

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Let $u \in W^1(\Omega)$. Show that Du = 0 a.e. on any set where u is constant.

Problem 2. Is the converse of the previous question true?

Problem 3. Suppose that all weak derivatives of u order k exist. Show that all weak derivatives of order k-1 exist. (In class, we defined $W^k(\Omega)$ as the space of functions whose weak derivatives up to order k exist. This problem shows that we could have defined it as the space whose all weak derivatives of order k exist, and we would get the same result.)

2. Solutions

Solution 1. This follows from $Du = Du^+ - Du^-$.

Solution 2. Yes, u will be constant a.e. on connected sets. Using the regularization, from Du = 0 we have $0 = (Du)_{\varepsilon} = Du_{\varepsilon}$ so $u_{\varepsilon} = c_{\varepsilon} = \text{constant depending on } \varepsilon$. Since $u_{\varepsilon} \to u$ in $L^1_{loc}(\Omega)$, the numerical constants c_{ε} converge in the limit $\varepsilon \to 0^+$.

Solution 3. The proof is somewhat technical and long and involves ideas from functional analysis and distribution theory. We will only provide a sketch.

Let $\mathcal{W}^{k,p}(\Omega)$ denote the set of distributions on Ω with the property that all distributional derivatives of order k belong to $L^p(\Omega)$. Let $\Omega' \subset \Omega'' \subset \Omega$ be open sets such that $\operatorname{dist}(\partial \Omega', \partial \Omega'') > \varepsilon$ and $\operatorname{dist}(\partial \Omega'', \partial \Omega) > \varepsilon$ for some fixed $\varepsilon > 0$. Let $\psi \in C_c^{\infty}(\Omega)$ be such that $\psi = 1$ on Ω'' . Let $u \in \mathcal{W}^{k,p}(\Omega)$ and set $T := \psi u$. Take $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\operatorname{supp}(\varphi) \subset B_{\varepsilon}(0)$ and $\varphi = 1$ in a neighborhood of the origin.

Consider the polyhamormonic operator Δ^k in \mathbb{R}^n , whose fundamental solution is

$$\Gamma(x) = \begin{cases} c|x|^{2k-n}, & \text{for } 2k < n \text{ or for odd } n \text{ such that } n \le 2k, \\ c|x|^{2k-n} \ln|x|, & \text{for even } n \le 2k, \end{cases}$$

where c is a constant chosen such that $\Delta^k \Gamma = \delta$, where δ is the Dirac-delta. Then

$$\Delta^k(\varphi\Gamma) = \delta + \zeta$$

where $\zeta \in C_c^{\infty}(\mathbb{R}^n)$. It follows that

$$T + \zeta * T = \sum_{|\alpha|=k} \frac{k!}{\alpha!} D^{\alpha}(\varphi \Gamma) * D^{\alpha} T.$$

Observe that $\zeta * T \in C^{\infty}(\mathbb{R}^n)$. Using the Leibniz rule for multi-indices we find that over Ω''

$$D^{\alpha}T = \psi D^{\alpha}u.$$

so that

$$D^{\alpha}(\varphi\Gamma)*D^{\alpha}T=D^{\alpha}(\varphi\Gamma)*(\psi D^{\alpha}u)$$

over Ω' . From the theory of singular integrals it follows that the corresponding singular integral operator applied to $\psi D^{\alpha} u$ is continuous in $L^p(\Omega')$. Thus $u \in L^p_{loc}(\Omega)$, i.e., $\mathcal{W}^{k,p}(\Omega) \subset L^p_{loc}(\Omega)$.

2 MATH 8110

Consider now $u \in L^p_{loc}(\Omega)$, so $u \in L^p(\widetilde{\Omega})$ for any open $\widetilde{\Omega} \subset\subset \Omega$, and let $T = D^{\beta}u$ be its distributional derivative, $|\beta| = k - \ell$, $1 \leq \ell \leq k - 1$. By assumption $D^{\alpha}T \in L^p(\widetilde{\Omega})$, $|\alpha| = \ell$, i.e., $T \in \mathcal{W}^{\ell,p}(\widetilde{\Omega})$. By the foregoing $T = D^{\beta}u \in L^p_{loc}(\Omega)$.