

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Show that it is not true that if $k + \gamma < m + \delta$, then $C^{m+\delta}(\bar{\Omega}) \subset C^{k+\gamma}(\bar{\Omega})$.

Problem 2. Show that $C^{k,\alpha}(\bar{\Omega}) \subset C^{k,\beta}(\bar{\Omega}), \beta < \alpha$.

2. Solutions

Solution 1. This is done in Section 9.5 of the class notes.

Solution 2. We have for $|\gamma| \leq k$,

$$\sup_{\substack{0<|x-y|<1\\x,y\in\Omega}}\frac{|D^{\gamma}u(x)-D^{\gamma}u(y)|}{|x-y|^{\beta}}\leq \sup_{\substack{x\neq y\\x,y\in\Omega}}\frac{|D^{\gamma}u(x)-D^{\gamma}u(y)|}{|x-y|^{\alpha}}.$$

We also have

$$\sup_{\substack{|x-y|\geq 1\\ x,y\in\Omega}}\frac{|D^{\gamma}u(x)-D^{\gamma}u(y)|}{|x-y|^{\beta}}\leq 2\sup_{x\in\Omega}|D^{\gamma}u(x)|,$$

which implies the result.