 1 = ∥l2∥Lp((Ω(k)))

′ , we have

1 + t = l1(w + tu) ≤ ∥w + tu∥Lp(Ω(k))

1 + t = l2(w − tu) ≤ ∥w − tu∥Lp(Ω(k)).

Recall the Lp-parallelogram inequalities∥∥∥∥a+ b

2

∥∥∥∥p
Lp

+

∥∥∥∥a− b

2

∥∥∥∥p
Lp

≥ 1

2
∥a∥pLp +

1

2
∥b∥pLp , 1 < p ≤ 2,∥∥∥∥a+ b

2

∥∥∥∥p′
Lp

+

∥∥∥∥a− b

2

∥∥∥∥p′
Lp

≥
(
1

2
∥a∥pLp +

1

2
∥b∥pLp

)p′−1

, 2 ≤ p <∞.

If 1 < p ≤ 2, we get

1 + tp∥u∥pLp(Ω(k))
=

∥∥∥∥(w + tu) + (w − tu)

2

∥∥∥∥p
Lp(Ω(k))

+

∥∥∥∥(w + tu)− (w − tu)

2

∥∥∥∥p
Lp(Ω(k))

≥ 1

2

∥∥w + tu
∥∥p
Lp(Ω(k))

+
1

2

∥∥w − tu
∥∥p
Lp(Ω(k))

≥ (1 + t)p,
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which cannot hold for all t > 0. If 2 ≤ p <∞, we apply the second inequality

1 + tp
′∥u∥p

′

Lp(Ω(k))
=

∥∥∥∥(w + tu) + (w − tu)

2

∥∥∥∥p′
Lp(Ω(k))

+

∥∥∥∥(w + tu)− (w − tu)

2

∥∥∥∥p′
Lp(Ω(k))

≥
(
1

2

∥∥w + tu
∥∥p
Lp(Ω(k))

+
1

2

∥∥w − tu
∥∥p
Lp(Ω(k))

)p′−1

≥ (1 + t)p
′

which again is an impossibility. □

Definition 9.62. Consider C∞
c (Ω). For each compact subset κ ⊂ Ω, let Dκ(Ω) be the set of all

u ∈ C∞
c (Ω) such that supp(u) ⊂ κ. Define a family of semi-norms by

pκ,m(u) = sup
|α|≤m
x∈κ

|Dαu(x)|, m integer,

Dκ(Ω) is then a locally convex topological vector space. The strict inductive limit of Dκ(Ω), when κ
varies over all compact subsets of Ω is a locally convex topological vector space. We denote C∞

c (Ω)
with this topology by D(Ω).

A consequence of the definition is that a sequence {uj} converges to u in D(Ω) if and only if (i)
there exists a compact set κ ⊂ Ω such that supp(uj) ⊂ κ for all j, (ii) for any multi-index α, the
sequence {Dαuj} converges uniformly to Dαu in κ.

Definition 9.63. A continuous linear form on D(Ω) is called a distribution. The space of
distributions on Ω is denoted D′(Ω).

Thus, f ∈ D′(Ω) if and only if it is a linear map f : D(Ω) → R such that f(uj) → f(u) when
uj → u in D(Ω).

Definition 9.64. Let f ∈ D′(Ω) and α be a multi-index. The α-derivative of f is the distribution
Dαf defined by

Dαf(u) = (−1)|α|f(Dαu)

for every u ∈ D(Ω). Observe that distributions are infinitely many times differentiable.
The motivation for this definition is clear: if ψ is smooth, it defines a distribution by

fψ(u) =

∫
Ω
ψ(x)u(x)dx,

and Dαψ by

fDαψ(u) =

∫
Ω
Dαψ(x)u(x)dx.

Then, integrating by parts:

fDαψ(u) = (−1)|α|
∫
Ω
ψ(x)Dαu(x)dx = (−1)|α|fψ(D

αu).

Let f ∈ (W k,p(Ω))′. By the above theorem, f(u) =
∑

|α|≤k⟨vα, Dαu⟩ for some v ∈ Lp
′
(Ω(k)).

Since C∞
c (Ω) ⊂ W k,p(Ω), f |C∞

c (Ω) is well defined. To see that f |C∞
c (Ω) defines a distribution, let

uj → u in D(Ω). Then

f(uj − u) =
∑
|α|≤k

∫
Ωα

vα(x)D
α(uj − u)dx

≤
∑
|α|≤k

∥vα∥Lp′ (Ωα)
∥Dα(uj − u)∥Lp(Ω)

=
∑
|α|≤k

∥vα∥Lp′ (Ωα)
∥Dα(uj − u)∥Lp(κ)
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for some compact κ; but ∥Dα(uj − u)∥Lp(κ) → 0 as j → ∞ since Dαuj → Dαu uniformly on

κ. Therefore, elements of (W k,p(Ω))′ can be viewed as extensions to W k,p(Ω) of distributions.

Similarly, (W k,p
0 (Ω))′ can be viewed as a space of extensions to W k,p

0 (Ω) of continuous linear forms

on D(Ω). In the case of W k,p
0 (Ω), this in fact characterizes the dual:

Theorem 9.65. Let k ≥ 1 be an integer and 1 ≤ p < ∞. (W k,p(Ω))′ is isometrically isomorphic
to a Banach space X consisting of those distributions f ∈ D′(Ω) that have the form

f =
∑
|α|≤k

(−1)|α|Dαfvα , fvα(u) = ⟨vα, u⟩, u ∈ D(Ω) (9.3)

for some v ∈ Lp
′
(Ω(k)) and having norm

∥f∥X = inf
U

∥v∥Lp′ (Ω(k))
= min

U
∥v∥Lp′ (Ω(k))

where U is the set of all v ∈ Lp
′
(Ω(k)) for which f is given by (9.3).

Proof. First observe that the set of f ∈ D′(Ω) of the form (9.3) with norm ∥f∥X = infU ∥v∥Lp′ (Ω(k))

is a normed space.
Let f ∈ D′(Ω) have the form (9.3). Let us show that it has a unique continuous extension to

W k,p
0 (Ω). Let uj → u in W k,p

0 (Ω), {uj} ⊂ C∞
c (Ω). Then,

|f(uj)− f(ui)| ≤
∑
|α|≤k

|⟨fvα , Dα(uj − ui)⟩|

≤
∑
|α|≤k

∥Dα(uj − ui)∥Lp(Ω)∥vα∥Lp′ (Ω) → 0 as i, j → 0.

Thus {f(ui)} is Cauchy in R and converges. If we take another sequence, the limit is the same so
we can define

f̃(u) = lim
j→∞

f(uj)

for u ∈W k,p
0 (Ω). Observe that f is linear, thus it defines an element of (W k,p

0 (Ω))′.

Let f ∈ (W k,p
0 (Ω))′. Then f : W k,p

0 (Ω) → R has a norm preserving extension f∗ : W k,p(Ω) → R
and thus f∗ has the form (9.3) by a theorem above and its norm is as stated. This applies in

particular to the extension f̃ so the infimum is realized. Thus we have a norm preserving map

f ∈ X 7→ f̃ ∈ (W k,p
0 (Ω))′.

Reciprocally, if f ∈ (W k,p
0 (Ω))′, then as just seen it is given by

f(u) = f∗(u) =
∑
|α|≤k

⟨vα, Dαu⟩, u ∈W k,p
0 (Ω)

with norm as indicated. As seen above, f restrictied to D(Ω) gives rise to a distribution, i.e., we

have a norm preserving map f ∈ (W k,p
0 (Ω))′ 7→ fD(Ω) ∈ X ⊂ D′(Ω).

Consequently, X is complete since (W k,p
0 (Ω))′ is.

□

Observe that the above argument does not hold, in general, for W k,p(Ω): to uniquely extend

f ∈ X to an element of (W k,p
0 (Ω))′ we used that any u ∈W k,p

0 (Ω) is a limit of elements in C∞
c (Ω),

where f is initially defined, but elements inW k,p(Ω) cannot in general by approximated by C∞
c (Ω).

In other words, whenW k,p
0 (Ω) is a proper subspace ofW k,p(Ω), f :W k,p(Ω) → R is not determined
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by its restriction to C∞
c (Ω). Thus, f ∈ X extends to W k,p(Ω) (by extending to W k,p

0 (Ω) uniquely
and then to W k,p(Ω) by Hahn-Banach) but this extension in general is not unique.

Definition 9.66. The Banach space X in the previous theorem, identified with (W k,p
0 (Ω))′, is

denoted W−k,p′(Ω).

Observe that W−k,p′(Ω) is separable and reflexive for 1 < p <∞.

We will now give another characterization of W−k,p′(Ω) for 1 < p <∞.

Definition 9.67. Let 1 < p <∞. Any element v ∈ Lp
′
(Ω) determines a functional on W k,p

0 (Ω) by
fv(u) = ⟨v, u⟩, since

|fv(u)| ≤ ∥v∥Lp′ (Ω)∥u∥Lp(Ω) ≤ ∥v∥Lp′ (Ω)∥u∥Wk,p(Ω).

We define the (−k, p′)-norm of v ∈ Lp
′
(Ω) as the norm of fv, i.e.,

∥v∥−k,p′ ≡ ∥v∥W−k,p′ (Ω) := ∥fv∥(Wk,p
0 (Ω))′

= sup
u∈Wk,p(Ω)
∥u∥k,p≤1

|fv(u)|

= sup
u∈Wk,p(Ω)
∥u∥k,p≤1

|⟨v, u⟩|.

Observe that ∥v∥−k,p′ ≤ ∥v∥Lp′ (Ω) and

|⟨v, u⟩| = ∥u∥k,p
∣∣∣∣⟨ u

∥u∥k,p
, v⟩

∣∣∣∣ ≤ ∥u∥k,p∥v∥−k,p′

for all u ∈W k,p(Ω) and v ∈ Lp
′
(Ω), which is known as the generalized Hölder’s inequality.

Theorem 9.68. Let 1 < p <∞ and k ≥ 1 be an integer. Then

W−k,p′(Ω) = completion of Lp
′
(Ω) w.r.t. ∥ · ∥−k.p′ .

Proof. First we show that

X =
{
fv | v ∈ Lp

′
(Ω)

}
where fv is as above, is dense in (W k,p

0 (Ω))′. If that is not the case, then there exists a F ∈
(W k,p

0 (Ω))′ \ X̄. By one of the corollaries of Hahn-Banach, there exists l ∈ (W k,p
0 (Ω))′′ such that

l(F ) ̸= 0 and l |X̄ = 0. By reflexivity, there exists a Fl ∈ W k,p
0 (Ω) such that l(F̃ ) = F̃ (Fl)

for every F̃ ∈ (W k,p
0 (Ω))′. Then, for F̃ ∈ X (so F̃ = fv), F̃ (Fl) = fv(Fl) = ⟨v, Fl⟩, but

F̃ (Fl) = l(F̃ ) = l(fv) = 0, so ⟨v, Fl⟩ = 0 for all v ∈ Lp
′
(Ω). Hence, Fl = 0 and thus l = 0

by l(F̃ ) = F̃ (Fl), a contradiction.

Let Y be the completion of Lp
′
(Ω) w.r.t. ∥ · ∥−k,p′ . Define T : Y → (W k,p

0 (Ω))′ by

T (y) = lim
j→∞

fvj

where vj → y in Y and limj→∞ fvj is the limit in (W k,p
0 (Ω))′. Then

(i) T is well defined. If limj→∞ vj = y = limj→∞wj , the limits in Y , then, since ∥v∥−k,p′ =
∥fv∥(Wk,p

0 (Ω))′
,

∥fvj − fwj∥(Wk,p
0 (Ω))′

= ∥vj − wj∥−k,p → 0,

so T (y) = limj→∞ fvj = limj→∞wj , limits in (W k,p
0 (Ω))′.

(ii) T is linear.
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(iii) T is one-to-one. If T (y) = 0, then

0 = lim
j→∞

∥fvj∥(Wk,p
0 (Ω))′

= lim
j→∞

∥vj∥−k,p′

so y = limj→∞ vj = 0 in Y .

(iv) T is onto. Let f ∈ (W k,p
0 (Ω))′. By the above density, f = limj→∞ fvj in (W k,p

0 (Ω))′ for
some {vj} ⊂ X. But

∥vj − vi∥−k,p′ = ∥fvj − fvi∥(Wk,p
0 (Ω))′

thus {vj} is Cauchy in Y , vj → y and

f = lim
j→∞

fvj = T (y).

If T (y) = f , then we have

T (y) = lim
j→∞

fvj , limit in (W k,p
0 (Ω))′

for some vj → y in Y . Because the limit limj→∞ fvj is in (W k,p
0 (Ω))′,

∥T (y)∥
(Wk,p

0 (Ω))′
= lim

j→∞
∥fvj∥(Wk,p

0 (Ω))′
= lim

j→∞
∥vj∥−k,p′

= ∥y∥−k,p
since vj → y in Y . Thus, Y is an isometric isomorphism.

□

We observe the following consequences of the above theorem and its proof:

• Since any f ∈ (W k,p
0 (Ω))′ is of the form

f = lim
j→∞

fvj , vj → v ∈ Y,

we can extend the notation ⟨, ⟩ to mean

⟨v, u⟩ = fv(u) = lim
j→∞

fvj (u) = lim
j→∞

⟨vj , u⟩

for all v ∈ Y and u ∈W k,p
0 (Ω). Thus, any linear functional f onW k,p

0 (Ω) can be represented
as

f(u) = ⟨v, u⟩
for some v ∈W−k,p(Ω), i.e., some v with finite ∥ · ∥−k,p′ norm.

• We can extend the generalized Hölder inequality:

|⟨v, u⟩| ≤ ∥v∥−k,p′∥u∥k,p,

v ∈W−k,p′(Ω), u ∈W k,p(Ω).

Remark 9.69. The same argument as above shows that (W k,p
0 (Ω))′, 1 < p <∞, can be identified

with the completion of Lp
′
(Ω) with respect to the norm

∥|v|∥−k,p′ = sup
u∈Wk,p(Ω)
∥u∥k,p≤1

|⟨v, u⟩|,

v ∈ Lp
′
(Ω), and that the above representation and generalized Hölder’s inequality also hold. Some-

times the dual of W k,p(Ω) is also denoted W−k,p′(Ω) with the ∥ · ∥−k,p′ , norm denoted by ∥| · |∥−k,p′ .

Remark 9.70. We can verify that for p = 2 and Ω = R2, the above construction of H−s agrees
with H(−s).
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Definition 9.71. We define the pairing between Lp
(
[0, T ], H(s)

)
and Lp

′(
[0, T ], H(−s)), as

⟨u, v⟩ =
∫ T

0
((1−∆)

s
2u, (1−∆)−

s
2 v)0dt,

for u ∈ Lp([0, T ], H(s)), v ∈ Lp([0, T ], H(−s)).
(Note that here ⟨ , ⟩ is denoting something different than above.)

The definition makes sense because ((1−∆)
s
2u, (1−∆)−

s
2 v)0 is integrable in t:

|((1−∆)
s
2u, (1−∆)−

s
2 v)0| ≤ ∥u(t)∥H(s)∥v(t)∥H(−s) ,

so

|⟨u, v⟩| ≤ ∥u∥
Lp
(
[0,T ],H(s)

)∥v∥
Lp′

(
[0,T ],H(−s)

)
Notation 9.72. We abbreviate

Lp
(
[0, T ], H(s)

)
= LptH

(s)
x = LptH

s
x

Theorem 9.73. Given f ∈
(
L1
tH

(s)
x

)′
, there exists a v ∈ L∞

t H
(−s)
x such that

f(u) = ⟨u, v⟩

for all u ∈ Lt1H
(s)
x .

Proof. This follows from the duality between H(s) and H(−s) and the Riesz representation theorem.
We leave it as an exercise. □

9.11. Some miscellaneous inequalities. We collect here some inequalities that will be use later
on, mostly in the study of non-linear problems. Their proofs can be found in most books on the
topic.

• Let u1, ..., ul ∈ H l(Rn) ∩ L∞(Rn), α1, ..., αl be multi-indices with
∑l

i=1 |αl| = k. Then

∥Dα1u1 ... D
αlul∥L2(Rn) ≤ C

l∑
i=1

∥Dkui∥L2(Rn)

∏
j ̸=i

∥uj∥L∞(Rn)

(This inequality also holds in C∞
c (Ω) by considering zero extensions)

• Let F ∈ C∞(Rn+1) be such that F (x, 0) = 0 for every x ∈ Rn. Assume that for each
non-negative integer j and multi-index α there exists a continuous increasing function Fα,j
such that

|Dα
xD

α
yF (x, y)| ≤ Fα,j(|y|)

for all (x, y) ∈ Rn+1. Then, if u ∈ Hk(Rn) ∩ L∞(Rn), F (·, u) ∈ W k(Rn) (i.e., it is k-times
weakly differentiable) and its derivatives are given by the chain rule. Moreover, there exists
a continuous increasing function C such that

∥F (·, u)∥Hk(Rn) ≤ C
(
∥u∥L∞(Rn)

)
∥u∥Hk(Rn).

• If u ∈W k,p(Ω), v ∈W k,p(Ω), k > n
p , then uv ∈W k,p(Ω) and

∥uv∥Wk,p(Ω) ≤ C∥u∥Wk,p(Ω)∥v∥Wk,p(Ω).

These assertions hold for Ω satisfying the cone condition.
• Interpolation:

∥u∥H(s2)(Rn) ≤ ∥u∥
s3−s2
s3−s1

H(s1)(Rn)
∥u∥

s2−s1
s3−s1

H(s3)(Rn)
,

s1 < s2 < s3.
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For Ω satisfying the cone condition, we also have, 0 ≤ m ≤ k,

∥u∥Wk,p(Ω) ≤ C
(
ϵ∥u∥Wk,p(Ω) + ϵ−

m
k−m ∥u∥Lp(Ω)

)
|u|Wk,p(Ω) ≤ C

(
ϵ|u|Wk,p(Ω) + ϵ−

m
k−m ∥u∥Lp(Ω)

)
where |u|Wk,p(Ω) :=

(∑
|α|=k |Dαu|p

) 1
p

∥u∥Wk,p(Ω) ≤ C∥u∥
m
k

Wk,p(Ω)
∥u∥

(k−m)
k

Wm,p(Ω)

Moreover, let q satisfy: p ≤ q <∞ if kp > n; p ≤ q ≤ ∞ if kp = n; p ≤ q ≤ p∗ = kp
n−kp if

kp < n. Then

∥u∥Lq(Ω) ≤ C∥u∥θWk,p(Ω)∥u∥
1−θ
Lp(Ω),

θ = n
kp −

n
kq .

10. Necessary and sufficient condition for existence of solutions to linear PDEs

In this section we will assume Ω to be a bounded domain with smooth boundary. We will also
consider only operations of second order. More general domains and operators also be considered
by adapting the proofs below.

Consider the boundary-value problem

(BV P )

{
Lu = f in Ω

Nu = 0 on ∂Ω

where throughout we assume

Lu = aij∂i∂ju+ bi∂iu+ cu,

Nu = α
∂u

∂v
+ β ·Dτu+ γu,

where Dτ is the tangential gradient and aij , bj , c, α, β, γ, are smooth in Ω̄ and aij = aji.

Consider the following formal computation.∫
Ω
vLu =

∫
Ω
v(aij∂i∂ju+ bi∂iu+ cu)

=−
∫
Ω
aij∂iv∂ju−

∫
Ω
v∂ia

ij∂ju−
∫
Ω
bi∂ivu−

∫
Ω
∂ib

ivu

+

∫
Ω
cuv +

∫
∂Ω
aijv∂juvi +

∫
∂Ω
bivuvi

=

∫
Ω
aij∂i∂jvu+

∫
Ω
∂ja

ij∂ivu+

∫
Ω
∂ia

ij∂jvu+

∫
Ω
∂i∂ja

ijvu

−
∫
Ω
bi∂ivu−

∫
Ω
∂ib

ivu+

∫
Ω
cuv +

∫
∂Ω
aijv∂juvi +

∫
∂Ω
bivuvi

−
∫
∂Ω
aij∂ivuvj −

∫
∂Ω
∂ia

ijvuvj

=

∫
Ω
u
[
aij∂i∂jv + (2∂ja

ij − bi)∂iv + (c− ∂ib
i + ∂i∂ja

ij)v
]

+

∫
∂Ω

(aijv∂ju+ bivu− aij∂jvu− ∂ja
ijvu)vj .
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This motivates the following.

Definition 10.1. The formal adjoint L∗ of L is the operator

L∗u = aij∂i∂ju+ (2∂ja
ij∂v − bi)∂iv + (c− ∂ib

i + ∂i∂ja
ij)u

Definition 10.2. Let C∞
N (Ω̄) be the space of u ∈ C∞(Ω̄) satisfying Nu = 0 on ∂Ω. A function

v ∈ C1(Ω̄) is said to satisfy the adjoint boundary condition N∗v = 0 if

(Lu, v)0 = (u, L∗v)

for all u ∈ C∞
N (Ω̄). The space of all v ∈ C∞(Ω̄) satisfying N∗v = 0 will be denoted C∞

N∗(Ω).

Example 10.3. If Nu = u (Dirichlet boundary condition), then N∗v = v since in this case the
boundary term becomes∫

∂Ω
(aijv∂ju+ bivu− aij∂jvu− ∂ja

ijvu)vi =
∫
∂Ω
aij∂juviv

thus one needs v = 0 on ∂Ω, provided aij∂juvi ̸= 0 (say, if L is a an elliptic operator, to be defined
later).

Definition 10.4. Let k be an integer. We say that u ∈ Hk(Ω) is a weak solution to BVP if

(u, L∗v)0 = (f, v)0

for all v ∈ C∞
N∗(Ω).

The idea is that if u is a smooth solution, then integration by parts gives the above equality for
v ∈ C∞

N∗(Ω̄).

In the next theorem and what follows, H−s(Ω) is the dual space of Hs(Ω) (and not of Hs
0(Ω)).

Theorem 10.5. Let s, t ≥ 0 be integers. Then, there exists a weak solution u ∈ Hs(Ω) to BVP for
each f ∈ Ht(Ω) if and only if there exists a constant κ > 0 such that

∥v∥−t ≤ κ∥L∗v∥−s
for all v ∈ C∞

N∗(Ω) (recall ∥ · ∥s = ∥ · ∥Hs(Ω)).

Remark 10.6. Observe that the theorem makes no statement about uniqueness.

Proof. We first need some auxiliary constructions. Let (k ≥ 0, integer)

T : H−k(Ω)︷ ︸︸ ︷
completion of L2(Ω)

w.r.t. ∥·∥−k

→ (Hk(Ω))′

be the isometric isomorphism that identifies these two spaces. Let

R : (Hk(Ω))′ → Hk(Ω)

be the isometric isomorphism given by the Riesz representation theorem. Set

(u, v)−k := (R ◦ T (u), R ◦ T (v))k.

This defines an inner product on H−k(Ω). We have

(u, u)−k = (R ◦ T (u), R ◦ T (u))k = ∥R(T (u))∥2k
= ∥T (u)∥2(Hk(Ω))′ = ( sup

v∈Hk(Ω)
∥v∥k=1

|(u, v)|)2 = ∥u∥2−k,
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so (·, ·)−k generates the H−k(Ω) topology. We already know that an element in (Hk(Ω))′ is rep-
resented by an element in H−k(Ω). Conversely, a g ∈ (Hk(Ω))′ is uniquely represented by a
v ∈ Hk(Ω) via

g(u) = (v, u)0, u ∈ H−k(Ω).

The argument is similar to what we did for the first identification, showing that the functions of
the form gv(u) = (v, u), v ∈ Hk(Ω) form a dense set. Moreover,

∥gv∥(H−k(Ω))′ = sup
u∈H−k(Ω)
∥u∥−k≤1

|(v, u)0|

But we can also write (v, u)0 = fu(v), fu ∈ (Hk(Ω))′. By one of the corollaries of Hahn-Banach,
we can choose a u′ such that fu′(v) = ∥v∥k and ∥fu′∥(Hk(Ω))′ = 1 so

∥gv∥(H−k(Ω))′ = sup
u∈H−k(Ω)
∥u∥−k≤1

|(v, u)0| ≥ |fu′(v)| = ∥v∥k,

thus ∥gv∥(H−k(Ω))′ = ∥v∥k by the generalized Hölder inequality.

Therefore, the construction T : H−k(Ω) → (Hk(Ω))′ carries over to T : Hk(Ω) → (H−k(Ω))′, where
we slightly abuse notation by calling the later map T as well (so we have T : H−k(Ω) → (Hk(Ω))′

for k ∈ Z).
We can now prove the theorem.

Assume the estimate. Set
X = L∗C∞

N∗(Ω̄) ⊂ H−s(Ω).

For f ∈ Ht(Ω), set F : X → R by
F (L∗v) = (f, v)0.

This is well defined because the estimate gives that v = 0 if ∥L∗v∥−s = 0. By the generalized
Hölder inequality,

|F (L∗v)| ≤ ∥f∥t∥v∥−t ≤ κ∥f∥∥L∗v∥−s,
thus F is a bounded linear functional on X. By Hahn-Banach, F extends to F̃ : H−s(Ω) → R,
i.e., F̃ ∈ (H−s(Ω))′. By the foregoing discussion, the linear functional F̃ can be represented by a
u ∈ Hs(Ω) via

F̃ (w) = (u,w)0

for all w ∈ H−s(Ω). In particular, if w ∈ X,

(u,w)0 = (u, L∗v)0 = F̃ (L∗v) = F (L∗v) = (f, v)0,

i.e., (u, L∗v)0 = (f, v)0 for all v ∈ C∞
N∗(Ω̄), showing that u is a weak solution.

We can now prove the converse. Assume that for each f ∈ Ht(Ω) there exists a weak solution
u = uf ∈ Hs(Ω). The map

gf (v) = (f, v)0, v ∈ H−t(Ω),

defines a bounded linear function on H−t(Ω), i.e., gf ∈ (H−t(Ω))′. Since H−t(Ω) is a Hilbert space
as seen above, by the Riesz representation theorem there exists a R(gf ) ∈ H−t(Ω) such that

gf (v) = (R(gf ), v)−t

On the other hand, R(gf ) is the image by T−1 ◦ R−1 of an element in Ht, and this element must
be f since the maps involved are all isometric isomorphisms:

(H−t(Ω))′
R→ H−t(Ω)

T→ (Ht(Ω))′
R→ Ht(Ω),

(T−1 ◦R−1(f), v)−t = gf (v) = (f, v)0
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This holds for every v ∈ H−t(Ω). In particular, for v ∈ C∞
N∗(Ω̄) we have

(T−1 ◦R−1(f), v)−t = (f, v)0 = (uf , L
∗v)0,

|(T−1 ◦R−1(f), v)−t| ≤ ∥uf∥s∥L∗v∥−s ≤ Cf∥L∗v∥−s.

Since the maps T and R are isomorphisms, any w ∈ H−t(Ω) is of the form T−1 ◦R−1(f) for some
f . Thus, we define, for each v ∈ C∞

N∗(Ω̄), the functional

Jv(w) =

(
T−1 ◦R−1(f)︸ ︷︷ ︸

w

,
v

∥L∗v∥−s

)
−t
.

Hence, we have a family {Jv}v∈C∞
N∗ (Ω̄) ⊂ (H−t(Ω))′ with the property that for each w ∈ Ht(Ω)

|Jv(w)| ≤ Cw,

i.e., the family is pointwise bounded. Therefore, by the Banach-Steinhaus theorem, the family
{Jv}v∈C∞

N∗ (Ω̄) is uniformly bounded, i.e., ∥Jv∥(H−t(Ω))′ ≤ C for all v ∈ C∞
N∗(Ω̄). Thus, for any

w ∈ H−t(Ω) ∣∣∣∣( w

∥w∥−t
,

v

∥L∗v∥−s

)
−t

∣∣∣∣ ≤ C.

Choosing w = v gives

∥v∥2−t
∥v∥−t∥L∗v∥−s

≤ C,

hence the result. □

10.1. Egorov’s counterexample: a PDE that is not locally solvable at the origin. For
this section, we will further restrict the notion of weak solution. We continue to assume L and Ω
to have the same form as in the previous section.

Definition 10.7. We say that u ∈ Hs(Ω) is a weak solution to Lu = f in Ω if (u, L∗v)0 = (f, v)0
for all v ∈ C∞

c (Ω), s, t,∈ Z.

Definition 10.8. Let Ω ⊂ Rn contain the origin. We say that L is locally solvable at the origin
if given f ∈ C∞

c (Ω), there exists a Ω̃ ⊂ Ω, Ω̃ ∋ 0, and a u ∈ H−s(Ω), s ∈ N, such that Lu = f holds

weakly in Ω̃.

We will henceforth consider the operator

Lu = ∂2t u− a2(t)∂2xu+ b(t)∂xu,

(t, x) ∈ R2, a, b ∈ C∞(R). We will present an example, due to Egorov, of a choice of, a, b such that
L is not locally solvable at the origin. The construction is a bit tedious, involving some cumbersome
computations, and we will give only the main steps.

Lemma 10.9. If Lu = f always has a (weak) solution in Ω ⊂ R2 for any given f ∈ C∞
c (Ω) then

there exists a C > 0 and N ∈ N such that

∥v∥0 ≤ C∥L∗v∥N
for all v ∈ C∞

c (Ω).

Proof. Using that now we established H−k(Ω) ≃ (Hk(Ω))′, the necessary condition for existence
can be extended for s, t ∈ Z. Thus there exist s, t ∈ Z and C > 0 such that:

∥v∥s ≤ C∥L∗v∥t (10.1)
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If s ≥ 0, then ∥v∥0 ≤ ∥v∥s and we choose N ≥ t. Otherwise, note first that we can assume t ≥ s
since if t < s then we can choose t̃ ≥ s and work with t̃ instead (so ∥L∗v∥t ≤ ∥L∗v∥t̃). Since
Dα
xv ∈ C∞

c (Ω) if v ∈ C∞
c (Ω), we can apply the inequality (10.1) to Dα

xv,

∥Dα
xv∥s ≤ C∥L∗Dα

xv∥t = C∥Dα
xL

∗v∥t ≤ C∥L∗v∥t+|α|

where we used that L∗v = ∂2t v − a(t)∂2xv − b(t)∂xv. This latter expression also gives

∥∂2t v∥s−1 ≤ C ∥L∗v∥s−1︸ ︷︷ ︸
≤∥L∗v∥t+1

by s≤t

+ ∥∂2xv∥s−1 + ∥∂xv∥s−1︸ ︷︷ ︸
≤∥L∗v∥t+1

by the above with Dα
x=∂

2
x

and s−1 in place of s

≤ C∥L∗v∥t+1

Then

∥v∥s+1 ≤ ∥v∥s︸︷︷︸
≤||L∗v||t

+ ∥∂2t v∥s−1 + ∥∂2xv∥s−1︸ ︷︷ ︸
≤C||L∗v||t+1

≤ C∥L∗v∥t+1.

Iterating this argument

∥v∥s+l ≤ C∥L∗v∥t+l
and we choose l such that s+ l = 0 and N = t+ l. □

Theorem 10.10. There exist a, b ∈ C∞(R) such that given f ∈ C∞
c (Ω), Ω containing the origin

in R2, Lu = f has no weak solution u ∈ H−s(Ω), s ∈ N.

Remark 10.11. This is not yet saying that L is not locally solvable.

Proof. Set

a(t) :=

{
e−t

2−sin−2
(

1
t2

)
, t > 0,

0, t ≤ 0,

b(t) :=

{
−2a(t)ξ′(t)− a′(t), t > 0

0, t ≤ 0,

where ξ(t)− sin−4(1t )− ln(t). One can verify that these functions are smooth.

Notice that a oscillates very fast on the intervals Iµ :=
(

1
π(µ+1) ,

1
πµ

)
. We will use this to violate the

inequality in the previous Lemma by constructing a sequence of functions vµλ ∈ C∞
c (Iµx(− 2

λ ,
2
λ))

which makes the RHS smaller than the LHS for large µ, λ.

We first search for approximate solutions L∗vµv ≈ 0. The change of variables t̄ = t, x̄ = x−
∫ t
0 a(t

′)dt′

is smooth near the origin and setting v̄(t̄, x̄) = v(t, x),

L∗v̄ =
∂v̄

∂t̄2
− 2a

∂2v̄

∂x̄∂t̄
− (b+ a′)

∂v̄

∂x̄

=
∂2v̄

∂t̄2
− 2a

∂2v̄

∂x̄∂t̄
− 2ξ′a

∂v̄

∂x̄

We now drop the ¯’s. Set

vµλ(t, x) =
l∑

i=0

1

λi
zi(t)wi(λx)
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for zi ∈ C∞
c (Iµ), wi ∈ C∞

C (−1, 1), so vµλ ∈ C∞
c (Jµλ), Jµλ := Iµ × (− 1

λ ,
1
λ). Calculate

L∗vµλ = −λ2aw′
0(z

′
0 + ξ′z0)

+ z′′0w0 − 2aw′
1(z

′
1 + ξ′z1)

+
1

λ
(z′′1w1 − 2aw′

2(z
′
2 + ξ′z2))

+ ...

+
1

λl
z′′l wl.

Take wl ∈ C∞
c (−1, 1) and set

wi(x̃) = (
d

dx̃
)l−iwl(x̃), x̃ = λx,

so w′
i+1 = wi. Set

z0 = e−ξ

zi+1(t) = e−ξ(t)
∫ t

0

z′′i (t
′)

2a(t′)
eξ(t

′)dt′.

then zi ∈ C∞(Iµ)
(
e− sin−4( 1

t
) dominates (

z′′i
2a )e

ξ because the latter is o(t−αeβ sin−2( 2
t
)), α, β > 0

)
.

Then, with these choices vµλ ∈ C∞
c (Jµλ). Moreover,

∥L∗vµλ∥HN (Jµλ)
≤ CµlN︸ ︷︷ ︸

does not
depend on λ

λ−N ,

and

∥vµλ∥2Lα(Jµλ)
≥

∫
Jµλ

e−2ξ(t)w2
0(λx) dt dx− Dµl︸︷︷︸

does not depend
on λ or N

λ−1

Compute ∫ 1
λ

− 1
λ

w2
0(λx) dx =

λx=x̃

∫ 1

−1
w2
0(x̃)λ

−1 dx̃ = λ−1 Cl︸︷︷︸
depends on l

because w0 does

Thus

∥vµλ∥2L2(Jµλ)
≥ Eµl︸︷︷︸

does not depend
on λ or N

λ−1

Thus, for large µ and large λ (choosing λ after fixing µ large) we violate the inequality of the
previous lemma. □

Corollary 10.12. There exists f ∈ C∞
c (R2) such that Lu = f has no weak solution u ∈ H−s(Ω),

s ∈ N, for any Ω containing the origin.

Proof. For a fixed Ω containing the origin, set

Xs(Ω) :=
{
f ∈ C∞

c (R2) | Lu = f has a weak solution u ∈ H−s(Ω) such that ∥u∥−s ≤ |s|+ 1
}

X(Ω) :=
{
f ∈ C∞

c (R2) | Lu = f has a weak solution u ∈ H−s(Ω) for some s ∈ N
}
.

If f ∈ X(Ω), then f ∈ Xs(Ω) for some s. For, if u ∈ H−s0(Ω) is a weak solution, then since
∥u∥−s ≤ ∥u∥−s0 ,−s ≤ −s0, we have u ∈ H−s(Ω), −s ≤ −s0. If there is no s such that ∥u∥s ≤ |s|+1,
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then we have ∥u∥−s > |s|+1 for all −s ≤ −s0, so taking −s to be sufficiently negative we can make
∥u∥−s0 arbitrarily large. Thus

X(Ω) =
∞⋃

s=−∞
Xs(Ω).

X(Ω) is a Fréchet space with topology given by the collection of semi-norms ∥ · ∥s, s ∈ N. Thus, its
topology is generated by open sets

Us1,...,sl =
{
x ∈ X(Ω) | ∥x∥s1 < ϵ, ..., ∥x∥sl < ϵ

}
.

Hence xi → x in X(Ω) iff ∥xi − x∥s → 0 for each s ∈ N.

Let {fj} ⊂ Xs(Ω) converge to f . For each j there exists fj such that Luj = fj weakly and
∥uj∥−s ≤ |s| + 1, so the sequence {uj} is bounded in H−s(Ω) and thus has a convergent sub-
sequence, still denoted {uj}, converging to a limit u ∈ H−s(Ω). But (fj , v)0 → (f, v)0 for all
v ∈ C∞

c (Ω). We also have (uj , L
∗v)0 → (u, L∗v)0 for all v ∈ C∞

c (Ω), since H−s(Ω) ↪→ H−s−1(Ω)
compactly, −s− 1 < −s, uj → u in H−s−1(Ω), which gives the claim. Therefore,

Lu = f weakly,

and we conclude that Xs(Ω) is closed.

Let f ∈ Xs(Ω). By the above, there exists a f̂ ∈ C∞
c (Ω) such that Lu = f̂ has no weak solu-

tion u ∈ H−s(Ω) for any s ∈ N. If f + tf̂ ∈ Xs(Ω), then there exists a w ∈ H−s(Ω) such that

Lw = f + tf̂ weakly. And since Xs(Ω), there exists a z ∈ H−s(Ω) such that Lz = f weakly. But
then

1

t
L(w − z) =

1

t
(f + tf̂ − f) = f̂ weakly,

contradicts the properties of f̂ . Since f + tf̂ → f as t→ 0+, f cannot be an interior point. Thus,
Xs(Ω) has an empty interior.

Therefore, X(Ω) is of first category. Now, set

Yi :=
{
f ∈ C∞

c (R) | Lu = f has a weak solution u ∈ H−s(Ωi) for some s ∈ N
}
,

where {Ωi}∞i=1 is a collection of nested open sets with smooth boundary that form a countable basis
for open sets containing the origin.

By the above each Yi is of first category. By the Baire category theorem, C∞
c (Rn) ̸=

⋃∞
i=1 Yi,

thus there exists an f ∈ C∞
c (Rn) \

⋃∞
i=1 Yi, and such f has the desired property.

□

11. Linear elliptic PDEs

In this section we consider the following boundary value problem for a unknown function u

(BVP)

{
Lu = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn and L is given by

Lu = −∂i(aij∂ju) + bi∂iu+ cu

and aij = aji.
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Remark 11.1. If the coefficients aij are sufficiently regular we can write

Lu = −aij∂i∂ju+ (bi − ∂ja
ij︸ ︷︷ ︸)

=b̃i

∂iu+ cu

the operator L is said to be in divergence form if written as in (BVP) and in non-divergence
form if written as in this last expression. The negative sign in −∂i(aij∂ju) is for convenience (we
will consider integration by parts).

Definition 11.2. The operator L is (uniformly) elliptic in Ω if there exists a constant Λ > 0
such that

aij(x)ξiξj ≥ Λ|ξ|2

a.e. in Ω for all ξ ∈ Rn.
An obvious example is the case aij = δij , bi = 0, c = 0, so L = −∆. The motivation for

this definition is as follows. The definition says that the matrix (aij) is positive definite, with
smallest eigenvalue ≥ Λ. This implies that given x0 ∈ Ω, there exists a coordinate transformation
yj = ψj(x1, ..., xn) in the neighborhood of x0 such that Lu reads

(L̃ũ)(y) = − ∂

∂yi
(
ãij(y)

∂

∂yj
ũ(y)

)
+ b̃i

∂

∂ỹi
ũ(y) + c̃(y)ũ(y),

where ãij(y0) = δij , y0 = ψ(x0). So an elliptic operator is locally comparable to the Laplacian.
We will see that many of the basic properties of Laplace’s equation remain valid for elliptic oper-
ators. Note that if aij are the components of a (inverse) Riemannian metric, the above change of
coordinates is realized by normal coordinates.

Definition 11.3. Let L be an elliptic operator and assume that aij , bi, c ∈ L∞(Ω). The bilinear
form

B : H ′
0(Ω)×H ′

0(Ω) → R
associated with L is

B(u, v) :=

∫
Ω
(aij∂iu∂jv + biv∂iu+ cvu)dx.

We say that u ∈ H ′
0(Ω) is a weak solution to (BVP) if

B(u, v) = (f, v)0

for all v ∈ H ′
0(Ω).

The idea of weak solutions is that if u is u satisfies (BVP) pointwise, multiplying Lu = f by
v ∈ H ′

0(Ω) and integrating by parts we get B(u, v) = (f, v)0.

Remark 11.4. Because a weak solution u is in H ′
0(Ω), it has zero trace on ∂Ω (when the trace is

well-defined). Whenever talking about u|∂Ω it will always be meant in the trace sense.

Definition 11.5. We say that u is a strong solution to Lu = f in Ω if u is twice weakly
differentiable and satisfies Lu = f a.e. in Ω. u is a strong solution to (BVP) if it is a strong
solution to Lu = f such that u|∂Ω = 0.

Observe that if u is a weak solution that is sufficiently regular, then we can integrate by parts
and obtain that it is a strong solution.

11.1. Existence of weak solution. Strategy to solve (BVP):

• Find (unique) weak solutions: easier because weak solutions are more general.
• Prove regularity: show that the weak solution is in fact sufficiently differentiable, so it is a
strong solution.

We will need the following theorems from functional analysis.
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Theorem 11.6. (Lax-Milgram theorem). Let H be a real Hilbert space and let B : H×H → R
be a bilinear form that is bounded, i.e.,

|B(x, y)| ≤ h∥x∥∥y∥

for some constant h > 0 and all x, y ∈ H, and coercive, i.e.,

l∥x∥2 ≤ B(x, y)

for some constant l > 0 and all x, y ∈ H. Let f : H → R be a bounded linear functional. Then,
there exists a unique z ∈ H such that

B(z, x) = ⟨f, x⟩

for all x ∈ H, where ⟨ , ⟩ is the pairing between H and H ′.

Definition 11.7. Let X and Y be real Banach spaces. A bounded linear map κ : X → Y is called
compact if given a bounded sequence {x}∞j=1 ⊂ X, the subsequence {κx}∞j=1 ⊂ Y is pre-compact

in Y , i.e., {κx}∞j=1 has a convergent subsequence.

Theorem 11.8. Let H be a real Hilbert space. If κ : H → H is compact, so is its adjoint
κ∗ : H → H.

Theorem 11.9. (Fredholm alternative). Let H be a real Hilbert space and κ : H → H a
compact operator. Then

(i) ker(I − κ) is finite dimensional.
(ii) range(I − κ) is closed.
(iii) range(I − κ) = ker(I − κ∗)⊥.
(iv) ker(I − κ) = {0} if and only if range(I − κ) = H.
(v) dim ker(I − κ) = dim(I − κ∗).

(I is the identity operator.)

Theorem 11.10. There exists constants k, l > 0 and m ≥ 0 such that

|B(u, v)| ≤ k∥u∥H′
0(Ω)∥v∥H′

0(Ω)

and

l∥u∥2H′
0(Ω) ≤ B(u, u) +m∥u∥2L2(Ω)

for all u, v ∈ H ′
0(Ω).

Proof.

|B(u, v)| ≤
n∑

i,j=1

∥aij∥L∞(Ω)

∫
Ω
|∇u||∇v|

+

∞∑
i=1

∥bi∥L∞(Ω)

∫
Ω
|∇u||v|+ ∥c∥L∞(Ω)

∫
Ω
|u||v|

≤ C∥u∥H′
0(Ω)∥v∥H′

0(Ω)
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The ellipticity of L gives

Λ

∫
Ω
|∇u|2 ≤

∫
Ω
aij∂iu∂ju = B(u, u)−

∫
Ω
(bi∂iuu+ cu2)

≤ B(u, u) +
∞∑
i=1

∥bi∥L∞(Ω)

∫
Ω

|∇u||u|︸ ︷︷ ︸
≤ϵ|∇u|2+ 1

4ϵ
u2︸ ︷︷ ︸

≤Λ
2

∫
Ω |∇u|2+C

∫
Ω u

2 if ϵ is sufficiently small.

+ ∥c∥L∞(Ω)

∫
Ω
u2

=⇒ Λ

2

∫
Ω
|∇u|2 ≤ B(u, u) + C

∫
Ω
u2.

Because u ∈ H ′
0(Ω), we have (Poincaré inequality)

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω),

which gives the result. □

Theorem 11.11. There exists a m ≥ 0 such that, for each µ ≥ m, and each f ∈ L2(Ω), there
exists a unique weak solution u ∈ H ′

0(Ω) to{
Lu+ µu = f in Ω,

u = 0 on ∂Ω.

Proof. Take m ≥ 0 from the previous theorem. The bilinear form

Bµ(u, v) := B(u, v) + µ(u, v)

corresponds to the operator Lµu := Lu + µu. Bµ then satisfies the assumptions of Lax-Milgram
since µ(u, u) ≥ l(u, u). Given f ∈ L2(Ω), set

⟨f, v⟩ := (f, v)0,

v ∈ H ′
0(Ω), which is a bounded linear functional, so by Lax-Milgram there exists a unique u ∈ H ′

0(Ω)
such that

Bµ(u, v) = (f, v)0

for all v ∈ H ′
0(Ω).

□

Definition 11.12. The formal adjoint to L is the operator L∗ defined by

L∗v = −∂i(aij∂jv)− bi∂iv + (c− ∂ib
i)v

if b ∈ C ′(Ω̄). The adjoint bilinear form B∗ : H ′
0(Ω)×H ′

0(Ω) → R is defined by

B∗(v, u) = B(u, v).

We say that v ∈ H ′
0(Ω) is a weak solution to the adjoint problem{

L∗v = f in Ω,

v = 0 on ∂Ω,

if B∗(v, u) = (f, u)0 for all u ∈ H ′
0(Ω).
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The above definition is again inspired by integration by parts:∫
Ω
vLu = −

∫
Ω
∂i(a

ij∂ju)v +

∫
Ω
bi∂iuv +

∫
Ω
cuv

=

∫
Ω
aij∂ju∂iv +

∫
Ω
bi∂iuv +

∫
Ω
cuv = B(u, v)

= −
∫
Ω
∂j(a

ij∂iv)u−
∫
Ω
(bi∂ivu+ ∂ib

iuv) +

∫
Ω
cuv

=

∫
Ω
uL∗v.

On the other hand, the bilinear form B∗(v, u) such that∫
Ω
L∗vu = B∗(v, u),

so B∗(v, u) = B(u, v).

The next theorem characterizes the solvability of (BVP).

Theorem 11.13. (Fredholm alternative for elliptic operators). Exactly one of the following
statements holds:

(i) For each f ∈ L2(Ω) there exists a unique weak solution u to

(BVP)

{
Lu = f in Ω,

u = 0 on ∂Ω,

or else
(ii) There exists a weak solution u ̸= 0 to

(BVP - H)

{
Lu = 0 in Ω,

u = 0 on ∂Ω,

Furthermore, if (ii) holds, then the dimension of the subspace N ⊂ H ′
0(Ω) of weak solutions to

(BVP-H) is finite and equals the dimension of the subspace N∗ ⊂ H ′
0(Ω) of weak solutions to

(BVP - H)∗
{
L∗v = 0 in Ω,

v = 0 on ∂Ω,

Finally, (BVP) admits a weak solution iff (f, v)0 = 0 for all v ∈ N∗.

Remark 11.14. The theorem says, loosely speaking, that we can solve (BVP) iff f is orthogonal
to the kernel of the adjoint operator. Compare with the similar statement in linear algebra.

Proof. Let m ≥ 0 be the constant from the previous theorem and set

Lmu := Lu+mu,

with corresponding bilinear form

Bm(u, v) := B(u, v) +m(u, v)0.

Then, given g ∈ L2(Ω) there exists a unique u ∈ H ′
0(Ω) such that Bm(u, v) = (g, v)0 for all

v ∈ H ′
0(Ω). This defines a linear map L−1

m : L2(Ω) → H ′
0(Ω), g 7→ u.

u ∈ H ′
0(Ω) is a weak solution to (BVP) iff B(u, v) = (f, v)0

which is equivalent to

Bm(u, v) = B(u, v) +m(u, v)0 = (f +mu, v)0
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for all v ∈ H ′
0(Ω). But this means that u = L−1

m (g) with g = f +mu, i.e.,

u = L−1
m (f +mu).

We can write this equation as
u−mL−1

m u︸ ︷︷ ︸
=:κu

= L−1
m f︸ ︷︷ ︸
=:h

.

Let us show that κ defines a compact operator κ : L2(Ω) → L2(Ω). We have, for any g ∈ L2(Ω),

m∥u∥2H′
0(Ω) ≤ Bm(u, u) =

taking v = u
(g, u)0 ≤ ∥g∥L2(Ω)∥u∥L2(Ω) ≤ ∥g∥L2(Ω)∥u∥H′

0(Ω)

=⇒ m∥u∥H′
0(Ω) ≤ ∥g∥L2(Ω).

But u = L−1
m g = 1

mκg (if m = 0 then Lm = L and there is nothing left to prove). Thus,

κ : L2(Ω) → H ′
0(Ω) is bounded. Since H ′

0(Ω) ↪→ L2(Ω) compactly, κ : L2(Ω) → L2(Ω) is compact.
Thus, by the Fredholm alternative, ker(I − κ) = {0} if and only if range(I − κ) = H. Thus, either
u− κu = h has a unique solution u ∈ L2(Ω) for each h ∈ L2(Ω) or else u− κu = 0 has a non-zero
solution u ∈ L2(Ω). In the former case, taking h = L−1

m f , we have h ∈ H ′
0(Ω) thus by the foregoing

u is in fact in H ′
0(Ω) and is a weak solution to (BVP). In the latter case, necessarily m > 0, and

the dimension of the space N of solution to

u− κu = 0

is finite and equals the dimension of space N∗ of solution, to

v − κ∗v = 0.

Let us show that u − κu = 0 iff u is a weak solution to (BVP-H) and v − κ∗v = 0 iff v is a weak
solution to (BVP-H)∗.

Observe that:

u− κu = 0 ⇔ 1

m
u = L−1

m u

L−1
m g=u means

Bm(u,v)=(g,v)0 for all

v∈H′
0(Ω) with g=

1
mu

⇐⇒ Bm

(
1

m
u, v

)
= (u, v)0 ⇔

B(u, v) +m(u, v)0 = (mu, v)0 ⇔ B(u, v) = 0

for all v ∈ H ′
0(Ω), i.e., u ∈ H ′

0(Ω) is a weak solution to (BVP-H). (u ∈ H ′
0(Ω) because u = mL−1

m u,
and L−1

m : L2(Ω) → H ′
0(Ω) ⊂ L2(Ω)).

For (BVP-H)∗, notice that the formal adjoint L∗
m is L∗

mu = L∗u + mu, with corresponding bi-
linear form

B∗
m(v, u) = Bm(u, v).

Thus we also obtain a bounded operator

m(L∗
m)

−1 = κ̃ : L2(Ω) → H ′
0(Ω)

that is compact into L2(Ω). Then, for any u, v ∈ L2(Ω), κu, κ̃v ∈ H ′
0(Ω) and

Bm(κu, κ̃v) = mBm(L
−1
m u, κ̃v) = m(u, κ̃v)0

→ L−1
m u = w ⇔ Bm(w, z) = (u, z)0 ∀z ∈ H ′

0(Ω)

Bm(κu, κ̃v) = B∗
m(κ̃v, κu) = mB∗

m((L
∗
M )−1v,κu) = m(v, κu)0

→ (L∗
m)

−1v = z ⇔ B∗
m(z, w) = (v, w)0 ∀w ∈ H ′

0(Ω)

Thus
(u, κ̃v)0 = (v, κu)0 = (κ∗v, u)0
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for all u, v ∈ L2(Ω). Thus κ∗ = m(L∗
m)

−1 and the same argument used for u− κu = 0 shows that
v − κv∗ = 0 iff v is a weak solution to (BVP-H)∗.

For the last statement of the theorem, note that since u − κu = h has a solution iff h ⊥
L2
N∗,

with h = L−1
m f we have

(h, v)0 =
1

m
(κf, v)0 =

1

m
(f, κ∗v) =

1

m
(f, v),

v ∈ N∗.
□

Theorem 11.15. There exists at most a countable set Σ ⊂ R such that{
Lu = λu+ f in Ω

u = 0 on ∂Ω

has a unique weak solution for each f ∈ L2(Ω) if and only if λ /∈ Σ. If Σ is infinite, then
Σ = {λj}∞j=1, and λj is a non-decreasing sequence with λj → ∞ as j → ∞.

Proof. Considering again, L−1
m , this follows from properties of eigenvalues of compact operators.

□

Definition 11.16. Σ is called the spectrum of L and the vales λ ∈ Σ the eigenvalues of L.

Corollary 11.17. If λ /∈ Σ, then there exists a constant C > 0 such that

∥u∥L2(Ω) ≤ C∥f∥L2(Ω)

for u ∈ H ′
0(Ω) the unique weak solution to{

Lu = λu+ f in Ω

u = 0 on ∂Ω

Proof. If not, there exist {f}∞j=1 ⊂ L2(Ω), {uj}∞j=1 ⊂ H ′
0(Ω) weak solutions such that ∥uj∥L2(Ω) >

j∥f∥L2(Ω). Replacing uj , fj by
uj

∥uj∥L2(Ω)
,

fj
∥uj∥L2

, we can assume that ∥u∥L2(Ω) = 1, then fj → 0 in

L2(Ω). Since

m∥u∥2H′
0(Ω) ≤ B(u.u)︸ ︷︷ ︸

(u,f)0

+ l∥u∥2L2(Ω),

∥u∥H′
0(Ω) ≤ C so uj → u weakly in H ′

0(Ω) and uj → u in L2(Ω). It follows that u is a weak solution
to {

Lu = λu in Ω

u = 0 on ∂Ω

Since λ /∈ Σ, u = 0, but ∥u∥L2(Ω) = 1. □

Remark 11.18. The constant above → ∞ as λ→ Σ.

11.2. Elliptic regularity.

Theorem 11.19. (interior regularity). Let aij ∈ C1(Ω) (bi, c ∈ L∞(Ω)), f ∈ L2(Ω) and

u ∈ H ′
0(Ω) be a weak solution to BVP. Then u ∈ H2

loc(Ω), Lu = f a.e. in Ω, and for each Ω̃ ⊂⊂ Ω,

there exists a constant C = C(Ω̃, aij , bi, c) such that

∥u∥H2(Ω̃) ≤ C
(
∥f∥L2 + ∥u∥L2

)
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Proof. Let Ω′ be such that

Ω̃ ⊂⊂ Ω′ ⊂⊂ Ω

and 0 ≤ ψ ≤ 1 be a C∞
c (Ω′) such that ψ = 1 in Ω̃. Since B(u, v) = (f, v)0 for all v ∈ H ′

0(Ω), we
have ∫

Ω
aij∂iu∂jv =

∫
Ω
f̃v, (11.1)

f̃ = f − bi∂iu− cu. Let

Dh
l u(x) :=

u(x+ hel)− u(x)

h
be the difference quotient of u, assume |h| small and set

v := −D−h
l (ψ2Dh

l u).

Note that v ∈ H ′
0(Ω). We also note the formulas∫

Ω
zD−h

l w = −
∫
Ω
wDh

l z

(integration by parts), z compactly supported, h small, and

Dh
l (zw) = zhDh

l w + wDh
l z

(product rule) where zh(x) := z(x+ hel). Then

LHS(11.1) =−
∫
Ω
aij∂iu∂j(D

−h
l (ψ2Dh

l h))

=

∫
Ω
Dh
l (a

ij∂ju)∂j(ψ
2Dh

l h)

=

∫
Ω

[
(aij)hDh

l ∂ju∂j(ψ
2Dh

l u) +Dh
l a

ij∂iu∂j(ψ
2Dh

l u)
]

=

∫
Ω
(aij)hDh

l ∂juD
h
l ∂juψ

2

+

∫
Ω

[
2ψ∂ju(a

ij)hDh
l ∂juD

h
l u+Dh

l a
ij∂iuD

h
l ∂juψ

2

+ 2ψ∂jψD
h
l a

ij∂iuD
h
l u

]
= I1 + I2.

By ellipticity (with ξ = ψDh
l ∇u)

Λ

∫
Ω
ψ2

∣∣Dh
l ∇u

∣∣2 ≤ I1.

For I2,

|I2| ≤ C

∫
Ω′

(
ψ|Dh

l ∇u||Dh
l u|︸ ︷︷ ︸

≤ϵψ2|Dh
l ∇u|2+

C
ϵ
|Dh

l u|2

+ ψ2 |∇u||Dh
l ∇u|

)︸ ︷︷ ︸
≤C

ϵ
|∇u|2+|Dh

l ∇u|2

≤ ϵ

∫
Ω
ψ2|Dh

l ∇u|2 +
C

ϵ

∫
Ω′

(
|Dh

l u|2 + |∇u|2
)
.

We will show in a lemma below that∫
Ω′

|Dh
l u|2 ≤ C

∫
Ω
|∇u|2, thus

|I2| ≤ ϵ

∫
Ω
ψ2|Dh

l ∇u|2 + C

∫
Ω
|∇u|2,
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so

LHS(11.1) = I1 + I2 ≥
Λ

2

∫
Ω
ψ2|Dh

l ∇u|2 − C

∫
Ω
|∇u|2

Next,

RHS(11.1) =

∫
Ω
f̃v ≤ C

∫
Ω

(
|f |+ |∇u|+ |u|

)
|v|

≤ C

∫
Ω

(
f2 + u2 + |∇u|2

)
+ ϵ

∫
Ω
v2.

By the Lemma below ∫
Ω
v2 ≤ C

∫
Ω
|∇(ψ2Dh

l u)|2

≤ C

∫
Ω′

|Dh
l u|2 + C

∫
Ω′
ψ2|Dh

l ∇u|2, so

RHS(11.1) ≤ ϵ

∫
Ω
ψ2|Dh

l ∇u|2 + C

∫
Ω

(
f2 + u2 + |∇u|2

)
.

Therefore ∫
Ω̃
|Dh

l ∇u|2 ≤
∫
Ω
ψ2|Dh

l ∇u|2 ≤ C

∫
Ω

(
f2 + u2 + |∇u|2

)
.

By the lemma below ∇u ∈ H ′
loc(Ω) so u ∈ H2

loc(Ω) and

∥u∥H2(Ω̃) ≤ C
(
∥u∥H′(Ω) + ∥f∥L2(Ω)

)
.

Next, observe that if we repeat the argument in a set Ω̃ ⊂ Ω′ ⊂ Ω, we in fact have

∥u∥H2(Ω̃) ≤ C
(
∥u∥H′(Ω′) + ∥f∥L2(Ω)

)
.

In (11.1) choose v = ψ2u, 0 ≤ ψ ≤ 1, ψ = 1 in Ω′, ψC∞
c (Ω). Then∫

Ω
ψ2|∇u|2 ≤ C

∫
Ω

(
u2 + f2

)
.

□

Lemma 11.20. Let u ∈W 1,p(Ω), 1 ≤ p <∞. For each Ω̃ ⊂⊂ Ω,

∥Dhu∥Lp(Ω̃) ≤ C∥∇u∥Lp(Ω),

Dhu = (Dh
1u, ...,D

h
nu), 0 < |h| < 1

2dist(Ω̃, ∂Ω).

If 1 < p <∞ and u ∈ Lp(Ω̃) satisfies

∥Dhu∥Lp(Ω̃) ≤ C,

0 < |h| < 1
2dist(Ω̃, ∂Ω), then u ∈W 1,p(Ω̃) and ∥∇u∥Lp(Ω̃) ≤ C.

Proof. Assume first u smooth. Then

u(x+ hel)− u(x) =

∫ 1

0

d

dt
u(x+ thel)dt =

∫ 1

0
∇u(x+ thel) · heldt∣∣∣∣u(x+ hel)− u(x)

h

∣∣∣∣ ≤ ∫ 1

0

∣∣∇u(x+ tel)
∣∣dt

Set ∫
Ω̃
|Dhu|pdx
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Then, using Jensen’s inequality,

∫
Ω̃
|Dhu|pdx ≤ C

n∑
l=1

∫
Ω̃

∫ 1

0
|∇u(x+ tel)|pdtdx

≤ C

∫ 1

0

∫
Ω̃
|∇u(x+ tel)|pdxdt

≤ C∥∇u∥pLp(Ω).

Assume now ∥Dhu∥Lp(Ω̃) ≤ C, 1 < p <∞. Then

sup
h

∥D−hu∥Lp(Ω̃) <∞,

so there exists a vl ∈ Lp(Ω̃) such that D−h
l u→ vl weakly in Lp(Ω̃) as h→ 0, so

∫
Ω̃
u∂lψ =

∫
Ω
u∂lψ = lim

h→0

∫
Ω
uDh

l ψ = − lim
h→0

∫
Ω̃
D−h
l uψ

= −
∫
Ω̃
vlψ = −

∫
Ω
vlψ,

so vl = ∂lu in the weak sense, ∇u ∈ Lp(Ω).
□

Theorem 11.21. (higher elliptic regularity). Let the coefficients aij , bi, c ∈ Ck+1(Ω) and

f ∈ Hk(Ω), k ≥ 0 an integer. If u ∈ H ′
0(Ω) is a weak solution to (BVP), then u ∈ Hk+2

loc (Ω) and

for each Ω̃ ⊂⊂ Ω

∥u∥Hk+2(Ω̃) ≤ C
(
∥f∥Hk(Ω) + ∥u∥L2(Ω)

)
.

In particular, if aij , bi, c, f ∈ C∞(Ω̄), then u ∈ C∞(Ω).

Proof. This is proven by induction in k, with k = 0 done above.
□

Theorem 11.22. (boundary regularity). Assume that aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω), f ∈ L2(Ω),
and ∂Ω is C2. Let u ∈ H ′

0(Ω) be a weak solution to (BVP). Then u ∈ H2(Ω), Lu = f a.e. in Ω,
and there exists a constant C = C(Ω, aij , bi, c) such that

∥u∥H2(Ω) ≤ C
(
∥f∥L2 + ∥u∥L2

)
.

Proof. Consider first the case

Ω = B1(0) ∩ Rn+.

Set Ω̃ := B 1
2
(0) ∩ Rn+ and let ψ ∈ C∞

c (B1(0)) be such that 0 ≤ ψ ≤ 1, ψ = 1 in B 1
2
(0). Note that

ψ = 1 in Ω̃.
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Rn−1

xn

B1(0)

B1/2(0)

Ω

Figure 30. Ω = B1(0) ∩ Rn+

We have ∫
Ω
aij∂iu∂jv =

∫
Ω
f̃v

for all v ∈ H ′
0(Ω), where f̃ := f − bi∂iu− cu.

For h small and l ∈ {1, ..., xn−1}, put

v := −D−h
l (ψ2Dh

l u).

We have

v(x) = −D−h
l

(
ψ2u(x+ hek)− u(x)

h

)
= − 1

h2
[
ψ2

(
x− hel

)(
u(x)− u(x− hel)

)
− ψ2(x)

(
u(x+ hel)− u(x)

)]
The RHS has a weak derivative for x ∈ Ω (recall that 1 ≤ l ≤ n− 1) and u = 0 on {xn = 0} (in the
trace sense), thus v ∈ H ′

0(Ω). We thus repeat the proof given in the first regularity to conclude

∂lu ∈ H ′(Ω̃), l = 1, ..., n− 1,

and

∥∂l∇u∥L2(Ω̃) ≤ C
(
∥f∥L2(Ω) + ∥u∥H′(Ω)

)
, l = 1, ..., n− 1.

Since we already know u ∈ H2
loc(Ω), we have Lu = f a.e. in Ω, thus, since aij ∈ C1(Ω̄),

−aij∂i∂ju+ (bi − ∂ja
ij)∂iu+ cu = f

so

ann∂2nu = −
n∑

i,j=1
i+j<2u

aij∂i∂ju+
(
bi − ∂ja

ij
)
∂iu+ cu− f.

By the above estimate for ∂l∇u, l = 1, ..., n− 1, we have ∂2nu ∈ L2(Ω̃) so u ∈ H2(Ω̃), (ann ≥ C > 0
by ellipticity, take ξ = en). As before we also obtain

∥u∥H2(Ω̃) ≤ C
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
.
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Using the compactness of Ω̄ and local flattenings of the boundary, we obtain the general result,
including the desired estimate in H2(Ω).

□

Remark 11.23. Observe how we made specific use of the structure of the equation to estimate
∂2nu.

Theorem 11.24. (higher boundary regularity). Assume that aij , bi, c ∈ Ck+1(Ω̄), f ∈ Hk(Ω),
and ∂Ω is Ck+2, k ≥ 0 an integer. Let u ∈ H ′

0(Ω) be a weak solution to (BVP). Then, u ∈ Hk+2(Ω),
and we have the estimate

∥u∥Hk+2(Ω) ≤ C(∥f∥Hk(Ω) + ∥u∥L2(Ω)).

In particular, u ∈ C∞(Ω̄) if all the data is C∞ (up to the boundary).

Proof. Again by induction.
□

Remark 11.25.

• The regularity theorems say, roughly, that u gains two derivatives in relation to f so u is
”as regular as possible”.

• If u is the unique weak solution, then an argument similar to the one used to prove
∥u∥L2(Ω) ≤ C∥f∥L2(Ω) gives

∥u∥Hk+2(Ω) ≤ C∥f∥Hk(Ω)

11.3. Maximum principles. We will now assume an elliptic operator of the form

Lu = aij∂i∂ju+ bi∂iu+ cu

in a domain Ω, with aij , bi, c ∈ L∞(Ω) and aij ∈ C0(Ω). Ellipticity is as before,

aij ξi ξj ≥ Λ|ξ|2.
The basic intuition of maximum principles is that if x0 ∈ Ω is a maximum for u over Ω̄ and c = 0,
then Lu(x0) = aij∂i∂ju(x0) ≤ 0 since (∂i∂ju(x0)) is non-positive and aij(x0) is positive-definite by
ellipticity. Thus, if Lu > 0, u cannot have an interior maximum.

Throughout, replacing u by −u we obtain statements for minimum.

Theorem 11.26. (weak maximum principle). Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

Lu ≥ 0(≤ 0)

in a bounded domain Ω, and suppose that c = 0. Then the maximum (minimum) of u is achieved
on ∂Ω.

Proof. Since a′′ > 0, we can choose α > 0 large so that

Leαx
′
= (α2a′′ + αb′)eαx

′
> 0.

For any ϵ > 0,

L
(
u+ ϵeαx

′)
> 0,

thus u+ ϵeαx
′
achieves is maximum on ∂Ω by the above argument. So does u by taking ϵ→ 0.

□

Corollary 11.27. Consider the same assumptions as above but instead suppose c ≤ 0. Then

sup
Ω

u ≤ sup
∂Ω

u+(inf
Ω
u ≥ inf

∂Ω
u−)

u+ = max{u+, 0}, u− = min{u, 0}. In particular, supΩ |u| = sup∂Ω |u| if Lu = 0.
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Proof. Set

Ω+ =
{
x ∈ Ω | u(x) > 0

}
.

If Lu ≥ 0 then

L+u = aij∂i∂ju+ bi∂iu ≥ −cu ≥ 0 in Ω+

since −cu ≥ 0 in Ω+. Then the maximum of u in Ω̄+ is achieved on ∂Ω+. Since u ≤ 0 in Ω \ Ω+,
and u(x0) = 0 if x0 ∈ ∂Ω+ ∩ Ω, we must have supΩ u ≤ sup∂Ω u

+.
□

Corollary 11.28. Under the same assumptions of the previous corollary, if Lu ≥ Lv in Ω and
u ≤ v on ∂Ω, then u ≤ v in Ω. In particular, u = v if Lu = Lv in Ω and u = v on Ω.

Remark 11.29. The assumption c ≤ 0 cannot be relaxed, as there exist positive eigenvalues to
the problem ∆u+ λu = 0 in Ω, u = 0 on ∂Ω.

Definition 11.30. A domain Ω ⊂ Rn satisfies the interior sphere condition at x0 ∈ ∂Ω if there
exists a x ∈ Ω and a r > 0 such that Br(x) ⊂ Ω and x0 ∈ ∂Br(x).

Lemma 11.31. Suppose that L satisfies c = 0, and Lu ≥ 0 in Ω, where u ∈ C2(Ω). Let x0 ∈ ∂Ω
and suppose that

(i) u is continuous at x0;
(ii) u(x0) > u(x) for all x ∈ Ω;
(iii) Ω satisfies an interior sphere condition at x0.Then, the outer normal derivative of u at x0,

if it exists, satisfies the strict inequality

∂u

∂v
(x0) > 0.

If c ≤ 0, the conclusion holds provided that u(x0) ≥ 0. If u(x0) = 0, the conclusion holds
irrespectively of the sign of c.

Proof. Let BR(y) ⊂ Ω be such that x0 ∈ ∂BR(y), by the interior sphere condition. Fix 0 < ρ < R,
set

v(x) = e−αr
2 − e−αR

2
,

r = |x− y| > ρ, α > 0 to be chosen. For c ≤ 0 we have

Lv(x) =
(
aij∂i∂j + bi∂i + c

)
v(x)

= e−αr
2[
4α2aij(xi − yi)(xj − yj)− 2α(aii + bi(xi − yi)

]
+ cv

≥ e−αr
2[
4α2Λr2 − 2α(aii + |b|r) + c

] (
|b| = |(b1, ..., bn)|

)
≥ e−αr

2[
4α2Λρ2 − 2α(aii + |b|r) + c

]
since v ≤ e−αr

2
and c ≤ 0. Thus, taking α large enough,

Lv ≥ 0 in Ω′ = BR(y)−Bρ(y).

Since u − u(x0) < 0 on ∂Bρ(y), there exists a ϵ > 0 such that u − u(x0) + ϵv ≤ 0 on ∂Bρ(y). We
also have u− u(x0) + ϵv ≤ 0 on ∂BR(y) since v = 0 there. Moreover,

L
(
u− u(x0) + ϵv

)
= Lu︸︷︷︸

≥0

− cu(x0) + ϵ Lv︸︷︷︸
≥0

≥ −cu(x0) ≥ 0 in Ω′.

where the last inequality is valid for c = 0 or c ≤ 0 with u(x0) ≥ 0. Since u ∈ C2(Ω) and u
is continuous at x0, we have u ∈ C2(Ω′) ∩ C0(Ω̄′). Thus, by a corollary of the weak maximum
principle, (Lw ≥ Lz in Ω, w ≤ z on ∂Ω =⇒ w ≤ z in Ω) we have u−u(x0)+ ϵv ≤ 0 in Ω′. Because
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the function u− u(x0) + ϵv vanishes at x0, we conclude that its normal derivative at x0 cannot be
negative, so

∂u

∂v
(x0) ≥ −ϵ∂v

∂v
(x0).

But −∂v
∂v (x0) = − 1

R∇v(x0) · x0 = −v′(R) = 2αRe−αR
2
> 0. For c arbitrary, if u(x0) = 0 the above

argument works with L replaced by L− c+.
□

Theorem 11.32. (strong maximum principle). Suppose that u ∈ C2(Ω) satisfies Lu ≥ 0 (≤ 0)
in Ω and c = 0. If u achieves a maximum (minimum) in Ω, then u is constant. If c ≤ 0, then u
cannot achieve a non-negative maximum (non-positive minimum) in Ω unless it is constant.

Proof. Suppose u achieves a maximum M in Ω. If u is not constant, Ω− :=
{
x ∈ Ω | u(x) < M

}
is not empty, neither is ∂Ω− ∩ Ω. Thus, there exists a x0 such that dist(x0, ∂Ω

−) < dist(x0, ∂Ω).
Let Br(x0) be the largest ball centered at x0 such that Br(x0) ⊂ Ω−. Then u(y) = M for some
y ∈ ∂Br(x0) and u < M in Br(x0). By the above Lemma ∂u

∂v (y) > 0, but ∇u(y) = 0 since y is an
interior maximum.

□

Remark 11.33. The proof also gives that if c(x) < 0 at some x ∈ Ω then the constant in theorem
must be zero and if u vanishes at the interior maximum (minimum) then u = 0 regardless of the
sign of c.

Theorem 11.34. Let Lu ≥ f(= f) in a bounded domain Ω, u ∈ C2(Ω) ∩ C0(Ω̄), and assume
that c ≤ 0. Then, there exists a constant C > 0 depending only on the diameter of Ω and on

β = ∥(b1,...,bn)∥
Λ L∞(Ω), such that

sup
Ω
u
(
|u|

)
≤ sup

∂Ω
u+

(
|u|

)
+ c sup

Ω

|f−|
Λ

(
|f |
Λ

)
.

(f− = inf {f, 0}, u+ = sup{u, 0}).

Proof. Let Ω lie in the slab 0 < x1 < d, and set

L0 = aij∂i∂j + bi∂i.

Then, if α ≥ β + 1,

L0e
αx′ =

(
α2a′′ + αb′

)
eαx

′ ≥
(
α2Λ + αb′

)
eαx

′

≥
(
α2Λ = α|b′|

)
eαx

′ ≥
(
α2Λ− α∥(b1, ..., bn)∥L∞(Ω)

)
cαx

′

=
(
α2Λ− αΛβ

)
eαx

′ ≥ Λ.

Set

v = sup
∂Ω

u+ + (eαd − eαx
′
) sup

Ω

|f−|
Λ

≥ 0

Then

Lv = L0v + cv = −(L0e
αx′)︸ ︷︷ ︸

≤−Λ

sup
Ω

|f−|
Λ

+ cv︸︷︷︸
≤0

≤ − sup
Ω

|f−|, thus

L(v − u) = Lv − Lu ≤ − sup
Ω

|f−| − f ≤ 0.

We also have v − u ≥ 0 on ∂Ω. Thus, by one of the corollaries of the weak maximum principle
(Lw ≥ Lz in Ω, w ≤ z on ∂Ω, then w ≤ z in Ω). u ≤ v in Ω.
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Thus,

u ≤ sup
∂Ω

u+ + (eαd − eαx
′
) sup

Ω

|f−|
Λ

≤ sup
∂Ω

u+ + (eαd − 1) sup
Ω

|f−|
Λ

.

□

Corollary 11.35. Let Lu = f in a bounded domain Ω, u ∈ C2(Ω)∩C0(Ω̄). Let C be the constant
of the previous theorem. Suppose that

A = 1− c sup
Ω

c+

Λ
> 0.

Then

sup
Ω

|u| ≤ 1

A

(
sup
∂Ω

|u|+ C sup
Ω

|f |
Λ

)
.

Proof. Write Lu = (L0 + c)u = f as

(L0 + c−)u = f − c+u =: f̃.

From the theorem,

sup
Ω

|u| ≤ sup
∂Ω

|u|+ C sup
Ω

|f̃ |
Λ

≤ sup
∂Ω

|u|+ C

(
sup
Ω

|f |
Λ

+ sup
Ω

|u| sup
Ω

|u+|
Λ

)
,

so (
1− C sup

Ω

|c+|
Λ

)
sup |u| ≤ sup

∂Ω
|u|+ C sup

Ω

|f |
Λ
.

□

Remark 11.36. Since we can take C = eαd−1 → 0 as d→ 0, the above corollary implies uniqueness,
hence solvability, of the Dirichlet problem on any sufficiently thin bounded domain.

12. Nonlinear elliptic equations

We will investigate the solvability of equations of the form

Lu+ f(·, u) = 0, (12.1)

where L is an elliptic operator. When f is non-linear in u, this is a semi-linear elliptic equation. Our
goal is to illustrate some techniques, thus we will consider special cases of (12.1) (but the ideas can
be adapted to more general settings). We will also briefly consider more general nonlinear equations.
The arguments we will employ in this section are soft, thus, it is instructive to consider a more
general setting. Therefore, in this section we will take (M, g) to be a closed Riemannian manifold
and let ∆g be the Laplacian w.r.t. g, which in local coordinates reads ∆g = 1√

det g
∂i
(√

det g gij∂j
)
.

Students not familiar with geometry can take M = πn (n-dimensional torus) and ∆g = ∆. Here
are the facts that need to be known for our analysis:

• We can define the spaces W k,p(M) and the embedding theorems go through.
• The Fredholm alternative remains valid.
• Elliptic regularity remains valid. In fact, we will use that elliptic regularity holds in
W k,p(M), 1 < p < ∞. Thus, f ∈ W k,p(M), Lu = f =⇒ u ∈ W k+2,p(M) if the
coefficients of L are sufficient regular.
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• The strong maximum principle remains valid.
• As a consequence of the above, W k,p(M) = L

(
W k+2,p(M)

)⊕
kerL∗, 1 < p <∞, and when

L is invertible L−1 :W k,p(M) →W k+2,p(M) is an isomorphism.

12.1. The method of sub- and super-solutions.

Theorem 12.1. Consider in (M, g) the equation

∆gu+ f(·, u) = 0,

where f ∈ C∞(M × R). Suppose that there exist functions ψ−, ψ+ ∈ C2(M) such that ψ− ≤ ψ+

and

∆gψ− + f(·, ψ−) ≥ 0,

∆gψ+ + f(·, ψ+) ≤ 0.

then there exists a smooth solution u to ∆gu+ f(·, u) = 0.

Remark 12.2. ψ− and ψ+ are called, respectively, sub- and super-solutions to the equation.

Proof. Let A be a constant such that

−A ≤ ψ− ≤ ψ+ ≤ A

and choose a constant c > 0 large enough such that

F (x, t) = ct+ f(x, t)

is increasing in t ∈ [−A,A] for each x ∈M . Set

Lu := −∆gu+ cu.

By the maximum principle, ker(L) = {0}. Notice that if u = const solves Lu = 0, then u = 0 (since
c > 0). But if −∆gu + cu ≤ 0 then u cannot have a non-negative maximum unless it is constant,
so u ≤ 0; and if −∆gu+ cu ≥ 0 then u cannot have a non-positive minimum, so u ≥ 0. (Note that
here we are applying the strong maximum principle to the equation multiplied by −1; max and
min always achieved by compactness of M .)

(Alternatively, we can see uniqueness by:

−∆gu+ cu = 0 =⇒
by parts

∫
M

(
|∇gu|2 + cu2

)
d volg = 0 =⇒ u = 0.)

We also note that L is a positive operator, i.e., Lu1 ≥ Lu2 =⇒ u1 ≥ u2, since the maximum
principle gives L(u1 − u2) ≥ 0 =⇒ u1 − u2 cannot have a non-positive minimum, so u1 − u2 ≥ 0.

Thus we have an isomorphism

L−1 :W k,p(Ω) →W k+2,p(Ω), 1 < p <∞.

Let v ∈ C2(M). Then v ∈ W 2,p(M) for any p since M is compact. Thus L−1v ∈ W 4,p(M)
for any 1 < p < ∞. Taking p large enough so that 4 − n

p > 2, by the Sobolev embedding

W 4,p(M) ↪→ C2,α(M), we have that L−1v ∈ C2(M).

Define inductively

ψ
0
= ψ−, ψ

l
= L−1(F (·, ψ

l−1
))

ψ̄0 = ψ+, ψ̄l = L−1(F (·, ψ̄l−1))

Observe that

Lψ
1
= F (·, ψ−) = cψ− + f(·, ψ−) ≥ cψ− −∆gψ− = Lψ−
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and

Lψ̄1 = F (·, ψ+) = cψ+ + f(·, ψ+) ≤ cψ+ −∆gψ+ = Lψ+,

thus

Lψ− ≤ Lψ
1
= F (·, ψ−) ≤

since F is increasing
in its second argument

F (·, ψ+) = Lψ̄1 ≤ Lψ+

Hence ψ− ≤ ψ
1
≤ ψ̄1 ≤ ψ+ by the positivity of L. Repeating the argument,

ψ− ≤ ψ
l−1

≤ ψ
l
≤ ψ̄l ≤ ψ̄l−1 ≤ ψ+ for every l.

Thus, we have monotone bounded sequences {ψ
l
}, {ψ̄l}, thus they converge pointwise to limits u

and ū, u ≤ ū.

Since |ψ
l
| ≤ C, we have ∥F (·, ψ

l
(·))∥Lp(M) ≤ C for any p . Because Lψ

l
= F (·, ψ

l−1
), elliptic

regularity gives

∥ψ
l
∥W 2,p(M) ≤ C

(
∥F ( , ψ

l−1
)∥Lp(M) + ∥ψ

l
∥Lp(M)

)
≤ C.

By the compact embedding W 2,p(M) ↪→ C1,α(Ω), 2 > n
p , we have that {ψ

l
} ⊂ C1,α(M) and

converges, up to a subsequence in C1,α(M). But v ∈ C1,α(M) implies that for any p, we find
∥v∥W 1,p(M) ≤ C∥v∥C1,α(M). Hence

∥ψ
l
∥W 3,p(M) ≤ C

(
∥F (·, ψ

l−1
)∥W 1,p(M) + ∥ψ

l
∥Lp(M)

)
≤ C

and by the compact embedding W 3,p(M) ↪→ C2,α(M) we obtain convergence in C2(M). We can
thus pass to the limit in the equation to obtain

Lψ
l
= F (·, ψ

l−1
) =⇒ Lu = F (·, u).

Similarly Lū = F (·, ū). But
Lu = F (·, u) ⇔ −∆gu+ cu = cu+ f(·, u) ⇔ ∆gu+ f(·, u) = 0.

Applying elliptic regularity inductively as above to ∆gu+ f(·, u) = 0 we conclude u ∈ C∞(M).
□

Remark 12.3. There might be many sub- and super-solutions. E.g., ∆gu = f(·, u)+cosu, |f | ≤ 1.
Then u(x) = 2mπ and u(x) = (2m− 1)π and all super- and sub-solutions, respectively, so we find
at least one solution u on each interval (2m− 1)π ≤ u ≤ 2mπ.

We will now give a proof of the easy case of the uniformization theorem.

Theorem 12.4. Let (M, g) be a closed two-dimensional Riemannian manifold with the Euler char-
acteristic χ(M) < 0. Let κ̃ ≤ 0 be a smooth function in M that is not identically zero. Then, there
exists a metric g̃ conformed to g such that κ(g̃) = κ̃, where κ is the Gauss curvature. In particular,
we can take κ̃ = −1 and obtain the uniformization theorem in the negative case.

Proof. Write g̃ = e2ug. Then the scalar curvature of g̃ and g are related by

R̃ = e−2u(R− 2∆gu).

Since scalar = 2 Gauss, the Gauss curvatures are related by

∆u− κ+ κ̃e2u = 0.

Hence, we only need to find u solving this equation.

Let us find a super-solution ψ+. We claim that we can find v ∈ C∞(M) such that

∆gv = κ̃0 − κ̃,
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where κ̃0 = (volg(M))−1
∫
M κ̃d volg . Then

∫
M (κ̃0 − κ)d volg = 0, i.e., κ̃0 − κ̃ is L2 orthogonal to

constants. But ker(∆g) = R since ∆gu = 0 =⇒
∫
M |∇gu|2d volg = 0. Thus, by Fredholm, we cam

solve ∆gv = κ̃0 − κ. Elliptic regularity gives v ∈ C∞(M).

Set ψ+ = av + b, a, b ∈ R. Since κ̃0 < 0 by our assumptions, we can choose a such that aκ̃ < κ(x)

for all x ∈M . Then, take b so large that e2(av+b) − a > 0. Then

∆gψ+ − κ+ κ̃e2ψ+ = a∆gv − κ+ κ̃e2ψ+

= a(κ̃0 − κ)− κ+ κ̃e2ψ+ = aκ̃0 − κ+ κ̃
(
e2(av+b) − a

)
< 0.

Next, we will find a sub-solution ψ− such that ψ− ≤ ψ+.

Let v solve

∆gv = κ− κ0, κ0 = (volg(M))−1

∫
M
κd volg,

which can be found by the same arguments as above. Put ψ− = v− c, where c ∈ R is large enough
so that ψ− ≤ ψ+. Then

∆ψ− − κ+ κ̃e2ψ− = κ− κ0 + κ+ κ̃e2v−2c

= −κ0 + κ̃e2v−2c

Since κ0 < 0, by χ(M) < 0 and Gauss-Bonnet, we can choose c large such that RHS > 0.
□

Remark 12.5. It is possible to give a full proof of the uniformization theorem using PDE methods.

12.2. Implicit function theorem methods. We recall some notions of functional analysis.

Definition 12.6. Let X,Y be Banach spaces, U ⊂ X an open set, and f : U → Y . We say that f
has a Gateaux derivative at x ∈ U if

f ′(x, y) :=
d

dt
f(x+ ty)

∣∣∣∣
t=0

exists for every y ∈ X. We say that f has a Fréchet derivative at x ∈ U if there exists a
continuous linear map Df(x) : X → Y such that

f(x+ y) = f(x) +Df(x)(y) + σ(|y|)
for every y such that x + y ∈ U , in which case one sees that Df(x) is in fact defined for every
y ∈ X. We say that f is continuously differentiable (or C1) at x if the map

x ∈ U 7→ Df(x) ∈ L(X,Y )

is continuous.

Theorem 12.7. Let X,Y be Banach spaces, U ⊂ X open, f : U → Y . If f has a Gateaux derivative
f ′(x, y) in U which is linear in y, and if the map x ∈ U 7→ f ′(x, ·) ∈ L(X,Y ) is continuous, then
f is Fréchet differentiable in U and Df(x)(y) = f ′(x, y).

Theorem 12.8. (implicit function theorem). Let X,Y, Z be Banach spaces. Let f : X×Y → Z
be continuously differentiable. Suppose that f(x0, y0) = 0 and that Df(x0, y0)(0, ·) : Y → Z is a
(Banach space) isomorphism. Then there exists a neighborhood U × V ∋ (x0, y0) and a Fréchet
differentiable map g : U → V such that f(x, g(x)) = 0 for all x ∈ U .

Definition 12.9. Let p : C∞(Ω) → C∞(Ω) be a differential operator. Its linearization at
u ∈ C∞(Ω) is the linear operator

Luv = Lv =
d

dt
P (u+ tv)

∣∣∣∣
t=0

.
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This definition extends to P defined on Hs(Ω) etc.

As an application, let Ω ⊂ R3 be a bounded set with smooth boundary. Let h : ∂Ω → R, and con-
sider the problem of extending h to Ω as a perturbation of the identity that is volume-preserving,
i.e.,

Jac (id+∇u) = 1,

where u extends h and id+∇u is the map

x ∈ Ω 7→ x+∇u(x) ∈ R3.

Expanding the Jacobian, we see that Jac (id+∇u) = 1 is equivalent to

∆u+N (u) = 0,

where
N (f) = fxxfyy + fxxfzz + fyyfzz − f2xy − f2xz − f2yz + det(D2f).

Thus, given h, we seek to solve {
∆u+N (u) = 0 in Ω,

u = h on ∂Ω,
(12.2)

which is a fully nonlinear BVP. If h = 0, then u = 0 is a solution. Thus, we expect that a solution
u is small if h is small. But for small u, the equation reads

∆u+O(|D2u|2) = 0

and since |D2u|2 << |D2u| for u small, we have a perturbation of ∆u = 0.

Theorem 12.10. Let s > 3
2 and Bs+2

δ (∂Ω) be the open ball of radius δ in Hs+2(∂Ω), where Ω is a

bounded domain with smooth boundary in R3. If δ is sufficiently small, there exists a solution u to
(12.2).

Proof. Given h ∈ Hs+2(∂Ω) define

F : Hs+2(∂Ω)×Hs+ 5
2 (Ω) → Hs+2(∂Ω)×Hs+ 1

2 (Ω)

F (h, u) = (u|∂Ω − h, ∆u+N (u)).

This is well defined since D2u ∈ C0(Ω) by Sobolev embedding and u|∂Ω ∈ Hs+2(∂Ω) by the trace
theorem. We have F (0, 0) = 0. F is C1 in the neighborhood of the origin and

D2F (0, 0)(w) = DF (0, 0)(0, w) = (w|∂Ω,∆w).

Given (g, f) ∈ Hs+2(∂Ω)×Hs+ 1
2 (Ω), there exists a unique w ∈ Hs+ 5

2 (Ω) solving{
∆w = f in Ω,

w = g on ∂Ω,

and elliptic regularity gives

∥w∥
Hs+5

2 (Ω)
≤ C

(
∥f∥

Hs+5
2 (Ω)

+ ∥g∥Hs+2(∂Ω)

)
,

so D2F (0, 0) is an isomorphism (we did not quite see how to solve the Dirichlet problem in these
fractional spaces, but it follow by similar ideas to what we used; solutions with u ̸= 0 on ∂Ω follow
by considering a problem for u− g with homogeneous boundary condition).

By the implicit function theorem, there exists a f = ψ(h) solving (12.2) if h is small.
□

The implicit function theorem is generally a good tool to find solutions by perturbations.
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12.3. The continuity method. The basic idea of the continuity method is the following. Suppose
we want to solve P (u) = 0. We embed this problem into a one parameter family of problems.

Pt(u) = 0, 0 ≤ t ≤ 1,

where P1(u) = P (u). We then consider

A =
{
t ∈ [0, 1] | Pt(u) = 0 has a solution

}
.

The goal is to show that A ̸= ∅ and that A is open and closed, so that A = [0, 1]. The usual
strategy is:

• to show A ̸= ∅, choose Pt so that P0(u) = 0 is easy to solve
• to show that A is open, use the implicit function theorem. to show that if Pt0(u) = 0 has
a solution, so does Pt(u) = 0 for all t near t0.

• to show closedness, use estimates for solutions to show that if {ti} ⊂ A, ti → t, then there
exists a subsequence of {ui}, where ui solves Fti(ui) = 0, converging in a topology such
that Fti(ui) → Ft(u).

We will now illustrate the method with the equation

∆gu+ f − heu = 0,

where f, h > 0 (compare to the equation studied in the uniformization theorem).

Theorem 12.11. Let (M, g) be a closed Riemannian manifold and f, h : M → R be smooth
functions satisfying f, h > 0. Then, there exists a u ∈ C∞(M) solving

∆gu+ f − heu = 0,

Proof. Define

F (t, u) = ∆gu− hu+ t(f − h(eu − u)).

Then F (1, u) = ∆gu+ f − heu. Set

A =
{
t ∈ [0, 1] | F (t, u) = 0 has a solution u ∈ C2(Ω)

}
For t = 0, u = 0 solves F (0, u) = 0, so A ̸= ∅.

Suppose that F (t0, u0) = 0. The linearization of F at (t∗, u∗) is

L(t∗,u∗) = ∆gv − h(1− t∗ + t∗e
u∗)v.

Let p > u
2 so that W 2,p(M) ↪→ C0(M) ⊂ Lp(M). Thus F defines a map

F : R×W 2,p(M) → Lp(M)

and so does L(t∗,u∗)

L(t∗,u∗) :W
2,p(M) → Lp(M),

which is a bounded linear map between these spaces. Consider

∥L(t∗,u∗) − L(t̃,ũ)∥ = sup
∥v∥

Wk,p(M)
=1

∣∣(L(t∗,u∗) − L(t̃,ũ)

)
v
∣∣

= sup
∥v∥

Wk,p(M)
=1

∣∣h(1− t∗ + t∗e
u∗
)
v − h(1− t̃+ t̃eũ)v

∣∣
=

∣∣h(t̃− t∗) + h(t∗e
u∗ − t̃eũ)

∣∣.
Since W k,p(M) ↪→ C0(M) and M is compact, we can make this expression as small as we want by
taking t∗ close to t̃ in R and u∗ close to ũ in W k,p(M). Thus, L depends continuously on (t, u), the
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Gateaux derivative equals the linearization which equals the Fréchet derivative, and F is C1.
For (t0, u0) we have, 0 ≤ t0 < 1, we have

L(t0,u0)v = Lv = ∆gv − h(1− t0 + t0e
u0)v

and 1 − t0 + t0e
u0 > 0 and, since h > 0, by the maximum principle L(t0v0)v = 0 ⇒ v = 0. By the

Fredholm alternative and the elliptic regularity, L is a Banach space isomorphism L :W k,p(M) →
Lp(M). By the implicit function theorem, there exists a ut solving

F (t, ut) = 0

for t near t0. Bootstrapping the regularity of u as we did in the sub-/super-solutions theorem, we
find ut ∈ C2(M), Thus, A is open.

Suppose now that we here a C2 solution

F (t, u) = ∆gu− hu+ t (f − h (eu − u)) = 0

At a max of u

0 ≥ ∆u = hu− t (f − h (eu − u))

= −tf + h ((1− t)u+ teu)

Since h > 0 and ex ≥ 1 + x, and t ≥ 0.

0 ≥ −tf + h(1− t)u+ ht(1 + u)

= −tf + hu+ ht︸︷︷︸
≥0

≥ −tf + hu

Since t ≤ 1,

u ≤ tf

h
≤ f

h
≤ sup

M

f

h
= C <∞

since h > 0 and M is compact. Applying a similar argument to the minimum of u, we conclude

∥u∥C0(M) ≤ C

where C does not depend on t. Using this bound, writing F (t, u) = 0 as

∆u = hu− t (f − h (eu − u)) = f̃.

∥f̃∥Lp(M) ≤ C, applying elliptic regularity and bootstrapping the regularity of u as before, we get

∥u∥C2,α(M) ≤ C,

where C does not depend on t ∈ [0, 1]. If {ti} ⊂ A, ti → t, let {ui} be corresponding solutions to
F (ti, ui) = 0. Then

∥ui∥C2,α(M) ≤ C

where C does not depend on i. Thus, by Arzelá-Ascoli, up to a subsequence, ui → u in C2(M). We
can thus pass to the limit in the equation to obtain F (t, u) = 0, so A is closed. Thus, A = [0, 1] and
we found a C2 solution. Bootstrapping the regularity of this solution as above, we find u ∈ C∞(M).

□
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13. Linear hyperbolic equations

We will now study linear hyperbolic equations, which are generalizations of the wave equation
in a similar manner as we saw that elliptic equations are generalizations of Laplace’s equation.

Lemma 13.1. (Gronwall Lemma). Let A,φ, and u be non-negative functions on [T0, T ] ⊂ R,
u ∈ L∞([T0, T ]), ϕ ∈ L1([T0, T ]), and A is non-decreasing. Suppose that

u(t) ≤ A(t) +

∫ t

T0

φ(τ)u(τ)dτ

for all t ∈ [T0, T ]. Then,

u(t) ≤ A(t)e
∫ t
T0
φ(τ)dτ

for all t ∈ [T0, T ].

Proof. It suffices to prove it for t ≥ T since A is non-decreasing. So we can assume

A = A(T ) = constant.

Set

F (t) := A+

∫ t

T0

φ(τ)u(τ)dτ.

Then:

• F is differentiable a.e.
• F ′ = φu
• F is absolutely continuous.

Then

G(t) := F (t)e
−

∫ t
T0
φ(τ)dτ

• is absolutely continuous (since
∫ T
T0
φ(τ)dτ is).

• G is differentiable a.e.

We have

G′ = F ′(t)︸ ︷︷ ︸
=ϕ(t)u(t)

e
−

∫ t
T0
φ(τ)dτ − F (t)φ(t)e

−
∫ t
T0
φ(τ)dτ

= φ(t)︸︷︷︸
≥0

(u(t)− F (t)︸ ︷︷ ︸
≤0

)e
−

∫ t
T0
φ(τ)dτ ≤ 0

Then

G(t) ≤ G(T0) = F (T0) = A =⇒ F ≤ Ae
∫ t
T0
φ(τ)dτ

.

Since u ≤ F , the result follows.
□

Remark 13.2. For simplicity, we will work on the interval [0, T ], i.e., T0 = 0. It will be clear the
results will hold on [T0, T ], T0 ̸= 0.

13.1. Linear first-order symmetric hyperbolic systems. Let us consider the initial-value
problem or Cauchy problem {

Aµ∂µu+B u = f in [0, T ]× Rn,
u = u0 on {t = 0} × Rn,

(13.1)

where f : [0, T ]× Rn → Rd, A,B : [0, T ]× Rn → Md×d = d× d matrices and u : [0, T ]× Rn → Rd
is the unknown.
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Definition 13.3. We say that the PDE in (13.1) is a (linear) first-order symmetric hyperbolic
system (FOSH) if the matrices Aµ are symmetric and A0 = At is uniformly positive definite, i.e.,

A0(x)(ξ, ξ) ≥ C|ξ|2 for all x ∈ [0, T ]× Rn.

Notation 13.4. We will often write (t, x) for points in [0, T ]×Rn, i.e., (t, x) ∈ [0, T ]×Rn. Denote

MT ≡M := [0, T ]× Rn.
Σt :=

{
(t, x) ∈M

}
.

We often write u for ut = transpose of u if it is clear from the context, e.g., uAu = utAu,A = d×d
matrix.

Theorem 13.5. (Basic Energy Estimate) Assume that u is a smooth solution to the FOSH
system (13.1) such that u(t, ·) and ∂tu(t, ·) are Schwartz functions with constants that are uniform
in t, i.e., ∣∣∣xα⃗∣∣∣ (∣∣∣Dβ⃗u

∣∣∣+ ∣∣∣Dβ⃗∂tu
∣∣∣) ≤ C

α⃗,β⃗

in MT (note that f then also satisfies similar bounds). Suppose that Aµ, B and all their derivatives
are bounded in MT . Set

E(t) =
1

2

∫
Σt

uA0u dx ≡ 1

2

∫
Rn

uA0u dx.

Then, there exists a constant C > 0 independent of u such that√
E(t) ≤

(√
E(0) + C

∫ t

0
∥f(τ, ·)∥L2(στ )dτ

)
eCt.

for all t ∈MT .

Proof. Compute

∂tE =
1

2

∫
Σt

∂tuA
0u+

1

2

∫
Σt

uA0∂tu︸ ︷︷ ︸
=
∫
Σt
uA0∂tu by symmetry of A0

+
1

2

∫
Σt

u∂tA
0u

= −
∫
Σt

(uAi∂iu+ uBu− uf) +
1

2

∫
Σt

u∂tA
0u, by symmetry of Ai :

= −
∫
Σt

(
1

2
∂i(uA

iu)− 1

2
u∂iA

iu

)
+

∫
Σt

(
1

2
u∂tA

0u+ uf − uBu

)
=

by parts

∫
Σt

(
1

2
u∂µA

µu− uBu+ uf

)
.

We have ∫
Σt

(
u∂µA

µu− uBu
)
≤ C

∫
Σt

|u|2 ≤ C

∫
Σt

uA0u = CE(t)∫
Σt

uf ≤ ∥u∥L2(Σt)∥f∥L2(Σt) ≤
√
E(t) ∥f∥L2(Σt),

so
∂tE ≤ CE + C

√
E∥f∥L2 .

Setting Eε(t) = E(t) + ε, ε > 0, the same inequality holds for Eε(t), so

∂tEε ≤ CEε + C
√
Eε∥f∥L2 ,

so
∂tEε√
Eε

= 2∂t
√
Eε ≤ C

√
Eε + ∥f∥L2 .
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Then √
Eε(t) ≤

√
Eε(0) + C

∫ t

0
∥f∥L2(Στ )dτ + C

∫ t

0

√
Eε(τ)dτ

By Gronwall’s Lemma:

√
Eε(t) ≤

(√
Eε(0) + C

∫ t

0
∥f∥L2(Στ )

)
eCt

which gives the result taking ϵ→ 0.
□

Definition 13.6. The commutator of two differential operators P and Q is defined as

[P,Q] := PQ−QP

wherever the RHS is defined.

Remark 13.7. If P and Q have orders k and l, respectively, and are linear, then [P,Q] has order
k + l − 1, since

P =
∑
|α|≤k

aαD
α, Q =

∑
|α|≤l

bαD
α

PQ =
∑

|α|=k,|β|=l

aαbβD
α+β + terms where at least one derivative falls on bα

QP =
∑

|α|=k,|β|=l

bβaαD
β+α + terms where at least one derivative falls on aα

Corollary 13.8. (higher order energy estimates). Under the same assumptions of the theorem,

∂tEk ≤ CEk + C
√
Ek ∥f∥Hk(Σt),

Ek(t) ≤ CT

(√
Ek(0) +

∫ t

0
∥f(τ, ·)∥Hk(Στ )dτ

)
where CT = constant depending on T and

Ek(t) :=
1

2

∑
|α⃗|≤k

∫
Σt

Dα⃗uA0Dα⃗udx.

Proof. Write the equation as Lu = f and Ek = Ek(u). Then, applying D
α⃗ to the equation.

Dα⃗Lu
=L(Dαu⃗)+[Dα⃗,L]u

= Dα⃗f =⇒ LDα⃗u = Dα⃗f + [L,Dα⃗]u

Applying the basic energy estimate to D⃗αu with f replaced by Dα⃗f + [L,Dα⃗]u (or, more precisely,
applying an intermediate inequality that was obtained in the proof of the basic energy estimate):

∂tE(Dα⃗u) ≤ CE(Dα⃗u) + C
√
E(Dα⃗u)

(
∥Dα⃗f + [L,Dα⃗]u∥Lα(Σt)

)
.
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We have, since |α⃗| ≤ k, ∥Dα⃗f∥Lα(Σt) ≤ ∥f∥Hk(Σt).

[Dα⃗, L]u = [Dα⃗, Aµ∂µ]u+ [Dα⃗, B]u

[Dα⃗, Aµ∂µ]u = Dα⃗(Aµ∂µu)−Aµ∂µD
α⃗u

=
∑
β⃗≤α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗Aµ∂µD

β⃗u−Aµ∂µD
α⃗u

=
∑
β⃗=α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗Aµ∂µD

β⃗u

︸ ︷︷ ︸
+

∑
β⃗<α⃗

=Aµ∂µDα⃗u

(
α⃗

β⃗

)
Dα⃗−β⃗Aµ∂µD

β⃗u−Aµ∂µD
α⃗u

=
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗Aµ∂µD

β⃗u

=
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗A0∂0D

β⃗u+
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗Ai∂iD

β⃗u

The second term gives ∥∥∥∥∥∥
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗Ai∂iD

β⃗u

∥∥∥∥∥∥
L2(

∑
t)

≤ C∥u∥Hk(
∑

t)

For the first term, we use the equation and the fact that A0 is invertible to write

∂tu = (A0)−1(f −Ai∂iu)

so that ∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗A0∂0D

β⃗u =
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗A0Dβ⃗∂0u

=
∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗A0Dβ⃗

(
(A0)−1(f −Ai∂iu)

)
So ∥∥∥∥∥∥

∑
β⃗<α⃗

(
α⃗

β⃗

)
Dα⃗−β⃗A0∂0D

β⃗u

∥∥∥∥∥∥
Lα

≤ C∥f∥Hh−1(
∑

t)
+ C∥u∥Hk(

∑
t)

≤ C∥f∥Hk(
∑

t)
+ C∥u∥Hk(

∑
t)
,

where we used that (A0)−1 is smooth since A0 is [Dα⃗, β]u is handled similarly. Thus

∂tE(Dα⃗u) ≤ CE(Dα⃗u) + C
√
E(Dα⃗u)

(
∥Dα⃗f + [L,Dα⃗]u∥L2(Σt)

)
.

≤ CE(Dα⃗u) + C
√
E(Dα⃗u) ∥u∥Hk(Σt) + C

√
E(Dα⃗u) ∥f∥Hk(Σt)

Since A0 is positive definite and bounded,

1

C
∥u∥2Hk(Σt)

≤ Ek(t) ≤ C∥u∥2Hk(Σt)
,

so, using that E(Dα⃗u) ≤ Ek,

∂tE(Dα⃗u) ≤ CEk +
√
Ek∥f∥Hk(Σt).
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Summing over α and using

Ek =
∑
|α|≤k

E(Dα⃗u)

we have the first inequality. Dividing by
√
Ek (or

√
Ek+ϵ, as before) and using Gronwall’s inequality

gives the result.
□

Next, we extend the result for negative k:

Corollary 13.9. Under the same assumptions as above,

∥u(t, ·)∥Hk(Σt) ≤ CT

(
∥u(0, ·)∥Hk(Σ0) +

∫ t

0
∥f(τ, ·)∥Hk(Στ )dτ

)
for any k ∈ Z.

Proof. We already have the result for k ≥ 0, so take k < 0. Set

v := (1−∆)ku.

Because (1 − ∆)k maps S into itself (it is defined using the Fourier transform that maps S into
itself), v satisfies Schwartz bounds similar to u.

We have

∥u∥Hk(Σt) = ∥(1−∆)
k
2 u∥L2(Σt) = ∥(1−∆)−

k
2 v∥L2(Σt)

= ∥v∥H−k|Σt| ≤ C
√
E−k(v)

Since v identically satisfies the equation

Lv = F =: Lv,

the energy estimates give

∥u∥Hk(Σt) ≤ C
√
E−k(v)(0) + C

∫ t

0
∥Lv∥H−k(Στ )dτ

Since √
E−k(v)(0) ≤ ∥v∥H−k(Σ0) = ∥u∥Hk(Σ0),

it remains to estimate the term ∥Lv∥H−k(Σt).

Observe the identity

(1−∆)−kLv + [L, (1−∆)−k]v = (1−∆)−kLv + L(1−∆)−kv − (1−∆)−kLv

= L(1−∆)−kv︸ ︷︷ ︸
=u

= Lu = f,

so

(1−∆)−kLv = f − [L, (1−∆)−k]v

Apply (1−∆)
k
2 and take the L2 norm:

∥(1−∆)−
k
2Lv∥L2(Σt)︸ ︷︷ ︸

=∥Lv∥
H−k(Σt)

≤ ∥(1−∆)
k
2 f∥L2(Σt)︸ ︷︷ ︸

=∥f∥
Hk(Σt)

+ ∥(1−∆)
k
2 [L, (1−∆)−k]v∥L2(Σt)︸ ︷︷ ︸

=∥[L,(1−∆)−k]v∥
Hk(Σt)
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Expanding (1−∆)−k =
∑

|α⃗|≤−2k aα⃗D
α⃗, then (recall k < 0)

[L, (1−∆)−k]v = [Aµ∂µ,
∑

|α⃗|≤−2k

aα⃗D
α⃗]v

=
∑

|α⃗|≤−2k

(
Aµ∂µ(aα⃗D

α⃗v)− aα⃗D
α⃗(Aµ∂µv)

)
=

∑
|α⃗|≤−2k

Aµ∂µaα⃗D
α⃗v −

∑
|α⃗|≤−2k

∑
β⃗<α⃗

(
α⃗

β⃗

)
aα⃗D

α⃗−β⃗Aµ∂µD
β⃗v

Thus ∥∥[L, (1−∆)−k]v
∥∥
Hk(Σt)

≤ C
−2k∑
l=0

∥Dlv∥Hk(Σt) + C
−2k−1∑
l=0

∥Dl∂tv∥Hk(Σt)

≤ C∥v∥H−k(Σt) + C∥∂tv∥H−k−1(Σt)

Using that D : Hs → Hs−1 is bounded.

Let us estimate ∥∂tv∥H−k−1(Σt). Set L̃ = (A0)−1L. Then, arguing similarly to above:

(1−∆)−kL̃v + [L̃, (1−∆)−k]v = L̃(1−∆)−kv︸ ︷︷ ︸
=u

= (A0)−1f

But (1−∆)−kL̃v = (1−∆)−k
(
∂tv + (A0)−1Ai∂iv

)
, so

(1−∆)−k∂tv = −(1−∆)−k
(
(A0)−1Ai∂iv

)
= −[L̃, (1−∆)−k]v

= (A0)−1f

Since ∥∂tv∥H−k−1(Σt) = ∥(1−∆)∥
−k−1

2 ∂tv∥L2(Σt), we apply (1−∆)
k−1
2 and estimate in L2

∥(1−∆)
−k−1

2 ∂tv∥L2 ≤ C∥(1−∆)−kDv∥Hk−1(Σt)

+ C∥[L̃, (1−∆)−k]v∥Hk−1(Σt)

+ C∥f∥Hk−1(Σt)

(1 −∆)−kDv contains at most −2k + 1 derivatives and [L̃, (1 −∆)−k] at most 2k derivatives and
no time derivative, so the first two terms on the RHS are bounded by

∥D−2k+1v∥Hk−1(Σt) ≤ ∥v∥H−k(Σt).

Thus

∥∂tv∥H−k−1(Σt) ≤ C∥v∥H−k(Σt) + C∥f∥Hk−1(Σt).

Putting all together and invoking Gronwall’s inequality gives the result.
□

Corollary 13.10. Under the same assumptions as above,

∥u(t, ·)∥Hk(Σt) ≤ CT

(
∥u(T, ·)∥Hk(Σt) +

∫ T

t
∥f(τ, ·)∥Hk(Στ )dτ

)
for any k ∈ Z.
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Proof. Set

L̂v(t, x) :=−A0(T − t, x)∂tv(t, x) +Ai(T − t, x)∂iv(t, x)

+B(T − t, x)v(t, x

û(t, x) := u(T − t, x).

Then ∂tû(t, x) = −∂tu(T − t, x), ∂iû(t, x) = ∂iu(T − t, x), so that

L̂û(t, x) =−A0(T − t, x)∂txû(t, x) +Ai(T − t, x)∂iû(t, x)

+B(T − t, x)û(t, x)

=A0(T − t, x)∂tu(T − t, x) +Ai(T − t, x)∂iu(T − t, x)

+B(T − t, x)u(T − t, x)

=(Lu)(T − t, x)

The operator −L̂ satisfies the same assumptions as L, thus we have an estimate

∥u(t, ·)∥Hk(Σt) ≤ C

(
∥v(0, ·)∥Hk(Σ0) +

∫ t

0
∥L̂v(τ, ·)∥Hk(Στ )dτ

)
.

For v = û

∫ t

0
∥L̂û(τ, ·)∥Hk(Στ ) =

∫ t

0
∥Lu(T − τ, ·)∥Hk(ΣT−τ )

dτ

= −
∫ T−t

T
∥Lu(s)∥Hk(Σs)ds

=

∫ T

T−t
∥Lu(s)∥Hk(Σs)ds,

so, since Lu = f

∥u(T − t, ·)∥Hk(ΣT−t)
≤ C

(
∥u(T, ·)∥Hk(ΣT ) +

∫ T

T−t
∥f(s)∥Hk(Σs)ds

)
.

Since any t′ ∈ [0, T ] is of the form t′ = T − t for some t ∈ [0, T ], we have the result.
□

Definition 13.11. We denote

Ct0,x0,c0 := {(t, x) ∈MT

∣∣0 < t < t0, x ∈ Bt0−c0t(x0)}
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x

t

x0

c0 < c0 < c0

Bt0−c0t(x0)

︸ ︷︷ ︸
t0

︸ ︷︷ ︸
t0

Figure 31. Ct0,x0,c0

Theorem 13.12. (Domain of Dependence and Uniqueness). Let u ∈ C1
(
[0, T ]× Rn

)
solu-

tion to the FOSH system (13.1), where the Aµ are C1, bounded, and have bounded derivatives, B
is C0 and bounded, and f is continuous. There exists a c0 > 0, depending on the lower bound of
A0 and the upper bounded of Ai, such that if u0 = 0 on Br(x0) and f = 0 in Cr,x0,c0, then u = 0 in
Cr,x0,c0, In particular, solutions are unique.

Proof. Consider, for a > 0,

∂µ(e
−atuAµu) = e−at2uAµ∂µu+ e−atu∂µA

µu− ae−atuA0u

= 2e−atu(f −Bu) + e−atu∂µA
µu− ae−atuA0u.

Integrate over C = Cr,x0,c0 , where c0 will be chosen.∫
C
∂µ(e

−atuAµu) =

∫
∂C
e−atuAµuvµ

=

∫
∂LC

e−atuAµuνµ −
∫
Br(x0)

e−atuA0u︸ ︷︷ ︸
=0

,

where ν is the unit outer normal to C, ∂LC is the lateral boundary so that ∂C = ∂LC ∪ Br(x0),
and we used ν = (−1, 0, ..., 0) on Br(x0). We can make the components νi as small as we want by
taking c0 large enough, so that ν0 > 0 and

uAµuνµ = uA0uν0 + uAiuνi

≥ C1|u|2 − C2|u|2 > C|u|2

Thus
∫
C ∂µ(e

−atuAµu) ≥ 0. On the other hand

∫
C

2e−atu(

=0 in C︷︸︸︷
f −Bu) + e−atu∂µA

µu− ae−at

≥C|u|2︷ ︸︸ ︷
uA0u


≤
∫
C
e−at

(
−2uBu+ u∂µA

µu− aC|u|2
)
≤ 0

if we choose a large enough. Thus RHS ≤ 0, LHS ≥ 0, thus, since LHS = RHS, both sides must
vanish. Since we can freely choose a (large enough), we must have u = 0 in C.

□
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Definition 13.13. Let L = Aµ∂µ+B be a first-order symmetric hyperbolic operator. The formal
adjoint of L is

L∗u = −∂t(A0u)− ∂i(A
iu) +B∗u

= −Aµ∂µu− ∂µA
µu+B∗u,

where B∗ = transpose of B.
The motivation for the definition comes from integration by parts, e.g., if ψ ∈ C∞

c (MT ),∫ T

0

∫
Rn

ψAµ∂µudxdt =

∫
Rn

∫ T

0
ψA0︸︷︷︸
=A0ψ

∂tudtdx+

∫ T

0

∫
Rn

ψAi︸︷︷︸
Aiψ

∂iudxdt

= −
∫ T

0

∫
Rn

∂t(A
0ψ)udxdt−

∫ T

0

∫
Rn

∂i(A
iψ)udxdt,

where there are no boundary terms because ψ ∈ C∞
c (MT ).

Theorem 13.14. Consider the Cauchy problem for the FOSH system (13.1). Assume that u0 ∈
C∞
c (Rn), f ∈ C∞

c (R × Rn), Aµ, B are C∞with all derivatives bounded. Moreover, there exists a
compact set κ ⊂ Rn such that u = 0 outside [0, T ]× κ.

Proof. The uniqueness and the statement about κ follow from the domain of dependence/uniqueness
result.

Let φ ∈ C∞
c (R × Rn) be such that φ(t, x) = 0 for t ≥ T . Since −L∗ is also a first-order sym-

metric operator, we have, by one of the above corollaries,

∥φ∥H−k(Σt) ≤ C

∥φ∥H−k
(ΣT )︸ ︷︷ ︸

=0

+

∫ T

t
∥L∗φ∥H−k

(Στ )
dτ


≤ C

∫ T

t
∥L∗φ∥H−k

(Στ )
dτ

This implies, in particular, that if L∗φ = 0 for t ∈ [0, T ] then φ = 0. Given ψ ∈ L1
(
[0, T ], Hk(Rn)

)
,

for φ as above and k ≥ 1, set

⟨φ,ψ⟩ :=
∫ T

0
(φ,ψ)0dt

which is well defined by the generalized Cauchy-Szhwartz inequality.

For φ as above, L∗φ ∈ L1
(
[0, T ], H−k(Rn)

)
. Let X ⊂ L1

(
[0, T ], H−k(Rn)

)
be the subspace spanned

by L∗φ,φ as above. Define Fψ : X → R by

Fψ(L
∗φ) = ⟨ψ,φ⟩.

Note that Fψ is well defined (L∗φ = 0 =⇒ φ = 0 for 0 ≤ t ≤ T ) and is bounded by the above energy

estimate. By Hahn-Banach, Fψ extends to a bounded linear functional F̃ψ on L1
(
[0, T ], H−k(Rn)

)
(with same norm as Fψ). By one of our duality theorems, there exists a u ∈ L∞(

[0, T ], Hk(Rn)
)

such that

F̃ψ(v) =

∫ T

0
(u, v)0dt = ⟨u, v⟩

for all v ∈ L1
(
[0, T ], H−k(Rn)

)
.
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In particular, for elements in X,

F̃ψ(L
∗φ) = Fψ(L

∗φ) =

∫ T

0
(u, L∗φ)0dt

= ⟨ψ,φ⟩ =
∫ T

0
(ψ,φ)0dt,

i.e., ∫ T

0
(ψ,φ)0dt =

∫ T

0
(u, L∗φ)0dt.

Consider now f as in the theorem, but assume further that f(t, x) = 0 for t ≤ 0. Take ψ = f above
and extend u to be identically zero for t < 0, so u ∈ L∞(

(−∞, T ], Hk(Rn)
)
. Therefore,∫ T

−∞
(f, φ)0dt =

∫ T

−∞
(u, L∗φ)0dt

for all φ ∈ C∞
c (R × Rn) such that φ(t, x) = 0 for t ≥ T . We would like to integrate by parts to

obtain (Lu, φ)0 and then Lu = f , but u is not regular enough in time. Thus, we proceed as follows.

Let ũ ∈ L2
loc((−∞, T ) × Rn) such that ũ is k-times weakly differentiable with respect to x and

such that ∫ T

−∞

∫
Rn

uφdxdt =

∫ T

−∞

∫
Rn

ũφdxdt

for all φ ∈ C∞((−∞, T )×Rn) (the existence of such ũ can be demonstrated; ũ is “essentially” u).
Applying this to φ replaced by L∗φ, and using the above, we have∫ T

−∞

∫
Rn

fφdxdt =

∫ T

−∞

∫
Rn

L∗φũdxdt

for all φ ∈ C∞
c ((−∞, T )× Rn). Write∫ T

−∞

∫
Rn

L∗φũdxdt =

∫ T

−∞

∫
Rn

−∂t(A0φ)ũdxdt−
∫ T

−∞

∫
Rn

∂i(A
iφ)︸ ︷︷ ︸

we can integrate by
parts because of the
x-differentiability of ũ

ũdxdt+

∫ T

0

∫
Rn

B∗φũ︸ ︷︷ ︸
=φBũ

dxdt

= −
∫ T

−∞

∫
Rn

∂t(A
0φ)ũdxdt+

∫ T

−∞

∫
Rn

φAi∂iũdxdt+

∫ T

−∞

∫
Rn

φBũdxdt.

Therefore∫ T

−∞

∫
Rn

fφdxdt = −
∫ T

−∞

∫
Rn

∂t(A
0φ)ũdxdt+

∫ T

−∞

∫
Rn

φAi∂iũdxdt+

∫ T

−∞

∫
Rn

φBũdxdt.

Write this as ∫ T

−∞

∫
Rn

φ(f −Ai∂iũ−Bũ)dxdt = −
∫ T

−∞

∫
Rn

∂t(A
0φ)ũdxdt

Any ψ ∈ C∞
c ((−∞, T )× Rn) can be written as ψ = A0φ for some φ ∈ C∞

c ((−∞, T )× Rn) by our
assumptions on A0, so the above reads, using that (A0)−1 is symmetric∫ T

−∞

∫
Rn

ψ[(A0)−1(f −Ai∂iũ−Bũ)]dxdt = −
∫ T

−∞

∫
Rn

∂tψũdxdt

for all ψ ∈ C∞
c ((−∞, T )×Rn). This shows that ũ has a ∂t weak derivative. Moreover, ∂tũ is given

by

∂tũ = (A0)−1(f −Ai∂iũ−Bũ).
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Since u is k-times weakly differentiable in x the RHS admits k − 1 weak spatial derivatives, so
Dα⃗∂tũ = ∂tD

α⃗ũ exists, |α⃗| ≤ k − 1. We can now iterate this argument: apply the above identity
with ψ replaced by ∂tD

α⃗ψ, |α⃗| ≤ k − 2.∫ T

−∞

∫
Rn

∂tD
α⃗ψ[(A0)−1(f −Ai∂iũ−Bũ)]dxdt = −

∫ T

−∞

∫
Rn

∂t(∂tD
α⃗ψ)ũdxdt.

Since, by the above, ∂tD
α⃗∂iu exists, we can integrate by parts on the LHS to conclude that ∂2tD

α⃗

weak derivative of ũ exists. Proceeding in this way, we conclude that

∂jtD
α⃗ũ, j + |α⃗| ≤ k

exists weakly. Since we can take k very large, by Sobolev embedding we conclude that ũ is, say,
C l for some large l. (We have not said that ũ ∈ Hk(Rn), but to conclude that ũ is C l it suffices to
apply the Sobolev embedding theorem to φũ, with test functions φ).

We can now integrate by parts to get Lu = f pointwise in (−∞, T ]× Rn.

To conclude, finally, that ũ is C∞, observe that for a (large) k we obtain a C l solution and for

a different (large) k′ we obtain a C l
′
solution, and in principle these two solutions need not to

coincide. However, since we can assume l, l′ ≥ 1, the previous uniqueness result says that both
solutions coincide. Thus ũ is C l for all l hence smooth.

Observe that since ũ is C∞ in (−∞, T ]×Rn and vanishes identically for t < 0, we in fact have that
ũ = 0 on {t = 0} × Rn (so this ũ is not yet the solution to the Cauchy problem).

We now remove the assumption that f vanishes for t ≤ 0. Let 0 ≤ φ ≤ l be a smooth func-
tion on R such that φ(t) = 0, t ≤ 0, φ(t) = 1, t ≥ 1. Set

fϵ(t, x) = φ

(
t

ϵ

)
f(t, x).

For any ϵ > 0, we have by the above a solution uϵ to Luϵ = fϵ such that uϵ(t, x) = 0 for t ≤ 0. ( ≤
and not only < by the above). By the energy estimates

∥uϵ − uϵ′∥Hk(Σt) ≤ C

∫ t

0

∣∣∣∣φ(
t

ϵ

)
− φ

(
t

ϵ′

) ∣∣∣∣∥f∥Hk(Στ )dτ.

Thus, uϵ, for any t ∈ [0, T ], uϵ converges to a limit in Hk(Σt), for any k, t ∈ [0, T ]. Solving for
∂tuϵ in the equation, we get convergence of the time derivatives as long as t > 0. Hence, we have
a smooth solution to Lu = f in (0, T ) × Rn. Let us show that this solution extends to t = 0. We
have, for any k:

∥uϵ∥Hk(Σt) ≤ C

∫ t

0
∥fϵ∥Hk(Στ )dτ ≤ C

∫ t

0
∥f∥Hk(Στ )dτ.

The RHS is independent of ϵ, thus the inequality holds for u too. Hence (taking k large), u and
Dα⃗u converge to zero as t→ 0+. We can solve for ∂tu in the equation and then get convergence of
∂tu as t → 0+ (to whatever it has to converge according to the expression for ∂tu determined by
the equation). Inductively, we get convergence of higher time derivatives.

Thus, we obtain a C∞([0, T ] × Rn) function u solving Lu = f in [0, T ] × Rn and satisfying u = 0
on {t = 0} × Rn. To obtain the correct initial condition, we take C∞

c (R) 0 ≤ φ ≤ 1, φ = 1 for
−1 ≤ t ≤ T + 1 and consider the problem for u− φu0.

□
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Remark 13.15. Observe how we get the x-differentiability from “general” arguments and the
t-differentiability by using the equation to “solve” for ∂t (even in the case of the weak derivatives).
Compare with what we did for elliptic equations to get the ∂2nu regularity on the boundary.

Corollary 13.16. Consider the Cauchy problem for the FOSH system (13.1) in R× Rn. Assume
that u0 ∈ C∞

c (Rn), that f ∈ C∞(R × Rn), and that Aµ and B are C∞. Suppose that for each
[T1, T2] ⊂ R there exist a, b such that

ξA0ξ ≥ a|ξ|2, |Aµ| ≤ b.

Then, there exists a unique u ∈ C∞(R× Rn,Rd) solving (13.1).

Proof. As before, uniqueness follows from a theorem further above. For existence, we now do not
necessarily have f compactly supported and Aµ, B with bounded derivatives, so we will use cut-off
functions.

Fix T > 0. Let c0 be as in the domain of dependence theorem. c0 depends only on the con-
stants a, b on [0, T ]. Let r ≥ Tc0 + 1 and set

Cr :=
{
(t, x) ∈ [0, T ]

∣∣ x ∈ Br−c0t(0)
}
.

Let φ ∈ C∞
c (R × Rn), 0 ≤ φ ≤ 1, φ = 1 on C2r+2c0T , and ψ ∈ C∞

c (Rn) satisfy ψ = 1 on Br(0),
ψ = 0 on B2r(0).

Set (see picture below)

Ã0 = φA0 + (1− φ)A0(0, 0) ,

Ãi = φAi, B̃ = φB,

ũ0 = ψu0, f̃ = φψf

and consider

Ãµ∂µũ+ B̃ũ = f̃ in [0, T ]× Rn,
ũ = ũ0 on {t = 0} × Rn.

x

t

B1(0)

ũ ̸= 0

(below purple

line)

t = T

Br−c0t(0) ⊃ BTc0+1−c0t(0)

= Bc0(T−t)+1(0)

B2r+2c0T−c0t(0)

= B2r+c0(2T−t)(0)

C2r+2c0T

(below purple line)

φ = 1

(below purple line)

︸ ︷︷ ︸
2r

︸ ︷︷ ︸
2r

r︷ ︸︸ ︷ r︷ ︸︸ ︷
Cr (below purple line)

ψ = 1

Figure 32. Visual Demonstration



Disconzi 113

Let ũ be the smooth solution. Since

ξÃ0ξ = φξA0ξ + (1− φ)ξA0(0, 0)ξ

≥ φa|ξ|2 + (1− φ)a|ξ|2

= a|ξ|2

|Ãi| ≤ |Ai| ≤ b,

we can apply the domain of dependence property to ũ with the same constant c0. Thus ũ vanishes
outside B2r+c0t(0), t ∈ [0, T ]. In the region where ũ does not vanish, Ãµ = A, B̃ = B, so ũ solve

Aµ∂µũ+Bũ = f̃,

ũ = ũ0,

in [0, T ]× Rn. In Cr, f̃ = f , so ũ solves the original equation in Cr.

Next, repeat the argument with ϕ > r, obtaining a solution u′ to the original equations in Cϕ
that agrees with ũ in Cr. In this way, we can repeat the argument and use uniqueness to obtain a
solution in [0,∞)× Rn.

To obtain the solution for (−∞, 0], we reverse time.
□

Remark 13.17. We will often refer to “reversing time” arguments, so let us write the details here
once. Set τ := −t,

Ãµ(t, x) := Aµ(−t, x),

B̃(t, x) := B̃(t, x)

f̃(t, x) := f(t, x)

Consider

L̃ũ(t, x) = Ã0(t, x)∂tũ(t, x)− Ãi(t, x)∂iũ(t, x)− B̃(t, x)ũ(t, x)

= −f̃(t, x).
For t ≥ 0, we obtain a solution by the above. Then, setting u(−t, x) := ũ(t, x), ∂tu(−t, x) =
−∂tũ(t, x),

−Ã(t, x)∂tu(−t, x)− Ãi(t, x)∂iu(−t, x)− B̃(t, x)u(−t, x) = −f̃(t, x)
A(−t, x)∂tu(−t, x) + Ãi(−t, x)∂iu(−t, x) +B(−t, x)u(−t, x) = f(−t, x)

which is the original equation evaluated at (−t, x).

13.2. Linear hyperbolic/wave equations.

Definition 13.18. A Lorentz matrix g is a (n+ 1)× (n+ 1) symmetric invertible matrix with
the following property. Denoting the components ofl; /;;g by gµν , µ, ν = 0, ..., n, g00 < 0 and
gij , i, j = 1, ..., n, are the components of a positive definite matrix. We denote the components of
g−1 by gµν . Observe that g−1 is also a Lorentzian matrix, i.e., g00 < 0 and gij are the components
of a positive definite matrix.

A Lorentzian metric in [0,T]× Rn is a map of g from [0, T ] × Rn to the set of Lorentzian
matrices with uniform bounds

g00(t, x) ≤ C < 0, gijξ
iξj ≥ C|ξ|2,

g00(t, x) ≤ C < 0, gij(t, x)ξiξj ≥ C|ξ|2

for all (t, x) ∈ [0, T ]× Rn and all ξ ∈ Rn.
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Definition 13.19. A second order linear system of hyperbolic PDEs, a.k.a. a (system of)
linear wave equation(s) in [0, T ]× Rn is a system of the form

gµν∂µ∂νu+ aµ∂µu+ bu = f,

where aµ, b : [0, T ] × Rn → d × d matrices, f : [0, T ] × Rn → Rd, g is a Lorentzian metric, and
u : [0, T ]× Rn → Rd is the unknown.

Theorem 13.20. (Basic Energy Estimate for Wave Equations). In the above (system)
linear wave equation, assume that g, aµ, b and f are smooth and all their derivatives are bounded.
Let u be a smooth solution with the property that for each T > 0 there is a compact set κ ⊂ Rn
with u(t, x) = 0, t ∈ [0, T ], x /∈ κ.

Then √
E(t) ≤

(√
E(0) + C

∫ t

0
∥f(τ, ·)∥L2(Στ )dτ

)
ect

for some constant independent of u, where

E(t) :=
1

2

∫
Σt

(−g00|∂tu|2 + gij∂iu∂ju+ |u|2)dx

(gij∂iu∂ju = gij∂iu
T∂ju, but as before we omit the transpose sign in uT ).

Proof. We have

∂tE =

∫
Σt

(
−g00∂tu∂2t u+ gij∂iu∂j∂tu

)
+

1

2

∫
Σt

(
−∂tg00|∂tu|2 + ∂tg

ij∂iu∂ju+ 2u∂tu
)
=: I1 + I2.

I1 =

∫
Σt

−g00∂tu∂2t u+ gij∂iu ∂j︸︷︷︸
by parts

∂tu


=−

∫
Σt

∂tu
(
g00∂2t u+ gij∂i∂ju

)
−
∫
Σt

∂jg
ij∂iu∂tu

=gµν∂µ∂νu− 2g0i∂t∂iu

=f − aµ∂µu− bu− 2g0i∂t∂iu

=2

∫
Σt

g0i∂tu∂i∂tu−
∫
Σt

∂tu (f − aµ∂µu− bu)−
∫
Σt

∂jg
ij∂iu∂tu

=

∫
Σt

g0i∂i
(
|∂tu|2

)
by parts

−
∫
Σt

∂tu (f − aµ∂µu− bu)−
∫
Σt

∂jg
ij∂iu∂tu

=−
∫
Σt

(
∂ig

0i|∂tu|2 − ∂tu (f − aµ∂µu− bu)
)
−
∫
Σt

∂jg
ij∂iu∂tu

≤CE + C
√
E∥f∥L2(Σt)

since, under our assumptions

1

C
E ≤

∫
Σt

(
|∂tu|2 + |∇u|2 + |u|2

)
≤ CE.

Using this we also obtain I2 ≤ E so

∂tE ≤ CE +
√
E∥f∥L2(Σt)
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and the result follows by dividing by
√
E and using Grönwall.

□

Theorem 13.21. Let gI , I = 1, ..., d, be smooth Lorentzian metrics in [0,∞) × Rn such that for
each T > 0, gI satisfies uniform bounds in the sense of the definition of Lorentzian metrics in

[0, T ] × Rn. Let aIµJ , b
I
J , f

I ∈ C∞([0,∞) × Rn), I = 1, .., d. Let uI0, u
I ∈ C∞(Rn), I = 1, ..., d.

Consider the Cauchy problem

gµνI ∂µ∂νu
I + aIµJ ∂µu

J + bIJu
I = f I in [0,∞)× Rn,

uI(0, ·) = uI0 on {t = 0} × Rn,

∂tu
I(0, ·) = uI1 on {t = 0} × Rn,

where I, J = 1, ..., d and there is a sum over J (but not over I). Then, there exists a unique
smooth solution u ∈ C∞([0,∞) × Rn,Rd). If the data has compact support and fI(t, x) = 0 for
t ∈ [0, T ], x /∈ κ = compact, then there exists a compact set κ̃ ⊂ Rn such that u(t, x) = 0 if
t ∈ [0, T ], x /∈ κ̃. Moreover, the following domain of dependence property holds: given T > 0, there
exists a c0 > 0 such that if uI0, u

I
1 vanish Br(x0) and f I vanishes in Cr,x0,c0, then u vanishes in

Cr,x0,c0. This last statement requires only gI to be C1 with uniform bounds, aIµJ , b
I
J and f to be

continuous, and u to be a C2 solution.

Proof. This can be proven with ideas very similar to what we used for FOSH linear systems. For
existence, we derive higher order energy estimates by considering the equation satisfies by Dα⃗u, and
then involve functional analytic methods. For uniqueness and the domain of dependence property,
we integrate over Cr,x0,c0 , choose c0 appropriately, and analyze the boundary integrals. We will,
however, take a shortcut, as follows.

Set for each I = 1, ..., d, and i, j, k = 1, ..., n,

vI = (vIi , ..., v
I
n+2) := (∂1u

I , ..., ∂nu
I , ∂tu

I , uI),

AI0ij := gijI ,

AI0n+1,n+1 = AI0n+2,n+2 := 1,

AIki,n+1 = AIkn+1,i := gikI ,

AIkn+1,n+1 := 2g0kI .

From this we obtain (n+ 2)× (n+ 2) matrices AI0 and AIk, where the entries that have not been
defined above are set to zero.

Set

hIn+1 := −f I ,

dIJ n+1,i := −aI iJ ,

dIJ n+1,n+1 := −aI 0J ,

dIJ n+1,n+2 := −bIJ ,

dIJ n+2,n+1 := −δIJ ,
and the remaining components are set to zero.

Then, if u is a solution to the wave equation, v satisfies the FOSH linear system:

AI0∂tv
I −AIi∂iv

I + dIJv
J = hI (13.2)
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(no sum over I). Moreover, v(0, ·) satisfies

vI(0, ·) = (v1(0, ·), ..., vn(0, ·), vn+1(0, ·), vn+2(0, ·))
= (∂1u

I(0, ·), ..., ∂nuI(0, ·), ∂tuI(0, ·), uI(0, ·)).

Observe that the initial data has the property that

∂iv
I
n+2(0, ·) = vIi (0, ·). (13.3)

From our assumptions, we can apply our results on FOSH systems to obtain a smooth solution v
with a domain of dependence. Assume further that the initial data satisfies (13.3). From (13.2),
taking the j-component:

(AI0∂tv
I)j − (AIi∂iv

I)j + (dIJv
J)j =

=0︷ ︸︸ ︷
(hI)j

AI0jM (∂tv
I)M −AIijM (∂iv

I)M +

=0︷ ︸︸ ︷
dIJ jL(v

J)L = 0

=gjkI︷︸︸︷
AI 0jk (∂tv

I)k +

=0︷ ︸︸ ︷
AI 0j n+1(∂tv

I)n+1 +

=0︷ ︸︸ ︷
AI 0j n+2(∂tv

I)n+2

=0︷ ︸︸ ︷
−AIijk(∂ivI)k −

=gijI︷ ︸︸ ︷
AIijn+1(∂iv

I)n+1 −

=0︷ ︸︸ ︷
AIijn+2(∂iv

I)n+2 = 0

gjkI ∂tv
I
k = gijI ∂iv

I
n+1

→

=δkl︷ ︸︸ ︷
mlj g

jk
I ∂tv

I
k =

=δil∂iv
I
n+1︷ ︸︸ ︷

mlj g
ij
I ∂iv

I
n+1

→ ∂tv
I
i = ∂iv

I
n+1,

where m is the inverse of (gijI ) (not necessarily mij = gij).

Similarly, taking the n+ 2 component

(AI0∂tv
I)n+2 − (AIi∂iv

I)n+2 + (dIJv
J)n+2 =

=0︷ ︸︸ ︷
(hI)n+2

AI0n+2 M (∂tv
I)M −AIin+2 M (∂iv

I)M +

= −δJI , L = n+ 1︸ ︷︷ ︸
dIJ n+2L (vJ)L = 0

=0︷ ︸︸ ︷
AI0n+2,k(∂tv

I)k +

=0︷ ︸︸ ︷
AI0n+2,n+1(∂tv

I)n+1 +

=0︷ ︸︸ ︷
AI0n+2,n+2(∂tv

I)n+2

−

=0︷ ︸︸ ︷
AIin+2,k(∂iv

I)k −

=0︷ ︸︸ ︷
AIin+2,n+1(∂iv

I)n+1 −

=0︷ ︸︸ ︷
AIin+2,n+2(∂iv

I)n+2 = 0

=⇒ ∂tv
I
n+2 = vIn+1.

Set uI := vIn+2. Then by (13.3) ∂iu
I(0, ·) = vIi (0, ·).
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Then

∂iu
I(t, ·) = ∂iu

I(0, ·) +
∫ t

0
∂t ∂iu

I(τ, ·)︸ ︷︷ ︸
=vIn+2(τ,·)

dτ

= vIi (0, ·) +
∫ t

0
∂i ∂tv

I
n+2(τ, ·)︸ ︷︷ ︸

=vIn+1(τ,·)

dτ

= vIi (0, ·) +
∫ t

0
∂iv

I
n+1(τ, ·)︸ ︷︷ ︸

=∂tvIi (τ,·)

dτ

= vIi (t, ·)
Also

∂tu = ∂tvn+2 = vn+1.

Hence, v is of the form stated in terms of u, and u satisfies the original equation.
□

14. Local existence and uniqueness for quasilinear wave equations

Our goal is to study systems like the above linear wave equation where now g (and a, b, etc.)
depend on u. For this, we used to make some specific choices about this dependence.

Definition 14.1. We say that a Ck map

g : Rnd+2d+n+1 → space of (n+ 1)× (n+ 1) Lorentzian matrices

is a (Ck,n,d)−admissible metric, or admissible metric for short, if:

• For every multi-index α = (α1, ..., αnd+2d+n+1) such that |α| ≤ k and every compact interval
I = [T1, T2] there exists a continuous increasing function

hI,α : R → R
such that

|Dαgµν(t, x, ξ)| ≤ hI,α(|ξ|)
for all µ, ν = 0, ..., n, x ∈ Rn, t ∈ I, ξ ∈ Rnd+2d.

• For every compact interval I = [T1, T2], there exist a1, a2, a3 > 0 such that for every
(t, x, ξ) ∈ I × Rnd+2d+n

g00(t, x, ξ) ≤ −a1, gij(t, x, ξ) ξ
i ξj ≥ a2|ξ|2 for all ξ ∈ Rn,

and
n∑

µ,ν=0

|gµν(t, x, ξ)| ≤ a3.

It follows from the above definitions that if g is (C0, n, d)-admissible then g(·, ·, ξ) is a Lorentzian
metric.

Definition 14.2. A map f : R× Rn → Rd has local compact support in x if for any compact
interval [T1, T2] there exists a compact set κ ⊂ Rn such that

f(t, x) = 0, t ∈ [T1, T2], x /∈ κ.

A smooth function f : R × Rn → Rd that has local compact support in x can be regarded as an
element of

Cm(R, Hk(Rn,Rd))
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for any m, k ≥ 0 integers. This is not necessarily the case if f has the property that for any fixed
t, f(t, ·) has compact support. Consider φ ∈ C∞

c (Rn), φ /∈ 0. Set

f(t, x) :=

{
φ(x1 − 1

t , x
2, .., xn) t > 0,

0 t ≤ 0.

Then f is smooth for t > 0 and for t < 0. For each (0, x), there exists a neighborhood U ∋ (0, x)
such that f = 0 in U . Therefore, f is smooth. For fixed t, f(t, ·) has compact support. For t ≤ 0,

∥f(t, ·)∥L2(Rn) = 0

but for t > 0

∥f(t, ·)∥L2 > 0,

so f /∈ C0(R, H0(Rn,R)).

Definition 14.3. A Ck-map

f : Rnd+2d+n+1 → Rd

is called a (Ck,n,d)-admissible nonlinearity, or admissible nonlinearity for short, if:

• For every multi-index α = (α1, ..., αnd+2d+n+1) such that |α| ≤ k and every compact interval
I = [T1, T2] there exists a continuous increasing function

hI,α : R → R

such that

|Dαf(t, x, ξ)| ≤ hI,α(|ξ|)
for all t ∈ I, x ∈ Rn, ξ ∈ Rnd+2d.

• The function of (t, x) defined by f(t, x, 0) has a local compact support in x.

Let Ω ⊂ R×Rn and u : Ω → Rd be differentiable. Let g be an admissible metric and f an admissible
nonlinearity. Define g[n] as the Lorentzian metric

g[u](t, x, ) = g(t, x, u(t, x), ∂tu(t, x), ..., ∂nu(t, x))

and f [u] as the function

f [u](t, x) = f(t, x, u(t, x), ∂tu(t, x), ..., ∂nu(t, x)).

Note that

(

∈R×Rn︷︸︸︷
t, x ,

∈Rd︷ ︸︸ ︷
u(t, x),

∈Rd︷ ︸︸ ︷
∂tu(t, x),

∈Rnd︷ ︸︸ ︷
∂1u(t, x), ..., ∂n(t, x)︸ ︷︷ ︸
ξ

) ∈ Rnd+2d+n+1

explains the above choices.

Definition 14.4. A (n,d) admissible majorizer, or simply majorizer, is a map that associates
to each (C∞, n, d)-admissible metric g, (C∞, n, d)-admissible nonlinearity f and compact interval

I = [T1, T2],

a continuous function

zI [g, f ] : Rm → [0,∞),

where m is fixed, with the property that

zI1 [g, f ] ≤ zI2 [g, f ]

whenever I1 ⊂ I2.
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Definition 14.5. A (n,d) admissible constant, or simply admissible constant, is a map that
associates to each (C∞, n, d)-admissible metric g, (C∞, n, d)-admissible nonlinearity f and compact
interval I = [T1, T2], a real number CI [g, f ] > 0, with the property that CI1 [g, f ] ≤ CI2 [g, f ] if
I1 ⊂ I2.

We will often omit the arguments [g, f ] and write zI , CI .

Notation 14.6. We will henceforth write gµν for gµν [u] and g
µν for gµν [u]. Similarly, we will write

f for f [u]. Or sometimes we write gµνu , fu, etc. Also, we can assume, without loss of generality,
that g00 = −1.

We will study the Cauchy problem for the quasilinear wave equation
gµν∂µ∂νu = f in [0, T ]× Rn,

u(0, ·) = u0 on {t = 0} × Rn,
∂tu(0, ·) = u1 on {t = 0} × Rn.

(14.1)

(with gµν = gµνu , f = fu).

Theorem 14.7. (uniqueness). Let g be a C1 admissible metric and f a C1 admissible nonlin-
earity. Let u and v be two solutions to (14.1) with u0 = v0, u1 = v1. Then u = v.

Proof. Write

gµνu ∂µ∂νu = fu

gµνv ∂µ∂νv = fv

so

gµνu ∂µ∂ν(u− v) = (gµνv − gµνu )∂µ∂νv + fu − fv.

By the fundamental theorem of calculus

fu − fv =

∫ 1

0

d

dt

(
f(tu+ (1− t)v)

)
dt

=

∫ 1

0
∇ξf

(
tu+ (1− t)v

)
· (ξu − ξv)dt

= f̃(u− v) + f̂µ∂µ(u− v)

for some continuous functions f̃, f̂µ, and similarly

gµνu − gµνv = g̃µν(u− v) + ĝµν,λ∂λ(u− v),

for some continuous function g̃µν , ĝµν,λ. Thus, with w := u− v,

gµνu ∂µ∂νw = g̃µν∂µ∂νvw + ĝµν,λ∂µ∂νv∂λw + f̃w + f̂µ∂µw.

This is a linear wave equation for w for which our uniqueness results apply.
□

Notation 14.8. Denote

Mk[u](t) := ∥u∥Hk+1(Σt) + ∥∂tu∥Hk(Σt)

N [u](t) :=
∑

|α⃗|+j≤2

∥Dα⃗∂jt u∥L∞(Σt).
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Theorem 14.9. Let g be a C∞ admissible metric and f a C∞ admissible nonlinearity. Let u0, u1 ∈
C∞
c (Rn,Rd), v ∈ C∞(R×Rn,Rd). Suppose that v has local compact support in x. Set gv = g[v], fv =

f [v], and let u be the solution to

gµνv ∂µ∂νu = fv in R× Rn,
u(0, ·) = u0 on {t = 0} × Rn,

∂tu(0, ·) = u1 on {t = 0} × Rn

(which exists and is of local compact support in x).

Set

Ek[v, u](t) :=
1

2

∑
|α⃗|≤k

∫
∑

t

(
−g00v |Dα⃗∂tu|2 + gijv D

α⃗∂iu ·Dα⃗∂ju+ |Dα⃗u|2
)
dx.

Let I = [0, T ].
Then, there exist admissible majorizers and constants z1,I , z2,I , c1,I , c2,I , c3,I such that

Mk[u](t) ≤ c1,I Mk[u](0) +

∫ t

0

[
c2,I + z1,I (N [v]) ((1 +N [u])Mk[v] +Mk[u])

]
dτ,

∂tEk[v, u] ≤ c3,I + z2,I(N [u],N [v])
(
M2

k[v] + Ek[v, u]
)
.

If f(t, x, 0) = 0, c2,I can be omitted. (Under our conventions, g00v = −1, but it is convenient to
write it for keeping track of things.)

We will sometimes write g(t, x, v) for g(t, x, v, ∂v) etc. ∂ = (∂,D), D = spatial.

Proof. Note that
1

CI
E

1
2
k [v, ṽ](t) ≤ Mk[ṽ](t) ≤ CIE

1
2
k [v, ṽ](t)

provided ṽ is such that this is defined. To simplify the notation, write Ek = Ek[u, v], E = E0.
Compute

∂tE =

∫
∑

t

−g00v ∂tu∂2t u+ gijv ∂iu ∂j∂tu︸ ︷︷ ︸
by parts

+
1

2

∫
∑

t

(
−∂tg00v |∂tu|2 + ∂tg

ij
v ∂iu∂ju+ 2u∂tu

)

= −
∫
∑

t

 g00v ∂
2
t u+ gijv ∂i∂ju︸ ︷︷ ︸

=gµνv ∂µ∂νu−2gi0v ∂i∂tu

 ∂tu−
∫
∑

t

∂ig
ij
v ∂ju∂tu+

1

2

∫
∑

t

(
−∂tg00v |∂tu|2 + ∂tg

ij
v ∂iu∂ju+ 2u∂tu

)

= −
∫
∑

t

f∂tu+ 2

∫
∑

t

gi0v

= 1
2
∂i(|∂tu|2), by parts︷ ︸︸ ︷
∂i∂tu∂tu +

1

2

∫
∑

t

(
−∂tg00v |∂tu|2 + ∂tg

ij
v ∂iu∂ju+ 2u∂tu− 2∂ig

ij
v ∂ju∂tu

)
= −

∫
∑

t

f∂tu+
1

2

∫
∑

t

(
−∂tg00v |∂tu|2 + ∂tg

ij
v ∂iu∂ju+ 2u∂tu− 2∂ig

ij
v ∂ju∂tu− 2∂ig

i0
v |∂tu|2

)
Since |Dαgµν(t, x, ξ)| ≤ hI,α(|ξ|) and g depends on up to ∂v,

|∂gµνv | ≤ zI(NI [v]).

Thus
∂tE ≤ zI(N [v])E + CI∥fv∥L2

∑
t

√
E

Next, since Ek[v, u] =
∑

|α⃗|≤k E[v,Dα⃗u], differentiate the equation:

gµνv ∂µ∂νD
α⃗u = Dα⃗fv + [gµνv ∂µ∂ν , D

α⃗]u.
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Apply the above energy inequality to this to get

∂tEk ≤ zI(N (v))Ek + CI∥fv∥Hk(
∑

t)

√
Ek + CI

∥∥∥ [gµνv ∂µ∂ν , D
α⃗]u

∥∥∥
L2(

∑
t)

√
Ek.

To estimate the commutator,

gµνv ∂µ∂νD
α⃗u−Dα⃗(gµνv ∂µ∂νu)

note that it is a sum of terms of the form (up to constants)

Dβ⃗∂ig
µν
v Dr⃗∂µ∂νu

where |β⃗|+ |r⃗| = |α⃗| − 1 (the ∂i is there because at least one derivative falls on gµνv ). Write

Dβ⃗∂ig
µν
v Dr⃗∂µ∂νu = Dβ⃗∂i(g

µν
v − gµν0 )Dr⃗∂µ∂νu+Dβ⃗∂ig

µν
0 Dr⃗∂µ∂νu,

g0 = g[v = 0]. Since ∂ig
µν
v = 0 if µ = ν = 0, in ∂µ∂νu at least one of the derivatives is spatial.

Then, using some of our inequalities for Sobolev spaces,

∥Dα1u1, ..., D
αlul∥L2(Ω) ≤ C

l∑
i=1

∥Dkui∥L2(Ω)

∏
j ̸=i

∥uj∥L∞(Ω)

|α1|+ ...+ |αl| = k, we find (D = spatial derivative)

∥Dβ⃗

u1︷ ︸︸ ︷
∂i(g

µν
v − gµν0 ) Dr⃗

u2︷ ︸︸ ︷
∂µ∂νu∥L2(

∑
t)
≤ C∥Dk−1D(gv − g0)∥L2(

∑
t)
∥D∂u∥L∞(

∑
t)

+C∥D(gv − g0)∥L∞(
∑

t)
∥Dk−1D∂u∥L2(

∑
t)

Since v has local compact support in x,

g(t, x, v) = g(t, x, 0) = g0(t, x)

for x /∈ κ ⊂
∑

t. (κ compact depending on T ),

∥D(gv − g0)∥L∞(
∑

t)
≤ zI(N [v]).

Recalling another inequality:

∥F (·, u)∥Hk(Rn) ≤
continuous, increasing︷ ︸︸ ︷
C(∥u∥L∞(Rn)) ∥u∥Hk(Rn)

for F such that F (x, 0) = 0

|Dα
xD

α
yF (x, y)| ≤ Fα,j(|y|)︸ ︷︷ ︸

continuous, increasing

,

we find
(
(gv − g0)(t, x, 0) = 0

)
∥Dk−1D(gv − g0)∥L2(

∑
t)
≤ C∥gv − g0∥Hk(

∑
t)

≤ C(∥∂v∥L∞)∥∂v∥Hk(
∑

t)

≤ zI(N [v])Mk[v]

(we get ∂v because g = g(∂v)). Therefore

∥Dβ⃗∂i(g
µν
v − gµν0 )Dr⃗∂µ∂νu∥L2(

∑
t)
≤ zI(N [v])Mk[v]N [u] + zI(N [v])Mk[u]

≤ zI(N [v])
(
Mk[u] +N [u] +Mk[v]

)
Write fv = (fv − f0) + f0, f0(t, x) = f(t, x, 0). Since f0 has a compact local support in x,
∥f0∥Hk(

∑
t)
≤ CI . Applying the above inequality for F to f − f0:

∥f − f0∥Hk(
∑

t)
≤ zI(N [v])Mk[v].
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Putting it all together:

∂tEk ≤zI(N [v])Ek + CI∥fv∥Hk(
∑

t)

√
Ek

+
∥∥∥[gµνv ∂µ∂ν , D

α⃗]u
∥∥∥
L2(

∑
t)

√
Ek

≤zI(N [v])Ek + (CI + zI(N [v])Mk[v])
√
Ek

+ zI(N [v])(Mk[u] +N [u]Mk[v])
√
Ek

≤zI(N (v))Ek + CI
√
Ek

+ zI(N [v])
[
Mk[v] +N [u]Mk[v] +Mk[u]

]√
Ek.

Using CI
√
Ek ≤ CC2

I + CEk(
Mk[v] +N [u]Mk[v]

)√
Ek =

(
1 +N [u]

)
Mk[v]

√
Ek

≤ C
(
1 +N [u]

)2M2
k[v] + CEk

Mk[u]
√
Ek ≤ CIEk,

we obtain the second inequality; for the first inequality, divide by
√
Ek, integrate, and use

√
Ek ≈

Mk.
□

Lemma 14.10. Let g be a C∞ admissible metric and f a C∞ admissible nonlinearity. Let
u0,i , u1,i ∈ C∞

c (Rn), vi ∈ C∞(R × Rn,Rd) have local compact support in x, i = 1, 2. Set gi =
g[vi], fi = f [vi], and let ui be the solution to

gµνi ∂µ∂νui = fi in R× Rn,
ui(0, ·) = u0,i on {t = 0} × Rn,

∂tui(0, ·) = u1,i on {t = 0} × Rn

Let I = [0, T ], v = v2 − v1, and u = u2 − u1.

Then, there exist majorizers z1,I , z2,I and an admissible constant CI such that, for t ∈ I,

M0[u](t) ≤CI exp

(∫ t

0
z1,I(N [v2]) dτ

)
·
[
M0[u](0)

+

∫ t

0
z2,I(N [u1], N [v1], N [v2])M0[v] dτ

]
Proof. u satisfies

gµνv2 ∂µ∂νu = gµνv2 ∂µ∂νu2 − gµνv2 ∂µ∂νu1

= gµνv2 ∂µ∂νu2 − gµνv1 ∂µ∂νu1 + (gµνv1 − gµνv2 )∂µ∂νu1

= fv2 − fv1 + (gµνv2 − gµνv1 )∂µ∂νu1

Set

E =
1

2

∫
∑

t

(−g00v2 |∂tu|
2 + gijv2∂iu∂ju+ |u|2)

and proceed as above to get

∂tE ≤ zI(N (v2))E + ∥fv2 − fv1∥L2(
∑

t)

√
E

+ ∥(gµνv2 − gµνv1 )∂µ∂νu∥L2(
∑

t)

√
E
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(recall that in the basic estimate the term in power one in the energy is multiplied by a N (·) term
that comes from differentiating gµν(·) , this is why we have N (v2) here.)

The differences can be estimated using the fundamental theorem of calculus as we did for unique-
ness; ∂µ∂νu1 gives a N (u1) term (recall that ∂2t u1 does not appear).

Thus,∥∥(gµνv2 − gµνv1 )∂µ∂νu1
∥∥
L2(

∑
t)
≤ z1(N (u1))

∥∥(gµνv2 − gµνv1 )︸ ︷︷ ︸
∼
∫ 1
0 ∂g(v,∂v)

∥∥
L2(

∑
t)

≤ z1
(
N (u1),N (v1),N (v2)

) (
∥v2 − v1∥L2(

∑
t)
+ ∥∂v2 − ∂v1∥L2(

∑
t)

)
≤ z1

(
N (u1),N (v1),N (v2)

)
M0(v),

Similarly

∥fv2 − fv1∥L2(
∑

t)
≤ zI(N (v1),N (v2))M0(v).

Thus

∂tE ≤ z1(N (v2))E + zI(N (u1), N (v1), N (v2))M0(v).

Dividing by
√
E, integrating, using

√
E ≈ M0[u] and involving Gronwall produces the result.

□

Theorem 14.11. Let g be a C∞ admissible metric and f a C∞ admissible nonlinearity. Let
u0 ∈ Hk+1(Rn,Rd), u1 ∈ Hk(Rn,Rd), where k > n

2 + 1. Then, there exists a T > 0 and a unique

u ∈ C2
B([0, T ]× Rn,Rd) which is a solution to

gµν∂µ∂νu = f in [0, T ]× Rn,
u(0, ·) = u0 on {t = 0} × Rn,

∂tu(0, ·) = u1 on {t = 0} × Rn

Moreover, u has regularity

u ∈ C0([0, T ], Hk+1(Rn,Rd)),

∂tu ∈ C1([0, T ], Hk(Rn,Rd)).

Finally, for any t ∈ [0, T ] we have

Ek(t) ≤
(
Ek(0) + CIt

)
e
∫ t
0 zI(N (u))dt,

where the RHS depends only on T and an upper bound for ∥u0∥Hk+1(
∑

0)
and ∥u1∥Hk(

∑
0)
,E(t) =

E[u, u](t).

Proof. The proof will be split into several steps.

Set-up. Let {u0,i} and {u1,i} be sequences of C∞
c (Rn,Rd) converging to u0 and u1 in Hk+1 and Hk,

respectively. We can assume that

∥u0,i∥Hk+1 + ∥u1,i∥Hk ≤ C0 + 1,

where

C0 := ∥u0∥Hk+1 + ∥u1∥Hk .

Set

v0(t, x) := u0,0(x),
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which has local compact support in x. Define vi+1 inductively as follows. Given vi ∈ C∞(R×Rn,Rd)
with local compact support in x, let vi+1 ∈ C∞(R× Rn,Rd) be the unique solution to

gµνi+1∂µ∂νvi+1 = fi+1 in R× Rn,
vi+1(0, ·) = u0,i+1 on {t = 0} × Rn,

∂tvi+1(0, ·) = u1,i+1 on {t = 0} × Rn

where gi+1 = g[vi], fi+1 = f [vi]. Note that vi+1 has local compact support in x.

Boundedness. Let us assume inductively that

Mk[vi−1] ≤ C, Mk[vi−2] ≤ C

for some C and 0 ≤ t ≤ T . We have

N [vi] ≤ C∥D≤2vi∥L∞ + C∥D≤1∂tvi∥L∞(
∑

t)
+ C∥∂2t vi∥L∞(

∑
t)

≤ C∥vi∥Hk+1(
∑

t)
+ C∥∂tvi∥Hk(

∑
t)
+ C∥∂2t vi∥L∞(

∑
t)

where we used Sobolev’s embedding. Using the equation and our assumptions the last term is ∂2t vi
is bounded by

∥∂2t vi∥L∞(
∑

t)
≤ C∥gvi−1∥L∞(

∑
t)

(
∥D2vi∥L∞(

∑
t)
+ ∥D∂tvi∥L∞(

∑
t)
+ ∥fvi−1∥L∞(

∑
t)

)
≤ zI(C)(Mk[vi] + zI(C))
≤ zI(C)(1 +Mk[vi])

after using Sobolev’s embedding, our assumptions on g, f the miscellaneous inequalities we used
before, and the induction hypothesis. Thus

N [vi] ≤ zI(C)(1 +Mk[vi]).

Similarly,

N [vi−1] ≤ zI(C)(1 +Mk[vi−1])

≤ zI(C)

using again the induction hypothesis. We now use the energy estimate

Mk[u](t) ≤ C1,IMk[u](0) +

∫ t

0

[
C2,I + z1,I(N [v])

(
(1 +N [u])Mk[v] +Mk[u]

)]
dτ,

with u 7→ vi, v 7→ vi−1 to get

Mk[vi] ≤ CIMk[vi](0) +

∫ t

0

[
CI + zI(N [vi−1])︸ ︷︷ ︸

≤zI(C)

(1 + N [vi]︸ ︷︷ ︸
≤zI(C)(1+Mk[vi])

) Mk[vi−1]︸ ︷︷ ︸
≤C

+Mk[vi]

]
dτ

≤ CIM[vi](0) + zI(C)
∫ t

0
(1 +Mk[vi])dτ.

By Gronwall

Mk[vi] ≤ CI(Mk[vi](0) + tzI(C))etzI(C).
Choosing C large enough, depending on C0, CI and T small enough, depending on C we have

Mk[vi] ≤ C.

We need to verify the i = 1, 2 case, i.e., we need Mk[v0] ≤ C,Mk[v1] ≤ C. For i = 1, we have

Mk[v0] = Mk[u0,0] ≤ C0 + 1,
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so choose C ≥ C0 + 1 For i = 1, i.e., v1, we apply the above induction argument. For this, we need
N [vi−1] = N [v0] ≤ zI(C), which above we obtained using the induction hypothesis for vi−2, which
would give v−1 (see the above, where it says “similarly”). But here we have N [v0] ≤ zI(C) directly
from the fact that v0 is constant in time and from Sobolev embedding.

Lower norm convergence. From linear theory we know that

vi ∈ C0([0, T ], Hk+1(Rn)) ∩ C1([0, T ], Hk(Rn)).

In the estimate for differences

M0[u](t) ≤ CI exp

∫ t

0
z1,I(N [v2])dτ ·

[
M0[u](0) +

∫ t

0
z2,I(N [u1],N [v1],N [v2])M0[v]dτ

]
,

v = v2 − v1, and u = u2 − u1, choose v2 7→ vi, v1 7→ vi−1, u2 7→ vi+1, u1 7→ vi to get

M0[vi+1−vi] ≤ CI exp

∫ t

0
zI(N [vi])dτ

[
M0[vi+1 − vi](0) +

∫ t

0
zI(N [vi],N [vi−1])M0[vi − vi−1]dτ

]
By the foregoing,

NI [vi] ≤ zI(C)(1 +Mk[vi]) < zI(C),
so

CIe
tzI(C)

[
M[vi+1 − vi](0) + zI(C)

∫ t

0
M0[vi − vi−1]dτ

]
Put ai = sup0≤t≤T M0[vi+1− vi](t), We can assume that T is small enough and the approximating
initial data sequence are such that

CIe
tzI(C)tzI(C) ≤

1

2
and

CIe
tzI(C)M0[vi+1 − vi](0) ≤ 2−i.

Then

ai ≤ 2−i +
1

2
ai−1.

Then

a2 ≤
1

4
+

1

2
a1,

a3 ≤
1

8
+

1

2
a2 ≤

1

8
+

1

8
+

1

4
a1,

ai ≤
i− 1

2i
+

a1
2i−1

.

Thus

M0[vi+j − vi] ≤ M0[vi+j − vi+j−1] + ...+M0[vi+1 − vi]

≤ i+ j − 2

2i+j−1
+

a1
2i+j−2

+ ...+
i− 1

2i
+

a1
2i−1

.

Since
∑ i

2i
converges, we conclude that {vi} is Cauchy in C0([0, T ], H1(Rn)) ∩ C1([0, T ], L2(Rn)),

hence converges.

Higher norm convergence. For any 0 < l < k, interpolation

∥u∥H(s2)(Rn) ≤ ∥u∥
s3−s2
s3−s1

H(s1)(Rn)
∥u∥

s2−s1
s3−s1

H(s3)(Rn)
, s1 < s2 < s3
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gives,

∥vi+j − vi∥Hl+1(
∑

t)
+∥∂tvi+j − ∂tvi∥Hl(

∑
t)

≤ ∥vi+j − vi∥
k+1−(l+1)

k+1−1

Hl(
∑

t)︸ ︷︷ ︸
→0

∥vi+j − vi∥
l+1−1
k+1−1

Hk+1(
∑

t)︸ ︷︷ ︸
bounded by energy estimates

+

︷ ︸︸ ︷
∥∂tvi+j − ∂tvi∥

k−l
k−0

H0(
∑

t)

︷ ︸︸ ︷
∥∂tvi+j − ∂tvi∥

l−0
k−0

Hk(
∑

t)

hence {vi} converges in C0([0, T ], H l+1(Rn)) ∩ C l([0, T ], H2(Rn)), l < k. Since k > n
2 + 1, we can

take l (not necessarily integer) so that l > n
2 + 1. Hence, by Sobolev embedding, the sequence

converges in C0([0, T ], C2(Rn))∩C1([0, T ], C1(Rn)). Using the equation we get that ∂2t vi converges
in C0([0, T ], C0(Rn). We conclude that the sequence converges in C2

B([0, T ]×Rn), hence we obtain
a C2 solution.

Top-norm boundedness. Denote by u the above solution. We already know that u ∈ H l+1(
∑

t), ∂tu ∈
H l(

∑
t), l < k. For each fixed t, the sequence {vi(t, ·)} converges in H l+1(

∑
t) and is bounded in

Hk+1(
∑

t), hence the limit is in Hk+1(
∑

t). Similarly, for ∂tu, thus u(t, ·) ∈ Hk+1(
∑

t), ∂tu(t, ·) ∈
Hk(

∑
t).

It remains to show regularity with t and the energy bound.

Time-continuity: weak. Let us first show that u is weakly continuous with respect to t, i.e., given

a bounded linear functional φ on Hk+1(Rn), the map t 7→ φ(u(t, ·)) is continuous.

φ is represented by an element in H−k−1(Rn) which we still denote by φ, so

⟨φ, u⟩ =
∫
Rn

φu.

Let φj be a sequence of Schwartz functions converging to φ and vi as above.

⟨φ, u(t, ·)⟩−⟨φ, vi(t, ·)⟩
=⟨φ, u(t, ·)⟩ − ⟨φj , u(t, ·)⟩+ ⟨φj , u(t, ·)⟩ − ⟨φj , vi(t, ·)⟩
− ⟨φj , vi(t, ·)⟩ − ⟨φ, vi(t, ·)⟩,

for 0 < l < k.∣∣⟨φ, u(t, ·)⟩ − ⟨φ,vi(t, ·)⟩
∣∣ ≤ ∥φj − φ∥H−k−1(Rn) ∥u(ti)∥Hk+1(Rn)

+ ∥φj∥H−l−1(Rn) ∥u(t, ·)− vi(t, ·)∥Hl+1(Rn) + ∥φj − φ∥H−k−1(Rn) ∥vi(t, ·)∥Hk+1(Rn)

Fix j large enough so that

∥φj − φ∥H−k−1(Rn)

(
∥u(t, ·)∥Hk+1(Rn) + ∥vi(t, ·)∥Hk+1

)
< ϵ

which is possible since ∥u(t, ·)∥Hk+1(Rn) + ∥vi(t, ·)∥Hk+1 is bounded by the above. Then choose i

(depending on j) such that

∥φj∥H−l−1(Rn)∥u(t, ·)− vi(t, ·)∥Hl+1(Rn) < ϵ

which is possible by the convergence for l < k. Thus,∣∣⟨φ, u(t, ·)− vi(t, ·)⟩
∣∣ < 2ϵ, 0 ≤ t ≤ T,
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and vi converges uniformly in t to u with respect to the weak topology. But the vi’s are weakly
continuous in t since they belong to C0([0, T ], Hk+1(Rn)) thus u is the uniform limit of weak con-
tinuous functions, and hence weakly continuous. A similar argument applies to ∂tu.

Time-continuity: strong. Let us show that

lim
t→0+

(
∥u(t, ·)− u(0, ·)∥Hk+1(Rn) + ∥∂tu(t, ·)− ∂tu(0, ·)∥Hk(Rn)

)
= 0

i.e., right continuity at t = 0. Left-continuity follows by reversing time and continuity at any t0 by
taking u(t0), ∂tu(t0) as initial data for the problem on [t0, T ]. We will use the estimate

Ek(t) ≤ (Ek(0) + CIt)e
∫ t
0 zI(N (u))dt

that we will prove later. Set

hij(x) = gij(0, x, u, ∂u),

i.e., = gij(0, x, u(0, x), ∂u(0, x)).

Under our assumptions and the results established so far, the following is an inner product on
Hk+1(Rn)×Hk(Rn) equivalent to the standard one:

((v1, v2), (w1, w2)) :=
1

2

∑
|α⃗|≤k

∫
Rn

(
hij∂iD

α⃗v1∂jD
α⃗w1 +Dα⃗v1D

α⃗w1 +Dα⃗v2D
α⃗w2

)
dx.

Compute(
(u− u0, ∂tu− u1), (u− u0, ∂tu− u1)

)
=

(
(u, ∂tu)− (u0, u1), (u, ∂tu)− (u0, u1)

)
=

(
(u, ∂tu), (u, ∂tu)

)
+
(
(u0, u1), (u0, u1)

)
− 2

(
(u, ∂tu), (u0, u1)

)
Since g00 = −1, g(0, x, u, ∂u) = h, we have

Ek(0) = ((u0, u1), (u0, u1)).

The map u 7→ ((u, ∂tu), (u0, u1)) defines a linear functional, thus by the weak continuity established
above we have

lim
t→0+

(
(u, ∂tu), (u0, u1)

)
= ((u0, u1), (u0, u1)) = Ek(0).

Thus

lim
t→0+

sup ((u− u0, ∂tu− u1), (u− u0, ∂tu− u1))

= lim
t→0+

sup ((u, ∂tu), (u, ∂tu) + ((u0, u1), (u0, u1))− 2 lim
t→0+

sup ((u, ∂tu), (u0, u1))

= lim
t→0+

sup ((u, ∂tu), (u, ∂tu))− Ek(0)

= lim
t→0+

sup

[
(u, ∂tu), (u, ∂tu))− Ek(t)

]
+ lim
t→0+

sup Ek(t)− Ek(0).

From the energy estimate, limt→0+ supEk(t) ≤ Ek(0), so

lim
t→0+

sup
(
(u− u0, ∂tu− u1), (u− u0, ∂tu− u1)

)
≤ lim

t→0+
sup

[(
(u1, ∂tu), (u, ∂tu)

)
− Ek(t)

]
.
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Write(
(u, ∂tu), (u, ∂tu)

)
− Ek(t) =

1

2

∑
|α⃗|≤k

∫
∑

t

(
|∂tDα⃗u|2 + hij∂iD

α⃗u∂jD
α⃗u+ |Dα⃗u|2

)
dx

− 1

2

∑
|α⃗|≤k

∫
∑

t

(
−g00u |∂tDα⃗u|2 + giju ∂iD

α⃗u∂jD
α⃗u+ |Dα⃗u|2

)
dx

=
1

2

∑
|α⃗|≤k

∫
∑

t

(
hij − giju

)
DiD

α⃗u ·DjD
α⃗udx

≤ C∥h−1 − g−1∥L∞(
∑

t)

≤C︷ ︸︸ ︷
∥u∥Hk+1(

∑
t)

For n
2 +1 < l < k, by Sobolev embedding, our assumptions, the miscellaneous inequalities as above,

the fundamental theorem of calculus, and writing

g−1(0, x, ∂u(0, x))− g−1(t, x, ∂u(0, x)) + g−1(t, x, ∂u(0, x))− g−1(t, x, ∂u(t, x))

we have
∥h−1 − g−1∥L∞(

∑
t)
≤ zI(C)∥∂u0 − ∂u∥Hl(

∑
t)

which goes to zero when t→ 0+ since we have strong continuity in the H l+1 ×H l-norm. Thus

0 ≤ lim
t→0+

sup
(
(u− u0, ∂tu− u1), (u− u0, ∂tu− u1)

)
= 0

which gives the result by the inner-product equivalence.

Energy estimate for u.
It remains to show

Ek(t) ≤
(
Ek(0) + CIt

)
e
∫ t
0 zI(N (u))dt

(Note that we have to prove this without using the strong continuity since the proof of the latter
relied on this estimate.)
Recall

∂tEk[v, u] ≤ c3,I + z2,I
(
N [u],N [v]

)(
M2

k[v] + Ek[v, u]

)
.

Apply this inequality with v 7→ vi, u 7→ vi+1, u0 7→ u0,i, u1 7→ u1,i

Ek(vi, vi+1) ≤ Ek(vi, vi+1)(0) +

∫ t

0

[
cI + zI

(
N (vi),N (vi+1)

) (
M2

k(vi) + Ek(vi, vi+1)
) ]
dτ

We compare∣∣Ek(vi, vi+1)− Ek(u, vi+1)
∣∣ = ∣∣∣∣12 ∑

|α⃗|≤k

∫
∑

t

(−g00vi |∂tD
α⃗vi+1|2 + gjlvi∂jD

α⃗vi+1∂lD
α⃗vi+1 − |Dα⃗vi+1|2)dx

− 1

2

∑
|α⃗|≤k

∫
∑

t

(−g00u |∂tDα⃗vi+1|2 + gjlu ∂jD
α⃗vi+1∂lD

α⃗vi+1 − |Dα⃗vi+1|2)dx
∣∣∣∣

≤ ∥g−1
vi − g−1

u ∥L∞(
∑

t)
CI(C).

Since vi 7→ u in C2
B([0, T ]× Rn), we have that the RHS → 0, thus

lim
i→∞

supEk(u, vi+1) = lim
i→∞

supEk(vi, vi+1)

≤ lim
i→∞

supEk(vi, vi+1)(0)

+

∫ t

0

[
cI + lim

i→∞
sup zI

(
N (vi),N (vi+1)

)(
M2

k(vi) + Ek(vi, vi+1)
)]
dτ
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(we used the reverse Fatou’s lemma to move the lim sup inside the integral, which can be invoked
by Ek(vi, vi+1) ≤ CI(C)).

By the C2 convergence, N (vi) → N (u) and, from how the initial data was chosen, Ek(vi, vi+1)(0) →
Ek(0). Moreover, M2

k(vi) ≤ CIE(u, vi) by the properties of u established so far (and consequently
of gu) so

lim
i→∞

supM2
k(vi) ≤ CI lim

i→∞
supE(u, vi).

Thus

lim
i→∞

supEk(u, vi+1) ≤ Ek(0) +
∫ t

0

[
cI + zI(N (u)) lim

i→∞
supEk(u, vi)

]
dτ

Gronwalling:

lim
i→∞

supEk(u, vi+1) ≤ (Ek(0) + tCI) e
∫ t
0 zI(N (u))dτ .

Since vi converges in H
l+1×H l and is bounded in Hk+1×Hk, it converges weakly to u in Hk+1×Hk

(this remains true for the equivalent inner product since it is bounded there too). So

Ek(u) = lim
i→∞

sup
1

2

∑
|α|≤k

∫
∑

t

(
−g00u ∂tDα⃗u∂tD

α⃗vi + glju ∂lD
α⃗u∂jD

α⃗u+Dα⃗uDα⃗vi

)
≤ lim

i→∞
sup

(
(u, ∂tu), (vi, ∂tvi)

)
≤ lim

i→∞
sup ∥(u, ∂tu∥u︸ ︷︷ ︸

=E
1
2
k (u)

∥(vi, ∂tvi)∥u︸ ︷︷ ︸
=E

1
2
k (u,vi)

where we used the Cauchy-Schwarz inequality for the equivalent inner product (with norm denoted
∥ · ∥u). Hence, dividing,

E
1
2
k (u) ≤ lim

i→∞
supE

1
2
k (u, vi).

which implies the result. □

14.1. Continuation criterion and smooth solutions. We are interested in the following ques-
tions: if a solution is defined on [0, T ], can it be continued past T? If the initial data is C∞, is the
solution?

Theorem 14.12. Let g be a C∞ admissible metric and f a C∞ admissible nonlinearity. Let
u0 ∈ Hk+1(Rn,Rd), u1 ∈ Hk(Rn,Rd), where k > n

2 + 1. Let u ∈ C2
B([0, T ]× Rn,Rd) be a solution

to

gµν∂µ∂νu = f in [0, T ]× Rn,
u(0, ·) = u0 on {t = 0} × Rn,

∂tu(0, ·) = u1 on {t = 0} × Rn

T > 0. Then u has regularity

u ∈ C0([0, T ], Hk+1(Rn,Rd)),

∂tu ∈ C1([0, T ], Hk(Rn,Rd)).
(14.2)

and for any t ∈ [0, T ],

Ek(t) ≤
(
Ek(0) + CIt

)
e
∫ t
0 zI(N (u))dt, (14.3)

where Ek is as in the previous theorem. Let Tk be the supremum of T , for which u is a C2 solution
defined on [0, T ] and satisfying (14.2). Then either Tk = ∞ or

lim
t→T−

k

sup
0≤τ≤t

N [u](τ) = ∞.
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Proof. We know (14.2) and (14.3) to hold on a possibly smaller interval, i.e., the interval where
the iteration of the previous theorem converges. Let I be the set of times T0 ∈ [0, T ] such that
(14.2) and (14.3) hold on [0, T0]. We already have that I is not empty. For T0 ∈ I, we have
(u(T0, ·), ∂tu(T0, ·)) ∈ Hk+1 ×Hk, so we can take it as initial data and obtain a solution defined on
[T0, T0 + ϵ] for some ϵ > 0 and satisfying (14.2) and (14.3) on [T0, T0 + ϵ]. Since (14.2) and (14.3)
hold on [0, T0] by the definition of T0, (14.2) holds on [0, T0 + ϵ]. Moreover

Ek(t) ≤
(
Ek(0) + ct

)
e
∫ t
0 z(N (u))dτ , 0 ≤ t ≤ T0,

Ek(t) ≤
(
Ek(T0) + C(t− T0)

)
e
∫ t
T0
z(N (u))dτ

, T0 ≤ t ≤ T0 + ϵ.

Applying the first inequality with t = T0 we find that the second inequality gives

Ek(t) ≤
(
Ek(T0) + C(t− t0)

)
e
∫ t
T0
z(N [u])dτ

≤
[
(Ek(0) + CT0︸︷︷︸

≤Ct since t∈[T0,T0+ϵ]

)e
∫ T0
0 z(N [u])dτ + C(t− t0)︸ ︷︷ ︸

≤Ct

]
e
∫ t
T0
z(N [u])dτ

≤
[(
Ek(0) + Ct

)
e
∫ T0
0 z(N [u])dτ

]
e
∫ t
T0
z(N [u])dτ

≤
(
Ek(0) + Ct

)
e
∫ t
0 z(N [u])dτ ,

showing that I is open.

Let Ti → T0, Ti ∈ I. Since Ti ∈ I, (14.3) holds for each i, hence
(
u(Ti, ·), ∂tu(Ti, ·)

)
∈ Hk+1 ×Hk

is uniformly bounded independent of i. Because the time of existence depends only on the size of
the data (and the structure of the nonlinearities), this uniform bound gives a solution for each data(
u(T, ·), ∂tu(Ti, ·)

)
defined on [Ti, Ti + ϵ] where ϵ > 0 is independent of i. Hence we get a solution

satisfying (14.2) past T0 and by continuity (14.3) holds as well. Hence I is closed, thus (14.2) and
(14.3) hold.

For the characterization of Tk, suppose that Tk <∞ but

lim
t→T−

k

sup
0≤τ≤t

N [u](τ) <∞.

Then N [u] is bounded on [0, Tk). Then (14.3) implies that Ek has a uniform bound on [0, Tk).
Arguing as above, we can construct a solution past Tk, contradicting the definition of Tk.

□

Corollary 14.13. Under the same assumptions of the local existence and uniqueness theorem, if
u0, u1 ∈ C∞

c (Rn) then the solution is C∞.

Proof. This follows from the fact that the data is in Hk for any k and that Tk in the previous
theorem is independent of k.

□

Remark 14.14. If g does not depend on ∂u, we can replace k > n
2 + 1 by k > n

2 and N [u] to
involve up to first derivatives of u only. This can be seen by inspection in the local existence and
uniqueness proof.

15. The role of the characteristics

We will now discuss the concept of characteristic manifolds, or characteristics for short. These
play a role similar to the cones in the standard wave equation. It will be important to distinguish
between elements of the tangent and cotangent space at a point, even if we will consider primarily
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equations defined on [0, T ]× Rn (the generalization for manifolds will be straightforward though).
We begin with several definitions and give a motivation further below.

Definition 15.1. Consider in X = [0, T ] × Rn a linear scalar differential operator L of order k
with principal part

P =
∑
|α|=k

aαD
α.

For each x ∈ X and each ξ ∈ T ∗
xX, we can associate a polynomial of degree k in T ∗

xX, called the
characteristic polynomial of at x, by

P (x, ξ) =
∑
|α|=k

aα(x)ξ
α,

where ξα = ξα0
0 ... ξαn

n and we abuse notation, using P for both the principal part of the operator
and its characteristic polynomial. The cone Vx(P ) ⊂ T ∗

xX is defined by

P (x, ξ) = 0,

called the characteristic cone (at x). (Although the set need not to be a cone in all cases, but
see below).

Example 15.2. For the wave equation (more precisely, the wave operator, but we abuse terminol-
ogy).

−utt +∆u = 0

the characteristic cone at any x is given by (the boundary of) the light-cones −ξ20 + |ξ⃗|2 = 0.

Example 15.3. For the transport equation

∂tu+ b⃗ · ∇u = 0

the characteristic cones have the form
ξ0 + b⃗ · ξ⃗ = 0

Identifying b⃗ with a one form:

ξ0

ξ⃗

(1, b⃗)

(1, b⃗) · (ξ0, ξ⃗) = 0

Vx(P)

Figure 33. b⃗ and the One Form

Definition 15.4. A regular hypersurface
∑

⊂ X (i.e., a hypersurface for which tangent vectors are
well-defined) is called a characteristic manifold, characteristic surface, or simply a charac-
teristics for P (or for L) if the following holds.

∑
can be locally represented as

{
x ∈ X | ϕ(x) = 0

}
,

dϕ ̸= 0. Setting ξ = dϕ, ξ ∈ Vx(P ) for all x ∈ {ϕ(x) = 0}. We also call
∑

a null hypersurface.

It is convenient to also define characteristics when we have a curve instead of a surface. More
precisely, we say that the flow lines of the vector field u are the characteristics for the operator
uµ∂µ (this is motivated by the characteristic cone uµξµ = 0).
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Example 15.5. For the wave operator −utt + c2uxx, the characteristics are the curves x ± ct =
const. The characteristics cones are −ξ20 + c2ξ21 = 0, ξ0 = ±c|ξ1|. Take, e.g., ϕ(t, x) = x ± ct.
dϕ = dx± cdt = ξ, ξ0 ± c|ξ1|.

In order to generalize the above to vector-valued differential operators (i.e., for systems of PDEs)
we need to define the principal part of a mixed order operator (i.e., consider systems of PDEs where
the equations might have different orders).

Definition 15.6. Let L : C∞(Ω,Rd) → C∞(Ω,Rd) be a linear differential operator. Assume that
it is possible to find non-negative integers mI , nJ such that

(Lu)J = hJI (x,D
mI−uJ )uI + bJ(x,DmK−nJ−1)uK ,

x ∈ Ω, I, J,K = 1, ..., d, sum over I,K, where hJI (x,D
mI−nJ ) is a homogenous linear differential

operator of order mI − nJ (which could be identically zero) and bJ(x,DmK−nJ−1) is a linear
differential operator of order mK − nJ − 1 (which could also be zero). Under these conditions,
the principal part of L is the operator

P = (hJI (x,D
mI−nJ ))I,J=1,...,d

and the characteristic polynomial is defined as

P (x, ξ) = det(hJI (x, ξ)).

The definitions of characteristic cones and characteristics extend to this situation.

Remark 15.7. We also call hJI (x, ξ) the characteristic matrix and det(hJI (x, ξ)) the characteristic

determinant of P . Note that it is a homogenous polynomial (in ξ) of degree
∑d

I=1mI −
∑d

J=1 nJ .
The indices mI , nJ are defined up to an overall additive factor.

Example 15.8. Consider the system

uµ∂µϕ1 = ϕ1 + ϕ2 + ϕ3

gµν∂µ∂νϕ2 = ∂ϕ1 + ∂ϕ2 + ∂ϕ3

gµνuλ∂µ∂ν∂λϕ3 = ∂2ϕ1 + ∂2ϕ2 + ∂2ϕ1

This system has the above structure with the choice

ϕ1 : m1 = 3, n1 = 2 ϕ2 : m2 = 3, n2 = 1 ϕ3 : m3 = 3, n3 = 0.

Then the principal part is given by the LHS,

P

ϕ1ϕ2
ϕ3

 =

uµ∂µ 0 0
0 gµν∂µ∂ν 0
0 0 gµνuλ∂µ∂ν∂λ

ϕ1ϕ2
ϕ3


even though there is a ∂2ϕ1, ∂

2ϕ2 dependence on the RHS. To understand this, recall that we
already know the definition of the principal part if all equations have the same order. Transforming
the system into this case by taking ∂2 of the first equation and ∂ of the second, we find

∂3ϕ1 = ∂2ϕ1 + ∂2ϕ2 + ∂2ϕ3

∂3ϕ2 = ∂2ϕ1 + ∂2ϕ2 + ∂2ϕ3

∂3ϕ3 = ∂2ϕ1 + ∂2ϕ2 + ∂2ϕ1

and we see that the RHS is indeed lower order.

Definition 15.9. We say that P (x, ξ) is a hyperbolic polynomial at x if there exists ξ ∈ T ∗
xX

with the following property: given a non-zero θ ∈ T ∗
xX that is not parallel to ξ, the line λξ + θ,

where λ ∈ R is a parameter, intersects the cone Vx(P ) at k distinct real points. We say that L is
a hyperbolic operator at x if P (x, ξ) is a hyperbolic polynomial at x. We simply say hyperbolic
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if these conditions hold at every x or on a domain that is implicitly understood. (Recall that k is
the degree of P (x, ξ).

Remark 15.10. The definition of hyperbolicity varies across the literature and sometimes qualifiers
such as strong, strict, weak hyperbolic are used to make distinctions among different definitions
(see below).

Example 15.11. For the wave equation, any ξ in the interior of the light-cone satisfies this property.

For the transport equation, any ξ not parallel to ξ0 + b⃗ · ξ⃗ = 0 satisfies the property

Vx(P)

λξ + θ λξ

ξ
ξ0

ξ⃗⃗ξ

ξ0

ξ⃗ξ⃗
Vx(P)

(1, b⃗) · (ξ0, ξ⃗) = 0

λξ + θ

(1, b⃗) · (ξ0, ξ⃗) = 0

(1, b⃗ )

Figure 34. The Light Cone and Vx(P)

Theorem 15.12. (Leray). If P (x, ξ) is hyperbolic at x and dim X ≥ ξ, then the set of ξ’s

satisfying the definition forms the interior of two opposite convex half-cones Γ∗,+
x (P ),Γ∗,−

x (P ) with

Γ∗,±
x (P ) not empty and whose boundaries belong (but need not to coincide) with Vx(P ).

Example 15.13. Let g be a Lorentzian metric and u be a timelike unit vectorfield, i.e., gαβu
αuβ =

−1. The operator gµνuλ∂µ∂ν∂λ is hyperbolic.

P (x, ξ) = gµνuλ∂µ∂ν∂λ = 0,

thus

{
gµνξµξν = 0

uλξλ = 0
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Vx(P)

λξ + θ λξ

ξ
ξ0

ξ⃗⃗ξ

u

Figure 35. Light Cone and Parallel λξ + θ, λξ

uµξµ = gµνuµξν = 0.

t

x

u
g(ub, ξ) = 0

ξ⃗

ξ0

ub = one form

Figure 36. Illustration

Definition 15.14. We say that L is weakly hyperbolic at x if P (x, ξ) is a product

P (x, ξ) = P1(x, ξ)...Pµ(x, ξ),

where each Pi(x, ξ) is a hyperbolic polynomial, and the intersections

Γ∗,+
x (P ) :=

µ⋂
i=1

Γ∗,+
x (Pi)

Γ∗,−
x (P ) :=

µ⋂
i=1

Γ∗,−
x (Pi),

have non-empty interior, where Γ∗,±
x (Pi) are the convex cones associated to Pi(x, ξ). If in addition

P is diagonal (i.e., hJI = 0 for I ̸= J), and each diagonal entry of P is a hyperbolic operator (at x),
then we say that L is a hyperbolic operator in diagonal form (at x).
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The reason to consider the intersection of the cones can be understood with the following example.
Consider

−utt + uxx + uyy = 0,

−vxx + vtt + vyy = 0,

which are two wave equations, with x playing the role of a time variable for the second equation.
But

−utt + uxx + uyy = v,

−vxx + vtt + vyy = u,

is not a coupled system of wave equations because they do not share a common direction of evo-
lution, i.e., a common time variable. This is reflected in the corresponding cones having empty
intersections

Figure 37. Empty Intersection

Consider, instead,

−utt + uxx + uyy = v,

−2vtt −
4
√
3

11
vtx +

32

121
vxx + vyy = u,

This is a system of coupled wave equations with a common evolution direction. The cones are
(omitting the y variable) depicted as:

x

t

t = |x|

t =
√
3−1√
3+1

t = −
√
3+1√
3−1

x

x̃

t = − 1√
3
x

t̃

t =
√
3x

Figure 38. Cones with Omitted y Variable
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The blue cone corresponds to u and the red cone to v. To see the latter, consider the coordinate
system given by t+ 1√

3
x = 0, t−

√
3 = 0, i.e., consider the variables

x̃ =

√
3

2
x− 1

2
t, t̃ =

1

2
x+

√
3

2
t

with respect to which the red cone is a standard light cone. Set

w(t̃, x̃) = v(t, x).

Then

x̃+
1√
3
t̃ =

(√
3

2
+

1√
3

)
x, x =

2
√
3

11
x̃+

2

11
t̃

√
3 t̃− x̃ = 2t, t =

√
3

2
t̃− 1

2
x,

{
xx̃ = 2

√
3

11 , xt̃ =
2
11

tt̃ =
√
3
2 , tx̃ = −1

2

wt̃ = vt tt̃ + vx xt̃ =

√
3

2
vt +

2

11
vx

wt̃t̃ =

√
3

2
(vtttt̃ + vtxxt̃) +

2

11
(vxttt̃ + vxxxt̃)

=
9

4
vtt +

2
√
3

11
vtx +

4

121
vxx

wx̃ = vttx̃ + vxxx̃ = −1

2
vt +

2
√
3

11
vx

wx̃x̃ = −1

2
(vtttx̃ + vtxxx̃) +

2
√
3

11
(vxttx̃ + vxxxx̃)

=
1

4
vtt −

2
√
3

11
vtx +

36

121
vxx,

thus

−wt̃t̃ + wx̃x̃ = −2vtt −
4
√
3

11
vtx +

32

121
vxx,

so the v part is a wave equation with time t̃ and cones given by t̃ = |x̃|, i.e., t̃ ≥ 0 and t̃ = x̃,
1
2x+

√
3
2 t =

√
3
2 x− 1

2 t, t =
√
3−1√
3+1

x, t̃ = −x̃, 1
2x+

√
3
2 t = −

√
3
2 x+ 1

2 t, t = − 1√
3
x.

The next definition dualizes the above constructions.

Definition 15.15. We define the dual convex cone C+
x (P ) at TxX as the set of v’s ∈ TxX such

that ξ(v) ≥ 0 for every ξ ∈ Γ∗,+
x (P ). We similarly define C−

x (P ) and set Cx(P ) = C+
x (P )∪C−

x (P ). If
the cones C+

x (P ) and C−
x (P ) can be continuously distinguished with respect to X then X is called

time oriented and we can define a future and past time direction. A path in X is called future
(past) timelike if its tangent at each point belongs to C+

x (P ) (C−
x (P )), and future (past) causal

if its tangent at each point belongs or is tangent to C+
x (P ) (C−

x (P )). A regular surface
∑

(i.e., a
surface for which tangent vectors are well defined) in X is called spacelike if its tangent vectors
at each point are exterior to Cx(P ).

Remark 15.16. Despite the terminology, the above definitions are made in terms of the principal
part P of the operator L, without reference to a Lorentzian metric. The terminology captures the
close connections among hyperbolic equations and Lorentzian geometry.
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Let us now give a motivation for the definition of characteristics. Consider the linear PDE

Lu =
∑
|α|≤k

aαD
αu =

∑
|α|=k

aαD
αu+

∑
|α|≤k−1

aαD
αu

= Pu+Qu = f,

where the aα’s are d × d matrices (so we assume the equations to all have the same order for
simplicity) and f is given. Consider the Cauchy problem for L with data given on {x0 = 0}, i.e.,

Lu = f in [0, T ]× Rn,
Dαu(0, ·) = uα on {x0 = 0} × Rn, |α| ≤ k − 1.

(At this point we are not assuming L to be hyperbolic or have any structure, so we do not think of
x0 as time.) If the Cauchy problem is uniquely solvable, then in particular all derivatives of u on∑

= {x0 = 0} are uniquely determined in terms of the initial data (and f).

Writing

Pu =
∑
|α|=k

aαD
αu = aα∗Dα∗

u+
∑
|α|=k
α ̸=α∗

aαD
αu,

where α∗ = (k, 0, ..., 0) the equation gives

aα∗Dα∗
u
∣∣
Σ
= f

∣∣
Σ
−

∑
|α|=k
α ̸=α∗

aαD
αu

∣∣
Σ
−Qu

∣∣
Σ

The RHS is entirely determined by the data. Thus, for Dα∗
u
∣∣
Σ
to be (algebraically) determined

by the data we need

det(aα∗ |Σ) ̸= 0

Observe that if we define ϕ(x) = x0, then
∑

is {ϕ(x) = 0}, ξ = dϕ = (1, 0, ..., 0), and aα∗ = aαξ
α,

so the condition becomes

det(aαξ
α|Σ) ̸= 0.

Differentiating the equation and arguing as above, we can inductively algebraically find all deriva-
tives of u along

∑
in terms of the data. I.e., we can formally solve the Cauchy problem if

∑
is

non-characteristic.

Consider now the case where we give Cauchy data along a hypersurface
∑

given by a level set
{ϕ(x) = 0}, with dϕ ̸= 0. Let us again ask whether all derivatives of u along

∑
.

Since dϕ ̸= 0, in the neighborhood of each x ∈
∑

∂αϕ(x) ̸= 0 for some α = 0, ..., n. Let us
assume for simplicity that ∂0ϕ ̸= 0. Then

x̃α =

{
ϕ(x), α = 0,

xα, α ̸= 0

defines a change of variables. Then

∂u

∂xα
=

∂u

∂x̃β
∂x̃β

∂xα
=Mβ

α

∂u

∂x̃β
, Mβ

α =
∂x̃β

∂xα
.

We can write D =MD̃, D̃ = ( ∂
∂x̃0

, ..., ∂
∂x̃n ). Inductively we find, for |α| = k

Dα = (MD̃)α +Rα
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where Rα is a differential operator of order ≤ k− 1 and (MD̃)α is obtained by considering M as a

constant matrix, i.e., not applying differentiation to M when we write the several terms in (MD̃)α,
e.g.,

∂

∂xα2

∂

∂xα1
u =

∂

∂xα2

(
Mβ
α1

∂u

∂x̃β

)
=Mβ

α1

∂2u

∂x̃β∂x̃β
∂x̃β

∂xα2
+
∂Mβ

α1

∂xα2

∂u

∂x̃β
=Mβ

α1
Mβ
α2

∂2u

∂x̃β∂x̃β
+Rα1α2

Then, in x̃ coordinates P becomes

P =
∑
|α|=k

aαD
α =

∑
|α|=k

aα(MD̃)α =:
∑
|α|=k

ãαD̃
α

Since derivatives of order l in x translate to derivatives of order l in x̃ and vice-versa, the data on∑
gives data on

∑̃
= {x̃0 = 0} for the Cauchy problem in x̃ coordinates, and the inversibility of

the coordinate transformation implies that we can determined Dku|Σ in terms of the data on
∑

if and only if we can determine D̃ku|∑̃ in terms of the data on
∑̃

. But the latter holds (by the

above case ϕ(x) = xn) if and only if
det(ãα∗) ̸= 0,

a∗ = (k, 0, ..., 0). Now,

ã(k,0,...,0) = aα(Mξ̃)α with ξ̃ = (1, 0, ..., 0),

i.e.,
(Mξ̃)β =M r

β ξ̃r =M0
β , (Mξ̃)α = (M0

0 )
α0 ...(M0

n)
αn(

e.g., in 2d, α = (α0, α1)

aα0α1

∂2u

∂xα0∂xα1
=Mβ

α0
M r
α1

∂2u

∂x̃β∂x̃r
+ ... =M0

α0
M0
α1

∂2u

∂x̃0∂x̃0
+ ...

But M0
α0

=Mβ
α0 ξ̃β for ξ̃ = (1, 0, ..., 0).

)
But

M0
β =

∂x̃0

∂xβ
=

∂ϕ

∂xβ
= ∂βϕ = (dϕ)β,

i.e.,
Mξ̃ = dϕ = ξ

and the condition to determine Dku|Σ̃ reads

det(ãα∗) = det(aα(Mξ)α) = det(aαξ
α) ̸= 0,

i.e.,
∑

must be non-characteristic.

From this we conclude the following: Data can be freely specified only on non-characteristic hyper-
surfaces. If

∑
is characteristic, then there must be compatibility relations among the data, also

called constraints. E.g., consider

−a(t, x)utt + uxx + ∂tu = 0 in [0,∞)× R,
u(0, ·) = g,

∂tu(0, ·) = h.

Suppose that a(0, x) = 0. Then, if u is a solution, restricting to t = 0,

uxx(0, x) + ∂tu(0, x) + gxx + h = 0,

so g and h cannot be freely specified.

The image starting with a non-characteristic hypersurface and “bending” becomes characteristic.
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non-characteristic

characteristic

Figure 39. Non-characteristic to Characteristic

Since in this case we transition from the ability to freely specify data to data that is constrained,
we can imagine that this means that along the characteristic the values of the derivatives of u have
already been determined by the values assigned as data “before” we reached the characteristics.

For hyperbolic operators, something like this is true:

For weakly hyperbolic (thus also hyperbolic) operators, under very general conditions we can define
the causal part of a point (which is the analogue of the past light cone with vertex at x) and prove
a domain-of-dependence property, i.e, that a solution at x depends only on its value on the causal
past of x, and the boundary of the causal part of x is a characteristic manifold (exactly like the
boundary of the past light cone is characteristic for the wave operator).

It follows that we can roughly say that for hyperbolic operators, information “propagates” along
the characteristics. This makes the study of the characteristics important in hyperbolic problems.

One way of understanding the above domain-of-dependence property is as follows. Suppose that we
have an operator L with the property that gives Cauchy data on a subset S of non-characteristic
hypersurface

∑
, there exists a unique local solution in a neighborhood of S. Let us not worry

about the precise hypotheses regularity, etc., but let us imagine that everything is “sufficiently well
behaved” so that what follows makes sense. If the operator is hyperbolic, or the problem satisfies
the assumptions of the Cauchy-Kovalevskaya theorem (see below) or of the Holmgren’s uniqueness
theorem (a type of generalization of the uniqueness part of the Cauchy-Kovalevskaya theorem),
then such a situation is true. Consider given initial data, so the solution is uniquely determined in
a neighborhood U of S. Let Ũ be the largest neighborhood of S where such solution is uniquely
determined by the data. Then ∂Ũ is characteristic. To see this, suppose a portion V ⊂ ∂Ũ is not
characteristic.

The solution Ũ induces data on V . Then, we can solve the problem and obtain a solution in
a neighborhood Ṽ of V that continues the solution beyond Ũ . Since the solution in Ũ is uniquely
determined by the data on S, so is the data induced on V , and thus the solution in Ṽ . But this
would contradict the definition of Ũ .

The above argument is only heuristic, but gives an idea of the domain-of-dependence property.

ΣS

U

Ũ
v
ṽ

Figure 40. Illustration
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Definition 15.17. All of the above notions generalize to quasilinear equations. In this case, given
a function v, the quasilinear operator

(Lu)J = hJI (x, u, ..., D
mK−uJ−1u,DmI−nJ )uI + bJ(x,DmK−nJ−1uK)

becomes a linear operator if we replace

(L̃u)J = hJI (x, v, ..., D
mK−uJ−1v,DmI−nJ )uI + bJ(x,DmK−nJ−1vK)

so that all previous notions apply. In this case we talk about L being hyperbolic (at x) for a given
v etc. We are particularly interested in the case when v the solution if set (if it exists) or is the
initial data, which makes sense since the terms in v involve only up mK − nJ − 1 derivatives of v,
although in the mixed-order case more care has to be taken in defining what derivatives must be
specified as data, and there might be compatibility conditions even for non-characteristic surfaces
(think of previous examples of the system with indices for ϕ1, ϕ2, ϕ3).

Remark 15.18. The previous argument of solving Dku|Σ in terms of the data if
∑

is non-
characteristic (which applies to quasilinear equations as well) can be used to produce solutions
(in a neighborhood of

∑
) as follows. Inductively we determine all derivatives Dlu|Σ. Then (taking∑

= {x0 = t = 0} for simplicity), we consider the formal expansion.

u(t, x) =
∞∑

|α|=0

1

α!
Dαu(0, x)tα

If everything in the problem is analytic, then we can show that the above series converges and is a
solution. This is the content of the Cauchy-Kovalevskaya theorem. This procedure of solving
for Dku(0, x) can also be useful for non-analytic data: although the series will not converge in
general for non-analytic data, for data in Gevrey spaces (which is a generalization of analytic
functions) we can still work with the formal power series as a consistent tool to produce solutions.
More generally, we can consider the truncated series

u(t, x) =

N∑
|α|=0

1

α!
Dαu(0, x)tα, N >> 1

to obtain an approximate solution. Such an idea is often useful when dealing with a technique
called the Nash-Moser iteration, which can often be applied to PDEs for which energy/a priori
estimates are not directly available.

16. Einstein’s equations

Einstein’s equations are the fundamental equations of general relativity. The basic problem we
are interested is the following: find a Lorentzian manifold (M, g) where Einstein’s equations

Ric(g)− 1

2
R(g)d = T,

or, in coordinates,

Rαβ −
1

2
Rgαβ = Tαβ

are satisfied. Here, Rαβ = (Ric(g))αβ is the Ricci curvature of the Lorentzian metric g, R is the
scalar curvature of g, and T is the energy-momentum tensor of matter, which contains informa-
tion about matter and energy interacting with gravity and depends on the problem (e.g., if we are
studying a fluid interacting with gravity, T has a certain form; if we are studying electromagnetic
fields interacting with gravity T has another form; see further below for examples).
When T = 0, we have the vacuum Einstein equations

Rαβ −
1

2
Rgαβ = 0.
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In relativity, a vacuum can be dynamic and quite complex, and we should not think of it as “empty
space where nothing happens.” We sometimes use the term matter Einstein equations or Ein-
stein equations with matter to refer to the case T ̸= 0. The terminology “matter” is used
because in general relativity we call matter anything that is not gravity (so electromagnetic radia-
tion would be called matter).

Although Einstein’s equation can be studied in any dimension, we will consider only dim(M) = 4,
which is the case of most physical interest.

Taking the trace of Einstein’s equations,

tr(T ) = gαβTαβ = −R.

We can thus equivalently write

Rαβ = Tαβ −
1

2
tr(T )gαβ.

In particular, in the case of vacuum, the Einstein equations can be written as

Rαβ = 0.

Thus, the vacuum Einstein equations correspond to the geometric problem of finding Ricci-flat
Lorentzian four-manifolds.

We will work in local coordinates with {xα}3α=0 an arbitrary coordinate system (when needed,
later on, we will specify a specific coordinate system). Since we do not have a canonical system of
coordinates, we do not at this point think of x0 as a time coordinate (although there will be a way
of constructing a time coordinate later on).

Most of the features we are interested in are already present in the vacuum case, so we consider
this case in detail (later we comment on the case with matter), and by “Einstein” we will mean
“vacuum Einstein” when there is no confusion.

Since Ricci involves up to two derivatives of the metric, we see Rαβ as a second-order differential
operator acting on (the component) gαβ. Thus, Einstein equations are a system of second-order
nonlinear PDEs (in fact, quasilinear, see below) for gαβ.

We are interested in the Cauchy problem for Einstein’s equations. For this, we need to under-
stand which hypersurfaces are appropriate to prescribe initial data, i.e., which hypersurfaces are
non-characteristic. A direct computation using the definition of Ricci curvature gives

Rαβ =− 1

2
gµν∂µ∂νgαβ −

1

2
gµν∂α∂βgµν

+
1

2
gµν∂α∂νgµβ +

1

2
gµν∂µ∂βgαν +

terms involving up to ∂g︷ ︸︸ ︷
Hαβ(∂g).

=:R̃αβ(∂
2g) +Hαβ(∂g)

To make the notation more clear, first consider αβ at a metric h (recall the remarks on the definition
of characteristics for quasilinear problems):

R̃αβ(∂
2g) =− 1

2
hµν∂µ∂νgαβ −

1

2
hµν∂α∂βgµν

+
1

2
hµν∂α∂νgµβ +

1

2
hµν∂µ∂βgαν
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This is to viewed as an operator acting on the unknown variable g, which is organized as a vector
valued function (the function u taking values in Rd in the previous notation) which we write as the
ten-component vector

u = (g00, g01, ..., g33) .

(There are 16 components gαβ, but it suffices to consider 10 independent components since gαβ =

gβα). Thus, the characteristic matrix of R̃ at h acting on u is

(P (h, ξ)u)αβ =− 1

2
hµνξµξνgαβ −

1

2
hµνξαξβgµν

+
1

2
hµνξαξνgµβ +

1

2
hµνξµξβgαν .

For any h and any ξ, P (h, ξ) always has a kernel, as we can always pick u with entries

gαβ = ξαξβ, ξ ̸= 0

so

(P (h, ξ)u)αβ = 0,

so

detP (h, ξ) = 0.

Hence, every hypersurface is characteristic for Einstein’s equations. This can be viewed as a
consequence of the diffeomorphism invariance of the equations. One way of seeing this is as follows.
Suppose that the Cauchy problem can be uniquely solved for data given on a hypersurface

∑
, with

the solution defined on a neighborhood U of
∑

. So we have a unique g satisfying

Ric(g) = 0

in U and taking the correct data (we leave aside for a moment what it means to prescribe data
for Einstein’s equations, but at least considering them as PDEs for the components gαβ in local
coordinates, it is not too difficult to make sense of it). Take a diffeomorphism φ : U → U such that

φ = identity on a neighborhood Ũ of
∑

with Ũ properly contained in U . Set h = φ∗(g). Then

Ric(h) = 0.

Moreover, h = g on
∑

(and their derivatives also agree on a coordinate chart), but h ̸= g in U .
Thus, h and g are two different solutions to the Cauchy problem.

Of course, h and g are isometric, but from a “purely PDE” point of view, they are different metrics
hence different solutions. This tells us that when we consider solutions to Einstein’s equations we
will have to do it up to isometries.

16.1. The constraint equations. The fact that every hypersurface is characteristics for Einstein’s
equations implies that initial data cannot be prescribed arbitrarily. To understand the constraints
that the initial data has to satisfy, consider a time oriented Lorentzian manifold (M, g) with an
embedded smooth spacelike hypersurface

∑
. We require

∑
to be spacelike because it should play

the role of the t = 0 surface where we prescribe data. Let ḡ and h̄ the induced metric on
∑

and
its second fundamental form (M, g). Then ḡ and h̄ must satisfy the Gauss-Codazzi equations:

R̄δαβγ = ḡJα ḡ
σ
β ḡ

τ
γ ḡ

δ
θ R

θ
Jστ − h̄αγ h̄

δ
β + h̄βγ h̄

δ
α,

∇̄αh̄
α
β − ∇̄β h̄

α
α = RγδN

δ ḡγβ,
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where R̄ is the Riemann curvature of ḡ, ∇̄ the covariant derivative associated with ḡ, N is the
future-pointing unit normal to

∑
, and indices are raised and lowered with g.

Note that ḡαβ = gαβ +NαNβ since

ḡαβN
β = Nα +NαNβN

β︸ ︷︷ ︸
=−1

= 0,

so given a vector field X we have

Xα = −XβNβN
α︸ ︷︷ ︸

projection onto N

+ ḡαβX
β︸ ︷︷ ︸

(projection onto
orthogonal to N)= X̄

so that

gαβX̄
αX̄β = gαβ ḡ

α
γ X

γ ḡβδ X
δ

= gαβ(g
α
γ +NαNγ)(g

β
δ +NβNδ)X

γXδ

= (gβγ +NβNγ)(g
β
δ +NβNδ)X

γXδ

= (gβδ +NγNδ +NδNγ −NγNδ)X
γXδ

= (gβδ +NγNδ)X
γXδ

= ḡαβ X
γXδ

as should be for the induced metric.

Observe that

R̄βδ = ḡαγR̄αβγδ,

R̄ = ḡβδR̄βδ,

where R̄αβ and R̄ are the Ricci and scalar curvature of ḡ. Thus, if g satisfies Einstein’s equations,

R̄ = ḡαγ ḡβδ R̄αβγδ

= ḡαγ ḡβδ
(
ḡJα ḡ

σ
β ḡ

τ
γ ḡδθ R

θ
Jστ − h̄αγ h̄βδ + h̄βγ h̄αδ

)
= ḡJτ ḡσθR

θ
Jστ︸ ︷︷ ︸

=(gJτ+NJτ )(gσθ +N
σNθ)R

θ
Jστ

− (ḡαβh̄αγ)
2 + ḡαγ ḡβδ h̄βγ h̄αδ

= gJτgσθRJδτθ︸ ︷︷ ︸
R

+NσNθR
θ
σ +NJN τgσθ RθJστ︸ ︷︷ ︸

=−Rθ
Jστ=+Rθ

Jστ

+NJN τNσNθR
θ
Jστ︸ ︷︷ ︸

=0 by Rθ
Jστ=−Rθ

σJτ

= R+ 2RαβN
αNβ = 2(Rαβ −

1

2
Rgαβ)N

αNβ = 0,

where we used ḡαβ ḡ
β
δ = ḡαδ and similar identities that can be verified directly.

So

R̄+ (h̄ᾱᾱ)
2 − h̄ᾱβ̄h̄

ᾱβ̄ = 0,

where the barred indices indicated that contraction is with respect to ḡ. Also:

∇̄αh̄
α
β − ∇̄βh̄

α
α = RγδN

δ ḡγβ = 0.

But

gαγ∇̄αh̄γβ − gαγ∇̄βh̄αγ = (ḡαγ −NαNγ)∇̄αh̄γβ − (ḡαγ − N̄αN̄γ)∇̄βh̄αγ

= ∇̄ᾱh̄
ᾱ
β − ∇̄βh̄

ᾱ
ᾱ −NαNγ∇̄αh̄γβ +NαNγ∇̄βh̄αγ ,



144 MATH8110 - Theory of PDEs

compute

−NαNγ∇̄αh̄γβ +NαNγ∇̄βh̄αγ = NαNγ(∇̄βh̄αγ − ∇̄αh̄γβ)

= NαNγ(ḡJβ∇J h̄αγ − ḡJα∇J h̄γβ)

= NαNγ(ḡJβ∇J∇αNγ − ḡJα∇J∇γNβ)

= 0,

where we used

∇̄βh̄αγ = ḡJβ∇J h̄αγ , h̄αβ = ∇αNβ

NγN
γ = −1 =⇒ Nγ∇αNγ = 0, NαḡJα = 0.

Thus,

∇̄ᾱh̄
ᾱ
β − ∇̄βh̄

ᾱ
ᾱ = 0.

We are led to the following.

Definition 16.1. An initial data set for the (vacuum) Einstein equations is a triple (
∑
, g0, h)

where
∑

is a three-dimensional manifold, g0 is a Riemannian metric
∑

, and h is a symmetric two
tensor on

∑
, such that the Einstein constraint equations,

Rg0 − |h|2g0 + (trg0h)
2 = 0,

∇g0trg0h− divg0h = 0,

are satisfied. The first equation is called the Hamiltonian constraint and the second the mo-
mentum constraint.

(Above, the notation should be self-explanatory, but Rg0 , trg0 , | · |g0 ,∇g0 , and divg0 are, respec-
tively, the scalar curvature, trace, norm, covariant derivative, and divergence with respect to g0.)

Definition 16.2. The Cauchy problem for (vacuum) Einstein’s equations consists of the
following. Given an initial data set (

∑
, g0, h), find a Lorentzian manifold (M, g) where Einstein’s

equations are satisfied and where (
∑
, g0) embeds isometrically with second fundamental form h.

Several remarks are in order.

We roughly think of
∑

as playing the role of the {t = 0} surface, g0 and h as g|t=0 and ∂tg|t=0,
although even in a heuristic sense this cannot be quite correct. If we consider the equations in
local coordinates, we should be prescribing gαβ|t=0 and ∂tgαβ|t=0 for the independent gαβ, but
since g0 and h are symmetric tensors on a three-dimensional manifold, they only have six inde-
pendent components, so we can only prescribe (taking coordinates where x0 = t = 0 represents∑

) gij |t=0 = (g0)ij , ∂tgij |t=0 = hij . We will see that the missing components g0µ, ∂tg0µ can be
chosen more or less freely. This is what physicists call gauge freedom, and it reflects the fact that
Einstein’s equations are geometric, i.e., invariant by diffeomorphisms. Thinking of diffeomorphisms
as giving locally a change of coordinates, we have four coordinate functions {xα}3α=0 that we can
freely reparametrize to fix g0µ the way we want.

Before investigating the Cauchy problem, we need to make sure initial data exists, i.e., that is
is possible to find g0 and h satisfying the constraints. This turns out to be a problem on its own.
When appropriately formulated, the constraint equations become a system of nonlinear elliptic
equations for (g0, h). The solvability of this system depends, among other things, on the topology
of

∑
. Moreover, often we want more than just satisfying the constraints. For example, if

∑
is not

compact, we would like to find (g0, h) with prescribed asymptotics.

We will not discuss how to solve the constraints. It suffices to know that there are plenty of
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situations where this can be done, so statements about initial data sets are not vacuous. The study
of the constraint equations has a long history and continues to be an active field of research.

16.2. The Cauchy problem. In this section, if regularity is omitted, it means C∞.

We will use a special system of coordinates to study the Cauchy problem.

Definition 16.3. A coordinate system {xα}3α=0 in a Lorentzian manifold (M, g) is said to form
wave coordinates if

□g x
α = 0, α = 0, ..., 3.

□g is the wave operator with respect to xα, i.e., □g = ∇µ∇µ. □g x
α means □g acting on the scalar

function xα for each α.

Remark 16.4. Notice that wave coordinates depend on the metric.

Remark 16.5. In the Riemannian case, ∇µ∇µ is the Laplacian of g, so the corresponding coordi-
nates are called harmonic coordinates. We sometimes use the term harmonic even in the Lorentzian
set. We have

□g x
α = ∇µ∇µxα

= gµν∇µ∇νx
α

= gµν(∂µ∇νx
α − Γλµν∇λx

α)

= gµν(∂µ∂νx
α︸ ︷︷ ︸

δαν

− Γλµν∂λx
α︸ ︷︷ ︸

δαλ

)

= −gµνΓαµν ,

hence harmonic coordinates can be also characterized by

gµνΓαµν = 0.

Lemma 16.6. It is always possible to construct wave coordinates in the neighborhood of a point.

Proof. Consider coordinates {xα}3α=0 about a point p. We can assume xα(p) = 0 and identify a
neighborhood of p where the xα’s are defined with a domain U containing the origins in R4, with
the xα’s identified with the corresponding coordinates in R4. Denote t := x0.

Consider, for each α = 0, ..., 3, the Cauchy problem

□gy
i = 0 in R× R3,

yi(0, x1, x2, x3) = xi on {t = 0} × R3,

∂ty
i(0, x1, x2, x3) = 0 on {t = 0} × R3,

□gy
0 = 0 in R× R3,

y0(0, x1, x2, x3) = 0 on {t = 0} × R3,

∂ty
0(0, x1, x2, x3) = 1 on {t = 0} × R3,

□g computed with respect to xα coordinates.

(If the xα’s were wave coordinates, then yα = xα would be solutions). This problem admits a
smooth solution yα. In a sufficiently small neighborhood of the origin the yα form a coordinate
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system by the implicit function theorem (since they agree with xα on the initial slice). But since
□gy

α is coordinate invariant, it also holds that

□gy
α = 0

with □g coupled with respect to y-coordinates.
□

We will now derive a useful identity. Set

Γα = gµνΓαµν

Then

2Γα = gµνgαλ(∂µgλν + ∂νgλµ − ∂λgµν),

2gσαΓ
α = gµν(∂µgαν + ∂νgσµ − ∂σgµν)

= 2gµν∂µgσν − gµν∂σgµν .

Thus

2∂τ (gσαΓ
α) = 2gµν∂µ∂τgσν − gµν∂τ∂σgµν + Hτσ(∂g)︸ ︷︷ ︸

depending on at most ∂g

Switching the roles of τ and σ and adding the resulting expressions,

2∂τ (gσαΓ
α) + 2∂σ(gταΓ

α) = 2gµν∂µ∂τgσν + 2∂µ∂σgτν − 2gµν∂τ∂σgµν +Hτσ(∂g)

Recalling that

Rαβ = −1

2
gµν∂µ∂νgαβ −

1

2
gµν∂α∂βgµν +

1

2
gµν∂α∂νgµβ +

1

2
gµν∂µ∂βgαν +Hαβ(∂g).

Comparing to the above

Rαβ = −1

2
gµν∂µ∂νgαβ +

1

2

[
∂α(gβµΓ

µ) + ∂β(gαµΓ
µ)
]
+Hαβ(∂g).

In wave coordinates, the term in brackets vanishes, so

Rαβ = −1

2
gµν∂µ∂νgαβ +Hαβ(∂g).

The principal part now is a diagonal matrix with entries −1
2g
µν∂µ∂ν ; i.e., Einstein’s equations in

wave coordinates read

−1

2
gµν∂µ∂νgαβ +Hαβ(∂g) = 0

which is a system of quasilinear wave equations for which we have a local existence and uniqueness
theorem. The problem, however, is that wave coordinates depend on the metric, i.e., we need g to
construct wave coordinates, but g is what we are trying to solve in the first place. We will see how
to overcome this difficulty in the next theorem using a nice trick due to Choquet-Bruhat in the
50’s, when she established the first local existence and uniqueness result for Einstein’s equations.

Definition 16.7. We call Rred
αβ := −1

2g
µν∂µ∂νgαβ the reduced Ricci tensor and Rred

αβ +Hαβ(∂g) =

0 the reduced (vacuum) Einstein equation.

Theorem 16.8. Let I = (
∑
, g0, h) be a smooth initial data set for the vacuum Einstein equations.

Then there exists a solution to the Cauchy problem for the vacuum Einstein equations with data I.

Remark 16.9. We sometimes call a Lorentzian manifold (M, g) that is a solution with data I a
development or Einsteinian development of I.
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Proof. Consider R ×
∑

, let p ∈
∑
, {xi}3i=1 be coordinates on an open set U about p in

∑
and

define coordinates on an open set Ũ about p in R×
∑

, with Ũ ∩
∑

⊂ U , by {xα}3α=0, with t := x0

a coordinate on R. We can identify Ũ with an open set in R× R3 and p with the origin. In order
to apply our theorem for smooth solutions to quasilinear wave equations, we need to formulate the
problem in [0, T ]×R3, have compactly supported data, and guarantee that that the principal part
is always a metric even when the data vanishes.

x

t

Uv

Ũ

w

z

Figure 41. V ⊂⊂ Ũ ∩ {t = 0}

Let V ⊂⊂ Ũ ∩ {t = 0}, φ ∈ C∞
c (R3) be such that 0 ≤ φ ≤ 1, φ = 1 in V , φ = 0 outside

Ũ ∩ {t = 0}. Consider the following initial data on {t = 0}:
gij(0, ·) = φ(g0)ij ,

g00(0, ·) = −φ,
g0i(0, ·) = 0,

∂tgij(0, ·) = φkij .

To specify ∂tgiµ(0, ·), recall

gσαΓ
α = gµν∂µgσν −

1

2
gµν∂σgµν

= g00∂tgσ0 + g0i∂tgσi + giν∂igσν −
1

2
g00∂σg00 − g0i∂σg0i −

1

2
gij∂σgij .

For g00 = −1, g0i = 0 (so g00 = −1, g0i = 0) the RHS reads

−∂tgσ0 +
1

2
∂σg00 +Dσ

where Dσ (for “data”) is Dσ = giν∂igσν − 1
2g
ij∂σgij . Thus, we can choose ∂tg0µ such that Γα = 0

on V . Indeed

σ = i : −∂tgi0 +
1

2
∂ig00︸ ︷︷ ︸
=0

+Di = 0 =⇒ ∂tgi0 = Di.

σ = 0 : −∂tg00 +
1

2
∂ig00 +D0 = 0 =⇒ ∂tg00 = 2D0.

where Di and D0 are already known from the previous data choice.

Hence, we put

∂tg0µ(0, ·) = φ× (above choice).
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This gives Γα = 0 on V .

Let g̃ = g̃(gαβ) (which has unknown U = (g00, ..., g33) in the previous language) be such that
g̃(0) = Minkowski, g̃(gαβ) = gαβ in a compact neighborhood of gαβ = gαβ(0, ·)|V , where gαβ(0, ·)
is as above. We can also assume that the derivatives of g̃ with respect to its arguments are bounded.

Under these conditions, there exists a unique smooth solution gαβ to

−1

2
g̃µν∂µ∂νgαβ +Hαβ(∂g) = 0

defined on some time interval [0, T ]. We can take T so small so that g is a Lorentzian metric (since
it is one at t = 0). By domain of dependence considerations and our choice of g̃, we have g̃ = g
in some sufficiently small neighborhood W of p. Therefore, we obtained a solution to the reduced
Einstein equation in W taking the correct data on W ∩ {t = 0}. It remains to show that this is a
solution to the full (i.e., non-reduced) Einstein equations in W .

We know that Γα = 0 on V . A computation using the constraint equations, which we leave as
an exercise, shows that ∂tΓ

α = 0 on V . Since g is a metric in W , we can consider its Ricci and
scalar curvatures, and the Bianchi identities give

∇α(R
α
β − 1

2
Rgαβ ) = 0.

Using that Rred
αβ = 0, another computation that we leave as an exercise gives

−1

2
gβαg

µν∂µ∂νΓ
α + hβ = 0

or

−1

2
gµν∂µ∂νΓ

α + gαβhβ = 0

where hβ is linear in Γα, α = 0, ..., 3. We thus see that the Γα are solutions to a linear system
of wave equations in W . After properly setting this system as a system in [0, T ] × R3 with ideas
similar as above, by uniqueness and domain of dependence considerations we conclude that Γα = 0
in a domain Z ⊂W with Z∩W ⊂ V , since Γα, ∂tΓ

α = 0 on V . But if Γα = 0 then Ricci = Riccired,
and our solution to the reduced equations in Z is in fact a solution to the full Einstein equations.
(In other words, we showed that the coordinates {xα} we have using are in fact wave coordinates
in Z. We did this by showing that if the coordinates are wave coordinates at t = 0, which as seen
we can arrange to be the case, then they remain wave coordinates for t > 0. This procedure is
sometimes called “propagation of the gauge”).

Before continuing, we make the following observation. By domain of dependence properties and
our discussion of characteristics, the solution at a point r ∈ Z in wave coordinates depends only on
the data J−(r)∩

∑
, where J−(r) is the causal part of r with respect to g expressed in wave coordi-

nates. Using that our solution is a solution to the full Einstein equations in W and that the causal
part is invariantly defined, we can show that we have a solution to Einstein’s equations in W re-
gardless of the coordinate system and that the solution at a point r depends on the data J−(r)∩

∑
.

Summarizing, given a point p ∈ {t = 0} ×
∑

, we obtained a solution to Einstein’s equations
in a neighborhood Zp ∈ R ×

∑
of p taking the correct data on z ∩

∑
. Moreover, the solution at

r ∈ Zp depends only on J−(r) ∩
∑

, where we can assume that J−(r) ∈ Zp for all r ∈ Zp.

The next step will be to define (M, g) as the union of all such Zp’s. For this, we need to show that
solutions agree on intersections. More precisely, let us show the following.
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Let q, r ∈
∑

and let Zq, Zr, be corresponding neighborhoods as above. Denote gq and and gr the
corresponding solutions. Assume that (Zq∩

∑
)∩(Zr∩

∑
) ̸= ∅. Then, for any w ∈ (Zq∩

∑
)∩(Zr∩

∑
)

there must exist neighborhoods Uq and Ur of w in Zq and Zr, respectively, and a diffeomorphism
ψ : Uq → Ur such that gq = ψ∗(gr).

Take normal coordinates {yi} at w relative to g0. We can assume the normal coordinates to
be defined inside Zq ∩

∑
. Construct, as in a previous lemma, wave coordinates {xα}3α=0 in a

neighborhood Uq of w in Zq. Then (x−1)∗(gq) satisfies the reduced Einstein equations in a neigh-
borhood of the origin in R × R3. We carry a similar construction of wave coordinates {x̃α}3α=0 a
neighborhood of Ur of w in Zr and obtain a solution (x̃−1)∗(gr) to the reduced Einstein equations
in a neighborhood of the origin in R × R3. Let W be the intersection of both neighborhoods of
the origin just mentioned. Because {yi} is intrinsically determined by g0 and Zq and Zr induce on
(Zq ∩

∑
)∩ (Zr ∩

∑
) the same data, x and x̃ agree on {t = 0}× V , where V is some neighborhood

of w in
∑

. Thus, (x−1)∗(gq) and (x̃−1)∗(gr) are both solutions to the reduced Einstein equations
in W with the same data on {t = 0} ∩W . Therefore we have (x−1)∗(gq) = (x̃−1)∗(gr) (possibly
shrinking W for uniqueness by domain of dependence) thus

gq = (x̃−1 ◦ x)∗(gr).
We have thus constructed (M, g), finishing the proof.

□

The above solution is not unique, even in a geometric sense, as we can take a neighborhood M ′

of
∑

in M and consider (M ′, g|M ′) and (M ′, g|M ′) and (M, g) and (M ′, g|M ′) are not isometric in
general. To get uniqueness, first we need the following definition.

Definition 16.10. A closed achronal set
∑

⊂M , M endowed with a metric g, is called a Cauchy
surface if every inextendible causal curve inM intersects

∑
, and only once if the curve is timelike.

A development (M, g) of I = (
∑
, g0, h) is called globally hyperbolic if

∑
⊂ M is a Cauchy

surface.

Theorem 16.11. Every initial data set I = (
∑
, g0, h) admits one and only one maximal globally

hyperbolic development.

Proof. We already know that I admits one globally hyperbolic development (we have not showed,
but we can prove that by taking M to be a sufficiently small neighborhood of

∑
,
∑

will be a
Cauchy surface). Let G be the set of all globally hyperbolic developments of I modulo isometries.
We say that (M, g) ≤ (N,h) if (M, g) embeds isometrically into (N,h) keeping

∑
fixed. This is

a partial order in G, so by Zorn’s lemma, there exists a maximal element. Uniqueness is obtained
because if there exists a (M, g) that does not embeds isometrically into (Mmax, gmax), we can glue
(M, g) and (Mmax, gmax) to construct a larger solution.

□

Let us finish with some remarks.

Observe that the need for a correct choice of coordinates does not come specifically from the
fact that we are dealing with abstract manifolds. We still need to construct wave coordinates in
our proof even if

∑
= R3, where we have some a priori canonical coordinates. The wave coordinates

depend on the metric, we see that in a sense we constructed the coordinates alongside the solution.
In fact, a related approach would be to couple Einstein’s equations with the equations determining
wave coordinates, i.e., consider the coupled system

Ricci(g) = 0,

□g x
α = 0,
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with suitable initial conditions. (Note that this would be the case even in R × R3). Although we
have not done so, such a situation, where we need solution-dependent coordinates that are deter-
mined alongside the equations of motion themselves, are very common in hyperbolic PDEs.

Let us make a brief comment on the case with matter. Since

∇α(Rαβ −
1

2
Rgαβ) = 0,

a necessary condition to solve

Rαβ −
1

2
Rgαβ = Tαβ

is that
∇αT α

β = 0.

This provides supplementary equations for the matter fields that couple to Einstein’s equations.
For example, the energy-momentum of a scalar field is

Tαβ = ∇αφ∇βφ− 1

2
∇µφ∇µφgαβ,

so that

∇αT α
β = ∇α∇αφ∇βφ+∇αφ∇α∇βφ−∇β∇µφ∇µφ

= ∇α∇αφ∇βφ

since ∇ is torsion-free. Thus, if dϕ ̸= 0

∇α∇αφ = 0.

Hence, Einstein’s equations coupled to a scalar field read

Rαβ −
1

2
Rgαβ = Tαβ = ∇αφ∇βφ− 1

2
∇µφ∇µφgαβ,

∇µ∇µφ = 0.

Since Tαα = −∇αφ∇αφ, we can also write

Rαβ = Tαβ −
1

2
tr(T )gαβ = ∇αφ∇βφ,

∇α∇αφ = 0.

All the previous, including the propagation of the gauge, apply if we can solve the reduced coupled
system

Rred
αβ = ∇αφ∇βφ,

∇α∇αφ = 0,

for g and φ. The same remains true if we consider a different matter model, i.e., another energy-
momentum tensor T : the argument boils down to solving the reduced coupled system.

17. Elements of the characteristic geometry of quasilinear wave equations

Here we will present some ideas that form the basis of modern techniques for the study of quasi-
linear wave equations. These techniques are tied to the geometry of the characteristics gµνξµξν = 0,
and thus are loosely referred to as the study of the characteristic geometry or, since gµνξµξν = 0
says that ξ null (in the sense of Lorentzian geometry), also as the study of the null geometry. Unless
stated otherwise, we will work only in 3 + 1 dimensions.

We will consider wave equations of the form

gµν(φ)∂µ∂νφ+ f(φ, ∂φ) = 0,
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where it will be convenient to call the solution φ instead of u. Note that we consider metrics that
depend on φ but not on its derivatives. We will also often omit the dependence on φ and write
gµν = gµν(φ).

Although in specific problems the form of f(φ, dφ) is in general relevant, for most part we will
be considering properties tied to the principal part, in which case we will consider

gµν(φ)∂µ∂νφ = 0.

It is also convenient to consider geometric wave equations

□g(φ)φ = 0

where □g is the wave operator associated with g (which depends on φ)

□g =
1√
det g

∂α(
√
det g gαβ∂β)

or equivalently
□g = ∇α∇α

where ∇ is the covariant derivative of g (which depends on φ).

17.1. The role of decay. Having settled the question of local existence for quasilinear wave equa-
tions, the following question is natural: when is a local-in-time solution a global-in-time solution,
i.e., a solution that exists for all time? We saw that a solution can be continued past T if

limt→T−sup0≤tN [φ] <∞,

where N [φ] ∼ ∂φ (recall that here g does not depend on ∂φ). But an inspection on the proof that
something weaker is needed, i.e., it suffices to have

limt→T−sup0≤t

∫ t

0
z(N [φ])dτ

i.e., we want to show that z(N [φ])dτ is integrable in time on [0, T ]. In particular, if it is always
integrable in time (i.e., integrable on [0, T ] for any T > 0) then the solution will be global.

For many cases of interest, the structure of the equations is such that the worst terms in z(N [φ])
are the ones that contribute linearly. E.g., if φ ∼ 1

(1+t)2
, which is integrable, and z is quadratic,

then φ2 is actually better when it comes to time integrability. Also, although N [φ] ∼ φ+∂φ, so we
actually need integrability of both φ and ∂φ, experience shows that it is typically ∂φ that it is the
vilain that is potentially non-integrable (this can be motivated partially from the theory of shocks,
where it is shown tat for large classes of equations that form singularities, φ remains bounded
whereas ∂φ blows up). Finally, working out our energy estimates in more detail for the type of
wave equations we are considering in this section shows that indeed solutions can be continued as
long as

limt→T−

∫ t

0
∥∂φ∥L∞(R3)dτ <∞

which we will take as the basic continuation criterion that motivates the discussion.

This means that solutions can be continued if we can establish uniform pointwise decay (meaning:
decay in time) estimates of the form

|∂φ(t, x)| ≤ C

(1 + t)1+ϵ

Is this possible? To investigate this question, let us look at the most basic problem, i.e., the
standard linear wave equation in R × R3, −∂2t φ + ∆φ = 0. (Of course, such solutions are gobal,
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but let us look at their decay properties as a guide for the nonlinear problem). Kirchhoff’s formula
gives

φ(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(
φ0(y) + tφ1(y)

)
dσ(y)

+
1

vol(∂Bt(x))

∫
∂Bt(x)

∇φ0(y) · (y − x) dσ(y)

where φ(0, ·) = φ0, ∂tφ(0, ·) = φ1. Let us assume that φ0 and φ1 are compactly supported (It
is not difficult to see without restrictions on the support of the initial data decay might not hold.
E.g., if φ0 = 0 and φ1 = 1, then φ(t, x) = t is the solution.) Then, since φ0 = φ1 = 0 outside
BR(0) for some R > 0,

φ(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(
φ0(y) + tφ1(y)

)
dσ(y)

+
1

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

∇φ0(y) · (y − x) dσ(y),

thus

|φ(t, x)| ≤ C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+ |y − x|)dσ(y)

≤ C(1 + t)

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

dσ(y),

where we used that since we are integrating on (a portion of) the ball centered at x and of radius
t, |y − x| = t. The area of ∂Bt(x) ∩BR(0) is at most 4πR2 and vol(∂Bt(x)) ∼ t2, so

|φ(t, x)| ≤ C

t
.

Since φ(t, x) has compact support in x for any fixed t, |φ(t, x)| ≤ C for 0 ≤ t ≤ T for some fixed
T, so we can also write

|φ(t, x)| ≤ C

1 + t
.

Since ∂φ is also a solution to the wave equation, we also get

|∂φ(t, x)| ≤ C

1 + t
.

Therefore, the estimate we obtained is not good enough to have ∂φ integrable, but it is almost good:
we got a borderline estimate, and if we can improve the estimate by an ϵ > 0, having (1 + t)1+ϵ

instead of 1 + t, then we would have integrability.

To investigate this further, first notice the following. If we denote by S(φ1) (S for solution)
the solution to the Cauchy problem with φ0 = 0, then

φ = S(φ1) + ∂S(φ0)

is a solution with data (φ0, φ1) since

−∂2t φ+∆φ = (−∂2t +∆)S(φ1) + ∂t(−∂2t +∆)S(φ0)

= 0 + 0,

∂tφ = ∂tS(φ1)+∂
2
t S(φ0) = ∂tS(φ1)+∆S(φ0), but S(φ0) is the solution that satisfies S(φ0)

∣∣
t=0

= 0,

∂tS(φ0)
∣∣
t=0

= φ0 and S(φ1) is the solution that satisfies S(φ1)
∣∣
t=0

and ∂tS(φ1)
∣∣
t=0

= φ1, so

φ
∣∣
t=0

= φ0, ∂tφ
∣∣
t=0

= φ1.
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Therefore, we can reduce the problem to the case φ0 = 0, so

φ(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

φ1(y)dσ(y).

Continuing to assume compactly supported data, since we always have |φ(t, x)| ≤ C for 0 ≤ t ≤ T ,
T fixed, it suffices to obtain decay for t ≥ T , so we consider t ≥ 2R, where supp (φ1) ⊂ BR(0). In
this situation, we have the alternative formula

φ(t, x) =
1

r
f
(
r − t, w,

1

r

)
where f : R×S2× [0, 1

R ] → R is smooth and vanishes for |ρ| ≥ R, f = f(ρ, w, z). Here, r = |x| and
x = rw.

To see this, let us make a change of variables. We can take x = re1

x′
x = re1

(y2, y3)

y′

y
y − x

R

t

Figure 42. Change of Variables: x = re1

|y − x| = t, x = re1, y − x = (y′ − r, y2, y3)

t2 = |y − x|2 = (r − y)2 + (y2)2 + (y3)2 ⇒ y′ = r −
√
t2 − ((y2)2 + (y3)2)

Note that
√
(y2)2 + (y3)2 ≤ R, since y − x ∈ BR(0) and if |(y2, y3)| > R that will not be the case.

Therefore, Bt(x) can be parameterized as

(y1, y2, y3) =
(
r −

√
t2 − ((y2)2 + (y3)2, y2, y3

)
= ψ(y2, y3)

Thus, from multivariable calculus

dσ(y) =
∣∣∂y2ψ × ∂y3ψ

∣∣ dy2dy3
=

t√
t2 − ((y2)2 + (y3)2)

dy2dy3

Then,

φ(t, x) =
t

vol(∂Bt(x))

∫
∂Bt(x)

φ1(y) dσ(y)
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=
t

4πt2

∫
BR(0)

φ1

(
r −

√
t2 − ((y2)2 + (y3)2), y2, y3

) t√
t2 − ((y2)2 + (y3)2)

dy2dy3

=
1

4π

∫
BR(0)

φ1

(
r −

√
t2 − ((y2)2 + (y3)2), y2, y3

) 1√
t2 − ((y2)2 + (y3)2)

dy2dy3

Set ρ = r − t. Then

√
t2 − ((y2)2 + (y3)2) =

(
(ρ− r)2 − (y2)2 + (y3)2

)1/2
= r

((
1− ρ

r

)2
− (y2)2 + (y3)2

r2

)1/2

r −
√
t2 − ((y2)2 + (y3)2) = r − r

((
1− ρ

r

)2
− (y2)2 + (y3)2

r2

)1/2

= r

[
1−

((
1− ρ

r

)2
− (y2)2 + (y3)2

r2

)1/2
]

= r

[
1−

((
1− ρ

r

)2
− (y2)2 + (y3)2

r2

)1/2
]
1 +

((
1− ρ

r

)2 − (y2)2+(y3)2

r2

)1/2

1 +
((

1− ρ
r

)2 − (y2)2+(y3)2

r2

)1/2

=
r
[
1−

(
1− ρ

r

)2
+ (y2)2+(y3)2

r2

]
1 +

((
1− ρ

r

)2 − (y2)2+(y3)2

r2

)1/2

=
2ρ+ (y2)2+(y3)2−ρ2

r2

1 +
((

1− ρ
r

)2 − (y2)2+(y3)2

r2

)1/2

Inspecting the above expressions we see that both are smooth functions of (ρ, 1
r , y

2, y3), but y2

and y3 are integrated away.

By the strong Huygens’ principle, the solution vanishes for |ρ| = |t − r| ≥ R, and for t ≥ 2R
it vanishes for |x| ≤ R, so r ≥ R or 1

r ≤ 1
R , as claimed. This construction is smooth on its

dependence on the base point x = re1, so for a general x we also obtain smooth dependence on w.
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φ = 0 φ = 0

φ = 0

t

R

R

2R

|t− r| ≤ E

Figure 43. Huygens’ Principle

Consider the vector fields

L = ∂t + ∂r, L = ∂t − ∂r,

e1 =
1

r
∂θ, e2 =

1

r sin θ
∂ϕ,

where ∂r = wi∂i =
xi

r ∂i is the radial derivative and ∂θ, ∂ϕ are the derivatives in spherical coordi-

nates (with the convention x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ). If we introduce the
rotation vector fields

R1 = x2∂3 − x3∂2, R2 = x3∂1 − x1∂3, R3 = x1∂2 − x2∂1,

then

e1 = − sinϕ
R1

r
+ cosϕ

R2

r
,

e2 =
1

sin θ

R3

r
.

Compute

Lφ = (∂t + ∂r)
1

r
f(r − t, ω, 1r )

= −1

r
fρ −

1

r2
f +

1

r
fρ −

1

r3
fz = O

(
1

r2

)
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R1φ =(x2∂3 − x3∂2)
1

r
f(r − t, ω, 1r )

=− 1

r2
x2∂3r +

x3

r2
∂2r +

1

r
x2

(
fρ∂3r + fωi∂3ω

i − fz
1

r2
∂3r

)
− 1

r
x3

(
fρ∂2r + fωi∂2ω

i − fz
1

r2
∂2r

)
=− 1

2
x2
x3

r3
+
x3

r3
x2 +

1

r
fρ

(
x2
x3

r
− x3

x2

r

)
− fz

(
x2x3

r4
− x2x3

r4

)
+

1

r
fωi

(
x2∂3ω

i − x3∂2ω
i
)︸ ︷︷ ︸

=x2

r
(δi3−ω3ωi)−x3

r
(δi2−ω2ωi)

= O
(
1

r

)
,

so R1
r φ = O( 1

r2
) and similarly R2

r φ,
R3
r φ = O( 1

r2
) thus e1φ, e2φ = O( 1

r2
).

Finally,

Lφ = (∂t − ∂r)
1

r
f(r − t, ω,

1

r
)

= −1

r
fρ +

1

r2
f − 1

r
fρ− 1

r3
fz = O(

1

r
)

Since the solution is not zero only for |t− r| ≤ R, we have O(1r ) = O(1t ). Thus we have the decay
estimates

Lφ, e1φ, e2φ = O(
1

t2
), Lφ = O(

1

t
)

{L,L, e1, e2} form a basis of R4, thus we can reexpress ∂φ in terms of Lφ, Lφ, e1φ, e2φ. Except
for Lφ, all the other derivatives decay better than our previous 1

t estimate. Can we get Lφ = O( 1
t2
)?

The answer is no, because we can show that the 1
t decay for solutions to wave equation is sharp

(i.e., it cannot be improved for arbitrary compactly supported data). To see this, consider again
Kirchhoff’s formula with φ0 = 0 and φ1 = 1 on B1(0), φ1 compactly supported and φ1 ≥ 0. Then

φ(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

tφ1(y) dσ(y)

=
1

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

tφ1(y) dσ(y) +
1

vol(∂Bt(x))

∫
∂Bt(x)\(Bt(x)∩B1(0))

tφ1(y) dσ(y)︸ ︷︷ ︸
non-negative

≥ 1

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

tφ1(y) dσ(y) =
t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

dσ(y)

For any |x| = t and t ≤ 1, the area of ∂Bt(x) ∩B1(0) is ≥ C > 0.
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x1

x2, x3

p q

B1(0) x

t

p q

Figure 44. ∂Bt(x) ∩B1(0) and |x| = t

Thus, φ(t, x) ≥ C
t .

However, we learned that the obstacle to getting better decay is the derivative in the direction
L; derivatives in the other direction decay better.

What this means for the quasi-linear problem is that we should not expect to get better decay
than 1

t , as we should not expect the non-linear problems to behave better than the standard linear
wave equation. So, in general, we should not expect ∥∂φ∥L∞ to be integrable in time. Does that

mean then that we cannot get
∫ t
0 ∥∂φ∥L∞dτ <∞ and hence global solutions? The key here is the

word ”general”. We know that there are examples of solutions that blow up, so we should not expect

to get
∫ t
0 ∥∂φ∥L∞dτ < ∞. However, we know at least one global solution: the zero solution. The

correct question then is whether we can get global solutions for small data solutions. The answer is
yes for important class equations. These include quasi-linear wave equations that satisfy a condition
called the null-condition. For small data, Einstein’s equations also admit global solutions, where
small here refers not to initial data that are perturbations of the zero a solution (since for Einstein’s
equations solutions need to be a metric) but rather to perturbations of the Minkowski space by
Christodoulou and Klainerman (the stability of Minkowski space in fact refers to more than the
existence of small data global solutions; it also says that such solutions are stable in a precise sense).

Inspired by the linear case, the first thing to do to address global existence is to understand
the obstruction to proving better decay that 1

t . Thus, we try to identify, as in the linear case, the
directions along which we have a better decay. Such derivatives, such as the L, e1, e2 derivatives
in the linear case, are commonly referred to as ”good derivatives,” whereas the ones where
better decay does not hold, such as the L derivative in the linear case, are referred to as ”bad
derivatives.” Roughly, we expect the good derivatives not to cause too much trouble, and the bad
derivatives are the ones that need to be carefully estimated, and where the small data assumption
enters crucially.

In order to identify the good vs. bad derivatives, we once again take a clue for the linear
problem. Since we are interested in perturbations of the zero solution, it is natural to consider
gµν(φ)∂µ∂νφ + ... = 0 such that gµν(φ = 0) = mµν, where m is the Minkowski. We expect that
atleast for small time, mµν∂µ∂νφ will be a good approximation for gµν∂µ∂νφ since the data for φ
is small. In other words, if we consider, say,

gµν(φ)∂µ∂νφ = 0
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we can look at its linearization at φ = 0, which is precisely

mµν∂µ∂νφ = 0.

This suggests that if good derivatives exist for the non-linear problem, they should be approximated
by L = ∂t+∂r, e1 =

1
r∂θ, and e2 =

1
r sin θ∂ϕ, at least for small time. In such a case, the bas derivative

in the non-linear problem should be something close to L = ∂t − ∂u. However, the problem with
this reasoning is that we want to prove the global existence, and we do not know that φ = 0 is
a good approximation for large time (in face, we can only make such a statement if we know the
solutions to be global). Thus, we try to abstract from the linear problem the geometric features
of L, L, e1, e2, that can make sense in the non-linear problem even if we do not know φ ≈ 0.
For this, observe the following: L, e1, e2 are tangent to the light-cones, whereas L is transverse.
Moreover, L and L are null with respect to the Minkowski metric, whereas e1, e2 are spacelike.

t

Σt = {t = const}

lightcone

L
L

ei

sphere
= intersection of
lightcone and Σt

Figure 45. L, L, and the Minkowski metric I

mµνL
µLν = −1 + δij

xi

r

xj

r
= −1 +

xixi
r2

= 0

mµνL
µLν = −1 + δij

(
−xi

r

)(
−xj

r

)
= −1 +

xixi
r2

= 0

To compute further, consider the Minkowski metric in spherical coordinates:

m =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


So

mµνe
µ
1e
ν
2 =

〈
1

r
∂θ,

1

r
∂θ

〉
= 1,

mµνe
µ
2e
ν
2 =

〈
1

r sin θ
∂ϕ,

1

r sin θ
∂θ

〉
= 1.
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Furthermore,

mµνL
µLν = −1 + δij

xi

r

(
−xj

r

)
= −2,

mµνL
µeνi = ⟨−∂t + ∂σ, ei⟩ = 0, (this is easy to see using m in spherical coordinates)

mµνe
µ
1e
ν
2 =

〈
1

r
∂ϕ,

1

r sinθ
∂σ

〉
= 0,

So, the vectors are also orthogonal.

Since the lightcones are characteristics for the operator mµν∂µ∂ν , this suggests the following ap-
proach to identify good and bad derivatives for the nonlinear problem: consider the characteristic
hypersurfaces of gµν∂µ∂ν , which will be null hypersurfaces for the metric g, and construct a frame
of vectors {L,L, e1, e2} where L and L are null vectors (with respect to g), L is tangent to the
characteristics and L transverse, e1 and e2 are spacelike unit vectors (with respect to g) tangent
to {t = 0} ∩ {characteristics}, all the vectors are orthogonal (with respect to g) with exception of
L,L. In particular, they form a basis of R4.

We then expect that, under reasonable assumptions, we can show that L, e1, e2 are good derivatives,
i.e., Lφ, e1φ, e2φ have better decay than 1

t .

The crucial observation now is the following: since g = g(φ), the characteristics, and thus the
vectors L, L, e1, e2 will depend on the solution φ. Thus, before trying to prove that we have good
derivatives and eventual global existence, we need to understand in detail the properties of these
vector fields. This leads to a study of the characteristic geometry of the g.

17.2. Null Frames. Although we are primarily interested in the case when g = g(φ) comes from a
solution φ to a quasilinear problem, what follows applies to a general metric g. Throughout we will
consider the spacetime (R4), g, although our constructions are local and apply equally to a general
Lorentzian manifold. We write ∇ and | · | for the covariant derivative and norm of g, writing ∇g

and | · | if we want to emphasize this dependence. Indices will be raised and lowered with g.

Definition 17.1. A null-frame is a basis {eµ}3µ=0 to the tangent space at x (i.e., a basis of R4 in

our case) vary smoothly with the base point x, such that

g(e1, e1) = g(e2, e2) = 1, g(e1, e2) = 0,

g(ei, ej) = 0, i = 1, 2, j = 3, 4,

g(e3, e3) = g(e4, e4) = 0, g(e3, e4) = −2µ, µ > 0.

We often write e3 = L, e4 = L.

Example 17.2. The base example is {e1, e2, L, L} constructed above for the Minkowski metric.
In that case µ = 1. The choice of µ should be viewed as a normalization since L, L are null, so we
cannot ”fix their length” by prescribing g(L,L), g(L,L)

For another example, consider the Schwarzschild metric

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dϕ2,

M ≥ 0. Then we can take e1, e2 as in Minkowski and

L = ∂t −
(
1− 2M

r

)
∂r, L = ∂t +

(
1− 2M

r

)
∂r.
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For the Kerr metric,

g = −∆− a2 sin2 θ

Σ
dt2 +

Σ

∆
dr2 − 4aMr

sin2 θ

Σ
dt dϕ+A sin2 θ dϕ2 +Σdθ2,

where Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr, A = (r2 + a2)2 − a2∆sin2 θ. (The Kerr metric
reduces to the Schwarzschild one if a = 0), we can take

e1 =
1√
Σ
∂θ, e2 =

1√
Σsin θ

(∂ϕ + a sin2 θ ∂t),

L = ∂t +
a

r2 + a2
∂ϕ −

∆

r2 + a2
∂r

L = ∂t +
a

r2 + a2
∂ϕ +

∆

r2 + a2
∂r.

(For the Kerr metric, e1, e2 are not tangent to spheres. Although this property is desirable (see our
motivation above), it is not strictly needed and is not part of the definition of a null frame.)

The dual basis of a null frame is

e1 : = (e1)
∗ = e1, e2 := (e2)

∗ = e2,

e3 := (e3)
∗ = − 1

2µ
e4, e4 := (e4)

∗ = − 1

2µ
e3,

where duality is defined in the usual fashion

eα(eβ) = δαβ ,

and (eα)∗(eβ) = g(eα, eβ). In fact, if gαβ are the components of g relative to a null frame and gαβ

its inverse, then

eα = gαβeβ

since

eα(eβ) = g(gαβeγ , eβ) = gαβg(eγ , eβ)

= gαβgγβ = δαβ .

Thus, relative to a null frame

g = e1 ⊗ e1 + e2 ⊗ e2 − 2µe3 ⊗ e4 − 2µe4 ⊗ e3,

or in matrix form

g =


1 0 0 0
0 1 0 0
0 0 0 −2µ
0 0 −2µ 0

 .

We can also express g in coordinates but relative to a null frame. More precisely, we have,

gαβ = − 1

2µ
LαLβ −

1

2µ
LαLβ + �gαβ

where �g is positive definite on the space orthogonal to the space spanned by L and L and it vanishes
on span{L,L}. To see this, define

�gαβ = gαβ +
1

2µ
LαLβ +

1

2µ
LαLβ.

Then

�gαβL
αLβ = gαβL

αLβ︸ ︷︷ ︸
=0

+
1

2µ
LαL

α︸ ︷︷ ︸
=0

LβL
β +

1

2µ
LαL

α LβL
β︸ ︷︷ ︸

=0

= 0
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�gαβL
αLβ = gαβL

αLβ︸ ︷︷ ︸
=0

+
1

2µ
LαL

α LβL
β︸ ︷︷ ︸

=0

+
1

2µ
LαL

α︸ ︷︷ ︸
=0

LβL
β = 0

�gαβL
αLβ = gαβL

αLβ︸ ︷︷ ︸
=−2µ

+
1

2µ
LαL

α︸ ︷︷ ︸
=−2µ

LβL
β︸ ︷︷ ︸

=−2µ

+
1

2µ
LαL

α︸ ︷︷ ︸
=0

LβL
β︸ ︷︷ ︸

=0

= 0

�gαβe
α
Ae

β
B = gαβe

α
Ae

β
B +

1

2µ
Lαe

α
ALβe

β
B +

1

2µ
Lαe

α
ALβe

β
B︸ ︷︷ ︸

(all products are zero)

,

A,B = 1, 2, showing the claim.

At this point, it is convenient to introduce:

Notation 17.3. We use uppercase Latin letters, A,B, ... to denote indices 1, 2. The sum convention
is adopted for such indices, including when repeated indices are both up or down. The inverse of

�g is given in coordinates by

(�g
−1)αβ =

∑
A=1,2

eαAe
β
A = eαAe

β
A︸ ︷︷ ︸

sum over A=1,2.

(see below for the notation −1 in �g
−1).

Induced

(�g
−1)αβ�gβδ = eαAe

β
A(gβδ +

1

2µ
LβLδ +

1

2µ
LβLδ)

= eαAe
β
Agβδ.

To confirm that �g
−1 is the inverse, we need to show that this last expression is the identity on the

space orthogonal to span{L,L} and vanishes on span{L,L}. The latter follows from

(�g
−1)αβ�gαδL

δ = eαAe
β
AgβδL

δ = eαA e
β
ALβ︸ ︷︷ ︸
=0

= 0,

(�g
−1)αβ�gαδL

δ = eαAe
β
AgβδL

δ = eαA e
β
ALβ︸ ︷︷ ︸
=0

= 0.

If X = XAeA = XAeαA∂α = Xα∂α, where X
A are the components of X relative to {eA}2A=1 and

Xα the components relative to {∂α}3α=1. Then

(�g
−1)αβ�gαδX

δ = eαAe
β
AgβδX

CeδC ,

= eαAX
C gβδe

β
Ae

δ
C︸ ︷︷ ︸

=δAC

= XAeαA = Xα,

showing the claim.

Remark 17.4. In general, the components of the inverse of �g are not obtained by simply raising
an index, unless �g is defined in terms of g and we raise and lower indices with g, which is the case
here but might not be true in general (e.g., g is the acoustical metric but we raise/lower indices
with the Minkowski metric).

This is because indices are raised and lowered with g, and gαβ is both the inverse matrix of gαβ and
gαβ raised indices when indices are raised with g. But here, we have the metric �g but are raising
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and lowering indices with g. That is why we wrote (�g
−1)αβ, indicating explicitly that it is the αβ

entry of the inverse matrix of �g (whose entries are �gαβ). In particular, �g
αβ means what it means

for any other tensor, namely, �gαβ raised the indices with the spacetime metric:

�g
αβ = gαγgβδ�gγδ.

It is useful to see that �g
αβ is in fact the inverse of �gαβ only because we raise indices with g itself:

�g
αβ

�gβδ = gασgβτ �gστ �gβδ

= gασgβτ
(
gστ +

1

2µ
LσLτ +

1

2µ
LσLτ

)(
gβδ +

1

2µ
LβLδ +

1

2µ
LβLδ

)
=

(
gαβ +

1

2µ
LαLβ +

1

2µ
LαLβ

)(
gβδ +

1

2µ
LβLδ +

1

2µ
LβLδ

)
=

(
δαδ +

1

2µ
LαLδ +

1

2µ
LαLδ +

1

2µ
LαLδ +

1

2µ
LαLδ

+
1

4µ2
LαLδ L

βLβ︸ ︷︷ ︸
=−2µ

+
1

4µ2
LαLδ L

βLβ︸ ︷︷ ︸
=0

+
1

4µ2
LαLδ L

βLβ︸ ︷︷ ︸
=0

+
1

4µ2
LαLδ L

βLβ︸ ︷︷ ︸
=−2µ

)
= δαδ .

Next, we claim that

δβα +
1

2µ
LβLα +

1

2µ
LβLα

projects a vector onto the space spanned by e1, e2.

Induced,

X = XAeA +XLL+XLL

= XAeαA∂α +XLLα∂α +XLLα∂α.

If we denote by X(α) the components of X relative to {eα}3α=0, the above can be written in concise
form

X = X(α)eβα∂α

(recall e3 = L, e4 = L). Then, (
δβα +

1

2µ
LβLα +

1

2µ
LβLα

)
Xα

=

(
δβα +

1

2µ
LβLα +

1

2µ
LβLα

)
X(γ)eαγ

= X(r)eβγ +
1

2µ
LβX(γ) Lαe

β
γ︸ ︷︷ ︸

0 if γ ̸= 4
−2µ if γ = 4

+
1

2µ
LβX(γ) Lαe

α
γ︸ ︷︷ ︸

0 if γ ̸= 3
−2µ if γ = 3

= X(γ)eβγ −X(4)Lβ −X(3)Lβ

= XAeβA +X(3)eβ3 +X(4)eβ4 −X(4)Lβ −X(3)Lβ,

but e3 = L, e4 = L, so eβ3 = Lβ, eβ4 = Lβ, thus

= XAeβA,

showing the claim.
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Notation 17.5. We denote by ��
∏

the projection onto span{e1, e2}. By the above

�
�

∏
β
α = δβα +

1

2µ
LβLα +

1

2µ
LβLα

Observe that the gradient ∇φ1 expressed relative to a null frame is

∇φ = e1(φ)e1 + e2(φ)e2 −
1

2µ
e4(φ)e3 −

1

2µ
e3(φ)e4.

Indeed,

∇φ = (∇φ)AeA + (∇φ)LL+ (∇φ)LL, so,

(∇φ)A = g(∇φ, eA), (∇φ)L = − 1

2µ
g(∇φ,L),

(∇φ)L = − 1

2µ
g(∇φ,L).

But

g(∇φ, eα) = gβγ∇βφeγα = gβγg
βδ∇δφe

γ
α

= ∇γφe
γ
α = ∂γφe

γ
A = eγα∂φφ

= eα(φ).

Similarly, given a vector field X,

X = XAeA +XLL+XLL,

XA = g(X, eA), XL = − 1

2µ
g(X,L), XL = − 1

2µ
g(X,L),

So

X = g(X, eA)eA − 1

2µ
g(X,L)L− 1

2µ
g(X,L)L.

Let us denote the contractions of X with eA, L, and L, respectively, by

XA := Xαe
α
A, XL := XαL

α, XL := XαL
α.

Then

X = XAeA − 1

2µ
XLL− 1

2µ
XLL.

Notation 17.6. An eikonal function or optical function is a solution to the eikonal equation

gµν∂µu ∂νu = 0.

It follows that the level sets of u are characteristic manifolds for the operator gµν∂µ∂ν . Observe
that if u is an optical function, then the vector field

L = −∇u

is null (the negative sign is conventional). Since the gradient is orthogonal to the level surfaces
(this result is also true for Lorentzian metrics), L is both orthogonal to the characteristics (below
we show it is also tangent).

Example 17.7. For the Minkowski metric, u = t − r and u = t + r are eikonal functions. Their
level sets correspond to lightcones. Note that −∇u = ∂t + ∂r = L, −∇u = ∂t − ∂r.
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Example 17.8. Consider g = −dt2 + gijdx
idxj . Let u be an eikonal function and assume that

the intersection of {u = const} with {t = const} is a topological sphere (this can be achieved by
choosing initial data for the eikonal equation appropriately).

Set

Sτ,v :=
{
(x, t) | t = τ, u(t, x) = v

}
.

Put

L = −∇u = ∂tu ∂t − gij∂iu ∂j .

∂t is orthogonal to
∑

τ and L orthogonal to {u = v}, thus gij∂iu ∂j is orthogonal to Sτ,v. Another
way of seeing this is to notice that gij∂iu ∂j is the gradient of the function u(τ, ·) on

∑
τ , whose

level sets are by assumption spheres; these spheres are precisely Sτ,v. Write Ñ = −gij∂iu ∂j , so

g(Ñ, Ñ) = gαβÑ
αÑβ = gijÑ

iÑ j = gijg
ik∂ku g

jl∂lu

= gkl∂ku ∂lu = (∂tu)
2.

Since u satisfies gµν∂µu ∂νu = −(∂tu)2 + gij∂iu ∂ju = 0.

Set

a :=
1

∂tu
.

Then, N = aÑ = 1
∂tu
gij∂ju ∂i is a unit normal vector field to the spheres Sτ,v. Let {e1, e2} be an

orthonormal frame on Sτ,v(with respect to the metric induced on Sτ,v) and set

L = a(∂t −N), L =
1

a
(∂t +N).

Then {e1, e2, L, L} is a null frame normalized by

g(L,L) = g(∂t, ∂t)− g(N,N) = −2,

where we used g(∂t, N) = 0.

Observe that L is also tangent to C = {u = v}. Indeed, the tangent space to {u = v} at a point
p is the orthogonal complement to a normal to Tp C. Since L = −∇u, L is orthonormal to C. But
{e1, e2, L} are linearly independent vectors orthonormal to L (L is null thus orthonormal to itself),
and since dim Tp C = 3, Tp C = span{e1, e2, L}. In particular, L is tangent to C.

Since L is linearly independent with respect to {e1, e2, L}, L is transverse to C. Thus, we have
obtained the analogue of the previous Minkowski space picture.
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t

Στ = {t = τ}

u = v

L
L

ei

Sτ,v

Figure 46. L, L, and the Minkowski Metric II

17.3. The null-structure equations. We saw that we can construct a null frame adapted to the
characteristics with the help of an eikonal function. As seen, we hope to prove the decay estimates
showing that L, eA are good derivatives. Because L, eA are themselves dependent on φ, this turns
out to be a difficult coupled problem. With the current techniques known to date, appropriate
decay estimates for solutions can only be derived with the help of some complementary estimates
for several associated geometric tensors. Such complementary estimates are obtained with the help
of a system of elliptic and evolution equations for various geometric quantities associated with the
characteristics. Such equations are known as the null-structure equations.

Set-up. Throughout below we consider the situation where the intersections of the level sets
of u with

∑
t are topological spheres, like in the example above (although we do not assume, like

in that example, that g00 = −1, g0i = 0). Let T be the future-pointing timelike unit normal to∑
t, N the unit outer normal to St,u inside

∑
t, and put L = T +N, L = T −N . Construct a null

frame {e1, e2, L, L} by considering e1, e2 an orthonormal frame on St,u. Note that g(L,L) = −2.

Let us begin with some basic definitions. Since ∇eαeβ is a vector field, we can express it relative
to a null frame. Thus

∇eαeβ = Γγαβ eγ

for some (locally defined) functions Γγαβ known as the frame coefficients. These are exact ana-
logues of the Christoffel symbols when we express ∇X in a coordinate basis. However, their
symmetry properties are not the same as in the Christoffel symbols. E.g.,

g(eA, eB) = δAB ⇒ g(∇eCeA, eB) + g(eA, ∇eCeB) = 0

ΓDCA g(eD, eB) + ΓDCB g(eA, eD) = 0

ΓBCA + ΓACB = 0.

Recall that ��
∏

is the projection onto span {e1, e2}, which in our case corresponds to projections
onto the spheres St,u. We can extend it to projections of arbitrary tensors. For example, if w is a
two tensor

(
�
�

∏
ξ)αβ :=

�
�

∏
γ
α �

�
∏

δ
β ξγδ.
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We say that a tensor is tangent (to St,u) if ��
∏
ξ = ξ. For tangent tensors, their �g norm is defined,

e.g.,

|ξ|2
�g
= (�g

−1)αγ(�g
−1)βδξαβ ξγδ.

Note that the above is also given by

(�g
−1)αγ(�g

−1)βδξαβ ξγδ = eαA e
γ
A e

β
B e

δ
B ξαβ ξγδ = ξAB ξAB.

If ξ is a St,u-tangent tensor, we can view it as a tensor defined on the entire spacetime by extending
it to be zero when contracted against L or L

We denote by ��∇ the projection of the covariant derivative onto St,u , i.e.,

��∇X ξ :=
�
�

∏
∇Xξ

for any vector field X and tensor ξ. If ��D denotes the connection of the metric �g on St,u and both
X and ξ are tangent to St,u, then ��∇X ξ =��DX ξ.

If ξ is a symmetric (0, 2) tensor on St,u, its trace relative to �g is defined as

tr
�g
ξ = (�g

−1)αβξαβ = ξAA.

We then define the trace-free part of ξ as

ξ̂ := ξ − 1

2
tr
�g
ξ �g.

Notation 17.9. We will abbreviate

∇A := ∇eA

For a St,n-tangent one-form, its �g-divergence and �g-curl relative to {eA}2A=1 are defined, respec-
tively by

��div ξ :=��∇A ξA,

���curl ξ := eAB��∇A ξB,

where εAB is anti-symmetric on AB with ε12 = 1.

Recall that the indices A,L, and L in the tensors represent contractions with eA, L, and L. Such
contractions are always taken after the derivatives, e.g.

��∇A ξB = eαA e
β
B��∇α ξβ = eαA e

β
B(�

�
∏

∇ ξ)αβ

= eαA e
β
B�

�
∏

γ
α�

�
∏

δ
β∇γξδ

If ξ is a St,u-tangent symmetric (0, 2) tensor, its �g-divergence and �g-curl (relative to {eA}2A=1)
are defined by

��div ξA :=��∇B ξAB,

���curl ξA := eBC��∇B ξCA.

We denote by
∏

the projection onto
∑

t. IT is not difficult to see that∏α

β
= δβα + TαT

β.

We write g for the metric induced on
∑

t. For a general tensor ξ, we put

ξ :=
∏

ξ.
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We denote by L the Lie derivative. According to our conventions, we have

�LXξ :=
�
�

∏
LXξ,

LXξ :=
∏

LXξ.

Definition 17.10. Let T denote the unit timelike future pointing normal to
∑

t and N the unit
outer normal to the spheres Sτ,v =

∑
τ ∩{u = v}. Consider a null frame {e1, e2, L, L} as described

above (so L = T +N, L = T −N, g(L,L) = −2) and the above definitions and notation.

We introduce the following quantities, called connection coefficients:

Second fundamental form of
∑

t:

h(X,Y ) := −g(∇XT, Y ),

X, Y ∈ T
∑

τ .

Second fundamental form of St,u:

θAB := g(∇AN, eB).

Null second fundamental forms of St,u:

XAB := g(∇AL, eB), XAB := g(∇AL, eB).

St,n-tangent torsions:

SA :=
1

2
g(∇LL, eA), SA :=

1

2
g(∇LL, eA).

The null-lapse:

b :=
1

|∇gu|g
, g = metric induced on

∑
t

.

Proposition 17.11. The following relations hold: h, θ, X and X are symmetric and

h = −1

2
LT g = −1

2
LT g,

X =
1

2
�LL �g =

1

2
�LL g,

X =
1

2
�LL �g =

1

2
�LL g,

��∇NN = −��∇ ln b,

��∇ANB = θAB,

Moreover

∇AL = XAB eB − hANL, ∇AL = XAB eB + hANL,

∇LL = (−hNN + g(∇TT, L))L, ∇LL = 2SA eA + hNNL,

∇LL = 2SAeA + hNNL, ∇LL = −2(��∇A ln b)eA − hNNL,

∇LeA =��∇LeA + SAL, ∇BeA =��∇BeA =��∇eA +
1

2
XABL+

1

2
XABL

Finally

XAB = θAB − hAB, XAB = −θAB − hAB,

SA = −hAN , S =��∇ ln b+ hAN .
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Proof. The first properties (symmetry and identities before ”moreover”) are standard. The sec-
ond ones (between ”moreover” and ”finally”) follow from direct computations and the definitions,
recalling that for any vector field:

X = g(X, eA)eA − 1

2
g(X,L)L− 1

2
g(X,L)L.

For example

∇AL = g(∇AL, eB)︸ ︷︷ ︸
=XAB

eB − 1

2
g(∇AL,L)︸ ︷︷ ︸

= 1
2
eAg(L,L)=0

L− 1

2
g(∇AL,L)L

and

g(∇AL,L) = g(∇A(T +N), T −N)

= g(∇AT, T )︸ ︷︷ ︸
= 1

2
eAg(T,T )=0

− g(∇AT,N) + g(∇AN,T )︸ ︷︷ ︸
=−g(∇AT,N)+eAg(N,T )︸ ︷︷ ︸

=0

−g(N,∇AT )=2hAN

−

= 1
2
eAg(N,N)=0︷ ︸︸ ︷

g(∇AN,N)

So ∇AL = XAB eB − hAN L.

The other relations are proved similarly. The remaining relations (after ”finally”) follow from
the previous ones and the definitions.

□

For the next theorem, we introduce the volume ratio:

V :=

√
det �g√
det �ϵ

where �ϵ is the round metric on S2. V is a partial measure of how far St,u is from being round.

We also define the mass aspect function to be

M := L tr
�g
X +

1

2
tr
�g
X tr

�g
X .

The idea of introducing M is that we want to control L tr
�g
X . However, this quantity does not

satisfy a good evolution equation, but M, which can be viewed as modifications of L tr
�g
X , does.

The connection coefficients satisfy the following PDEs, known as the null-structure equations.
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Theorem 17.12. The connection coefficients satisfy

LV = V tr
�g
X

Lb = (−kNN + g(∇TT, L))b

L tr
�g
X +

1

2
(tr

�g
X )2 = −|X̂ |

�g
− kNN tr

�g
−RLL

��∇LX̂AB + (tr
�g
X )X̂AB = −kNN X̂AB −RLALB +

1

2
RLLδAB

��∇LSA +
1

2
(tr

�g
X )SA = −(hBN + SB)X̂AB − 1

2
tr
�g
hAN − 1

2
RALLL

L tr
�g
X +

1

2
tr
�g
X tr

�g
X = 2��divS + kNN tr

�g
X − X̂ABX̂AB + 2|S|2

�g
+RALLA

��∇LX̂AB +
1

2
tr
�g
XX̂AB = −1

2
tr
�g
XX̂AB + 2��∇ASB −��divSδAB + hNN X̂AB

+(2SASB − |S|2
�g
δAB) +RALLB − 1

2
RCLLCδAB − X̂ACX̂BC +

1

2
X̂CDX̂CDδAB

LM+ tr
�g
XM =

1

2
L(tr

�g
X tr

�g
X ) +

1

2
(tr

�g
X )2 tr

�g
X − 2��∇LX̂ABX̂AB

+2(SA − SA)��∇A tr
�g
X − LRLL − LhNN tr

�g
X − L tr

�g
XkNN

��div X̂A + X̂ABhBN =
1

2
(��∇A tr

�g
X + kAN tr

�g
X ) +RBLBA

��div S =
1

2
(M− kNN tr

�g
X − 2|S|2

�g
− |X̂ |2

�g
− 2kABX̂AB)−

1

2
RALLA

���curl S =
1

2
εABX̂ACX̂BC − 1

2
εABRALLB.

Above, Rαβ is the Ricci curvature and Rαβγδ the Riemann curvature of g and, according to our

conventions, RLL = LαLβRαβ, RLABL = LαeβAe
γ
BL

γRαβγδ etc.

Proof. The proof is a series of lengthy calculations. We will derive the equation.

L tr
�g
X +

1

2
(tr

�g
X )2 = −|X̂ |

�g
− kNN tr

�g
RLL,

known as the Raychaudhuri equation, which is one of the main equations in the study of charac-
teristic geometry. It plays an important role now only in global existence problems, but in many
other problems (see below). It is also important in the proof of the singularity theorems in general
relativity.

��∇LXAB = eαAe
β
B��∇LXαβ = eαAe

β
B

(
�
�

∏
∇LX

)
αβ

= eαAe
B
A�

�
∏

γ
α�

�
∏

δ
β∇LXγδ = LσeαAe

β
A�

�
∏

γ
α�

�
∏

δ
β∇αXγδ,

But eαA ��
∏γ
α = eαA

(
δγα + 1

2L
γLα + LγLα

)
= eγA, so

= LσeγAe
δ
B∇σXγδ = eγAe

δ
B∇LXγδ

= ∇L(e
γ
Ae

δ
BXγδ)− (∇Le

γ
A)e

δ
BXγδ − eγA(∇Le

δ
B)Xγδ

= ∇LXAB −∇Le
γ
Ae

δ
BXγδ − eγA∇Le

δ
BXγδ.

Since X vanishes when contracted with vectors not tangent to St,u, Xγδ∇Le
γ
A = Xγδ��∇Le

γ
A, so

= ∇LX (eA, eB)−X (��∇LeA, eB)−X (eA,��∇LeB).
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But

∇LX (eA, eB) = ∇L g(∇AL, eB)

= g(∇L∇AL, eB) + g(∇AL,∇LeB)

and

g(eB,∇L∇AL) = g(eB,∇A∇LL+∇[L,eA]L+Riem(L, eA)L)

= g(eB,∇A∇LL) + g(eB,∇[L,eA]L) + g(eB,Riem(L, eA)L)︸ ︷︷ ︸
=Riem(eB ,L,L,eA)

.

Thus

��∇LXAB = g(eB,∇A∇LL) + g(eB,∇[L,eA]L) + g(∇AL,∇LeB)

+Riem(eB, L, L, eA)−X (��∇LeA, eB)−X (eA,��∇LeB).

Using, from the proposition above

∇AL = XABeB − hANL

∇LL = (−hNN + g(∇TT, L))L

∇BeA =��∇BeA +
1

2
XABL+

1

2
XABL

and

[L, eA] =��∇LeA + SAL−XABeB + hANL

=��∇LeA −XABeB,

which follows from [X,Y ] = ∇XY −∇YX and our previous relations, we find

g(eB,∇A∇LL) = −XABhNN
g(eB,∇[L,eA]L) = X (��∇LeA, eB)−XACXCB
g(∇AL,∇LeB) = X (eA,��∇LeB).

Thus

��∇LXAB = g(eB,∇A∇LL) + g(eB,∇[L,eA]L) + g(∇AL,∇LeB)

+Riem(eB, L, L, eA)−X (��∇LeA, eB)−X (eA,��∇LeB)

becomes (X (��∇LeA, eB) and X (eA,��∇LeB) cancel out):

��∇LXAB = −XABhNN −XACXCB +RBLLA

Taking the trace and using that, after some algebra

−�g
ABXACXCB = −|X̂ |2

�g
− 1

2
(tr

�g
X )2

we find

L tr
�g
X +

1

2
(tr

�g
X )2 = −|X̂ |

�g
− kNN tr

�g
−RLL,

which is the desired result.
□

Let us now give some intuition of why these geometric constructions are important for the prob-
lem of decay. We should warn, however, that the following discussion is very heuristic, and the
goal is only to give some idea why the geometric formation introduced above is important for the
study of quasilinear wave equations and the study of their decay properties and global existence in
particular. A more precise discussion would require a more detailed exposition.
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In our standard energy estimates, the energy we control arises from an integration by parts, e.g.,
for the linear wave equation,

−∂2t φ+∆φ = 0,

multiply by ∂tφ,

−∂tφ∂2t φ+ ∂tφ∆φ = −1

2
∂t(∂tφ)

2 + ∂tφ∆φ = 0,

integrating,

−1

2

∫
R3

∂t(∂tφ)
2 +

∫
R3

∂tφ∆φ︸ ︷︷ ︸
by parts=−

∫
R3 ∂t∇φ·∇φ=− 1

2

∫
R3 ∂t|∇φ|2

= −1

2
∂t

∫
R3

((∂t)
2 + |∇φ|2) = 0

Thus

E(t) ≤ E(0), E(t) =
1

2

∫
R3

(
(∂tφ(t, x))

2 + |∇φ(t, x, )|2
)
dx.

We saw that we can consider higher versions of this, where we control derivatives of φ, and that
this generalizes also to the quasilinear case.

If we want to obtain decay for solutions, it is natural to try to control weighted energies, e.g.,
expressions of the form:

Ew(t) =

∫
R3

w
(
(∂tφ)

2 + |∇φ|2
)
dx,

where w is some ”weight”. For example, if w = 1 + t and we can show something similar to
Ew(t) ≤ CEw(0), this would mean that∫

R3

(
∂tφ)

2 + |∇φ|2
)
dx ≤ C

1 + t
.

This is decay of integrals of φ, and we want point-wise decay. But we know that if we control
integrals of enough derivatives of φ then we control φ point-wise by Sovolev embedding, thus we
seek to bound something like

Ew =

∫
R3

w
(
|∂tDkφ|2 + |Dk+1φ|2

)
dx.

In reality, this heuristic is too crude, and the precise way of obtaining pointwise decay from suitable
integrals requires more tools, one of which is known as the Klainerman-Sobolev inequality,
which is a generalization of the Sobolev inequality that involves decay. But even if we take the
above heuristics for granted, it remains the question of how to bound the weighted energy, i.e., how
to prove Ew(t) ≤ CEw(0). Since our goal is to show that good derivatives have better decay, this
should be encoded in our energies. That means that instead of considering the energies obtained by
multiplying the equation by ∂tφ and integrating by parts, we should multiply by Xwφ and integrate
by parts, where Xw is some specific vector field that also carries weight. For example, since we
want to show the decay of Lφ, we can choose Xwφ = wLφ, where the weight has to be a suitable
power of r or t (for technical reasons r weights, and not only t weights have to be considered).
But then, when we integrate by parts, we will pick derivatives of Xw, which need to be estimated.
Since X depends on the characteristics (e.g. X ∼ L), estimating it depends on the estimates for
the solution itself. This can be accomplished by decomposing ∂Xw relative to a null frame: the
coefficients of this decomposition will be connection coefficients, for example,

∇L = g(∇eAL, eB)eB︸ ︷︷ ︸
=XAB

+...
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The connection coefficients, in turn, can be estimated from the null structure equations.

In this way, we can get decay estimates, or at least decay estimates for the good derivatives.
What about the bad derivative Lφ? In general, it is not possible to show that is has integrable
decay. However, if the equation has certain special structural conditions (e.g. the null condition
previously mentioned), we can show that the bad derivative terms that spoil the integrability in
time are in fact absent, leading then to global existence.

Let is finish with the following remark. Even though we introduced the study of the charac-
teristic geometry motivated by the problem of global existence, it turned out that these geometric
techniques find applications in many other problems related to the study of quasilinear wave equa-
tions. These include the study of shocks and low regularity solutions (by which we mean local
well-posedness for data (φ0, φ1) ∈ Hk+1 × Hk with k ≤ 3

2 ; the classical well-posedness theory,

which we developed here, treats only k > 3
2 ; or k >

3
2 + 1 if the metric g also depends on ∂φ).
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