

Unless stated otherwise, the notation below is as in class. You can assume that all functions are C^{∞} unless stated otherwise.

1. Problems

Problem 1. Prove the differentiation of moving regions formula stated in class:

$$\frac{d}{d\tau} \int_{\Omega(\tau)} f \, dx = \int_{\Omega(\tau)} \partial_{\tau} f \, dx + \int_{\partial\Omega(\tau)} f v \cdot \nu \, dS. \tag{1.1}$$

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1.1) in the following particular case. Assume that n=3 and that the domains $\Omega(\tau)$ are given by a one-parameter family of one-to-one and onto maps $\varphi=\varphi(\tau,x):\Omega\to\Omega(\tau)=\varphi(\tau,\Omega)$, where $\Omega:=\Omega(0)$ and $\varphi(0,\cdot)=\mathrm{id}_{\Omega}$, where id_{Ω} is the identity map on Ω , i.e., $\mathrm{id}_{\Omega}(x)=x,\,x\in\Omega$.

(a) For each fixed τ , consider the change of variables $x = \varphi(\tau, y)$, so that

$$\int_{\Omega(\tau)} f(\tau, x) dx = \int_{\Omega} f(\tau, \varphi(\tau, y)) J(\tau, y) dy, \qquad (1.2)$$

where $J(\tau, y)$ is the Jacobian of the transformation $x = \varphi(\tau, y)$ for fixed τ .

(b) Show that there exists a on parameter family of vector fields $u(\tau,\cdot)$ such that

$$\partial_{\tau}\varphi(\tau,x) = u(\tau,\varphi(\tau,x)).$$

- (c) Explain why u = v on $\partial \Omega(\tau)$.
- (d) Show that

$$\partial_{\tau} J(\tau, x) = (\operatorname{div} u)(\tau, \varphi(\tau, x))J(\tau, x).$$

(e) Use (1.2) and the above to compute $\frac{d}{d\tau} \int_{\Omega(\tau)} f$, and do an integration by parts to obtain the result.

Problem 2. Let u be a solution to the Cauchy problem for the wave equation in \mathbb{R}^n . Assume that u_0 and u_1 have their supports in the ball $B_R(0)$ for some R > 0. Show that u = 0 in the exterior of the region

$$I := \{(t, x) \in (0, \infty) \times \mathbb{R}^n \mid x \in B_{R+t}(0) \}.$$

I is called a domain of influence for that data on $B_R(0)$ (compare with the 1d case).

Problem 3. Let u be a solution to the Cauchy problem for the wave equation and assume that u_0 and u_1 have compact support.

(a) Show that the energy

$$E(t) := \frac{1}{2} \int_{\mathbb{R}^n} \left[(\partial_t u)^2 + |\nabla u|^2 \right] dx$$

is well-defined.

2 MATH 8110

(b) Show that

$$E(t) = E(0),$$

i.e., the energy is conserved.

Problem 4. Let u be a solution to the Cauchy problem for the wave equation in \mathbb{R}^3 with compactly supported data (i.e., u_0 and u_1 have compact support).

(a) Show that there exists a constant C > 0, depending on u_0 and u_1 , such that

$$|u(t,x)| \le \frac{C}{t},\tag{1.3}$$

for $t \geq 1$ and $x \in \mathbb{R}^3$. Thus, for each fixed x, u approaches zero as $t \to \infty$, i.e., solutions decay in time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes outside $B_R(0)$ for some R > 0. This implies an estimate for the area of the largest region within $B_t(x)$ where the data is non-trivial.

- (b) Is the estimate (1.3) sharp? (I.e., can it be improved to show that solutions decay faster in time than $\frac{1}{4}$?)
- (c) Do we still get decay if the data does not have compact support?

Problem 5. Use Duhamel's principle to show that a solution to the inhomogeneous wave equation in 1d with zero data and source term f is give by

$$u(t,x) = \frac{1}{2} \int_0^t \int_{x-s}^{x+s} f(t-s,y) \, dy ds.$$
 (1.4)

To do so, first use D'Alembert's formula to conclude that

$$u_s(t,x) = \frac{1}{2} \int_{x-t+s}^{x+t-s} f(s,y) \, dy.$$

Use the definition of u in terms of u_s and change variables to conclude (1.4).

Problem 6. Use Duhamel's principle to show that a solution to the inhomogeneous wave equation in 3d with zero data and source term f is give by

$$u(t,x) = \frac{1}{4\pi} \int_{B_t(x)} \frac{f(t-|y-x|,y)}{|y-x|} \, dy.$$
 (1.5)

(The integrand in (1.5) is known as the retarded potential.) To do so, first use Kirchhoff's formula for solutions in n=3 to conclude that

$$u_s(t,x) = \frac{t-s}{\operatorname{vol}(\partial B_{t-s}(x))} \int_{\partial B_{t-s}(x)} f(s,y) \, dS(y).$$

Use the definition of u in terms of u_s and change variables to conclude (1.5).

Problem 7. Show that there exists a constant C > 0 such that for any solution u to the 3d wave equation it holds that

$$|u(t,x)| \le \frac{C}{t} \int_{\mathbb{D}^3} (|D^2 u_0(y)| + |Du_0(y)| + |u_0(y)| + |Du_1(y)| + |u_1(y)|) dy$$

for $t \geq 1$.

Hint: Use Kirchhoff's formula, note that for any function f we have

$$f(y) = f(y) \frac{y-x}{t} \cdot \frac{y-x}{t}$$

on $\partial B_t(x)$, and use one of Green's identities.

Problem 8. Consider continuous dependence on the data for the wave equation in 3d, where smallness on the data part is measured with respect to the norm

$$||f||_2 := \int_{\mathbb{R}^3} (|D^2 f(y)| + |Df(y)| + |f(y)|) dy.$$

Give a precise formulation of the continuous dependence on the data and prove your statement, i.e., a statement saying that two solutions are close if their corresponding initial data are close.

Hint: Use the estimate of problem 7 as a basis for your statement, and give a similar proof (now you have to also account for t < 1).

2. Solutions

Solution 1. (a) This is simply the change of variables formula from calculus.

- (b) For each fixed x, the map $\tau \mapsto \varphi(\tau, x)$ is a curve in \mathbb{R}^3 . $\partial_{\tau}\varphi(\tau, x)$ is, therefore, the tangent vector to this curve at $\varphi(\tau, x)$ at time τ . The collection of all such tangent vectors, as τ and x vary, forms the vector field u.
- (c) The map φ sends $\partial\Omega$ onto $\partial\Omega(\tau)$ for each τ . Since $\partial_{\tau}\varphi(\tau,x)$ is the velocity at time τ of the particle that started at $x \in \Omega$ at time zero, $u(\tau,\varphi(\tau,x))$ is the velocity of $\partial\Omega(\tau)$ at the point $\varphi(\tau,x) \in \partial\Omega(\tau)$.
- (d) According to the notation of part (a), we set

$$\varphi_j^i = \frac{\partial}{\partial y^j} \varphi^i, \, \partial_j u^i = \frac{\partial}{\partial x^j} u^i,$$

where we considered $\varphi = (\varphi^1, \varphi^2, \varphi^3)$. In particular, note that when we write $\varphi_j^i = \partial_j \varphi^i$ the derivative is always with respect to $y \in \Omega$, whereas when we write $\partial_j u^i$ the derivative is always with respect to $x \in \Omega(\tau)$.

Recall the following formula for the determinant of a $n \times n$ matrix a with entries $a_j^i = a_{\text{column}}^{\text{row}}$:

$$\det(a) = \frac{1}{n!} \epsilon_{i_1 \cdots i_n} \epsilon^{j_1 \cdots j_n} a_{j_1}^{i_1} \cdots a_{j_n}^{i_n}$$

In our case, this gives

$$J(\tau, y) = \frac{1}{3!} \epsilon_{i_1 i_2 i_3} \epsilon^{j_1 j_2 j_3} \varphi_{j_1}^{i_1} \varphi_{j_2}^{i_2} \varphi_{j_3}^{i_3}.$$

Recall that the definition of J involves an absolute value, which we can omit here since J > 0 because $J(0,\cdot) > 0$. Compute

$$\partial_{\tau} \varphi_{j}^{i} = \partial_{j} \partial_{\tau} \varphi^{i}$$

$$= \frac{\partial}{\partial y^{j}} u^{i}$$

$$= \partial_{\ell} u^{i} \varphi_{j}^{\ell},$$

where in the second equality we used (b) and in the third one the chain rule. Therefore

$$\partial_{\tau}J(\tau,y) = \frac{1}{3!} \epsilon_{i_1 i_2 i_3} \epsilon^{j_1 j_2 j_3} (\partial_{\ell} u^{i_1} \varphi_{j_1}^{\ell} \varphi_{j_2}^{i_2} \varphi_{j_3}^{i_3} + \varphi_{j_1}^{i_1} \partial_{\ell} u^{i_2} \varphi_{j_3}^{\ell} + \varphi_{j_1}^{i_1} \varphi_{j_2}^{i_2} \partial_{\ell} u^{i_3} \varphi_{j_3}^{\ell}). \tag{2.1}$$

Because $\epsilon_{i_1i_2i_3}$ is non-zero only for $i_1i_2i_3$ all different from each other, for each triple $i_1i_2i_3$, the term $\epsilon_{i_1i_2i_3}\partial_\ell u^{i_1}\varphi_{j_1}^{\ell}\varphi_{j_2}^{i_2}\varphi_{j_3}^{i_3}$ is non-zero only when $\ell=i_1$. Similarly for the second and third terms

4 MATH 8110

on the RHS of (2.1), and we obtain

$$\partial_{\tau} J(\tau, y) = \frac{1}{3!} \sum_{\substack{i_1, i_2, i_3 = 1 \\ j_1, j_2, j_3 = 1}}^{3} \epsilon_{i_1 i_2 i_3} \epsilon^{j_1 j_2 j_3} (\partial_{i_1} u^{i_1} + \partial_{i_2} u^{i_2} + \partial_{i_3} u^{i_3}) \varphi_{j_1}^{i_1} \varphi_{j_2}^{i_2} \varphi_{j_3}^{i_3}.$$

Because the summand is non-zero only if $i_1i_2i_3$ are all different from each other, the term in parenthesis is always equal to $\partial_1 u^1 + \partial_2 u^2 + \partial_3 u^3 = \operatorname{div} u$, which gives the result.

(e) We have

$$\begin{split} &\frac{d}{d\tau} \int_{\Omega(\tau)} f \, dx = \partial_{\tau} \int_{\Omega} f(\tau, \varphi(\tau, y)) J(\tau, y) \, dy \\ &= \int_{\Omega} \left(\partial_{\tau} f(\tau, \varphi(\tau, y)) J(\tau, y) + \nabla f(\tau, \varphi(\tau, y)) \cdot \partial_{\tau} \varphi(\tau, y) J(\tau, y) + f(\tau, \varphi(\tau, y)) \partial_{\tau} J(\tau, y) \right) \, dy \\ &= \int_{\Omega} \left(\partial_{\tau} f(\tau, \varphi(\tau, y)) J(\tau, y) + \nabla f(\tau, \varphi(\tau, y)) \cdot u(\tau, \varphi(\tau, y)) J(\tau, y) \right) \\ &\quad + f(\tau, \varphi(\tau, y)) (\operatorname{div} u) (\tau, \varphi(\tau, y)) J(\tau, y) \right) \, dy \\ &= \int_{\Omega(\tau)} \left(\partial_{\tau} f(\tau, x) + \nabla f(\tau, x) \cdot u(\tau, x) + f(\tau, x) (\operatorname{div} u) (\tau, x) \right) \, dx \\ &= \int_{\Omega(\tau)} \left(\partial_{\tau} f(\tau, x) - f(\tau, x) (\operatorname{div} u) (\tau, x) + f(\tau, x) (\operatorname{div} u) (\tau, x) \right) \, dx \\ &\quad + \int_{\partial\Omega(\tau)} f(\tau, x) u(\tau, x) \cdot \nu(\tau, x) \, dS(x) \\ &= \int_{\Omega(\tau)} \partial_{\tau} f(\tau, x) \, dx + \int_{\partial\Omega(\tau)} f(\tau, x) v(\tau, x) \cdot \nu(\tau, x) \, dS(x). \end{split}$$

Above, we the steps are as follows: in the second line we used the product rule and the chain rule; in the third line we used (b) and (d); on the fourth line, we changed variables back to x; on the fifth line we integrated ∇f by parts (equivalently, used on of the Green identities); on the last line, we used (c).

Solution 2. Let $(t,x) \notin I$. Then $K_{t,x}^- \cap I = \emptyset$, and the result follows from the finite-propagation speed for the wave equation.

Solution 3. (a) By question 2, the solution u has compact support for each fixed t.

(b) For each t_0 and $\varepsilon > 0$, there exists, by (a), a $R_* > 0$ such that u(t, x) = 0 for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ and $|x| \geq R_*$. We now follow the proof of the finite-propagation speed property for the wave equation (see the class notes) using the ball B_{R_*} , and observe the following. In that proof, we did an integration by parts, and controlled the boundary term using the Cauchy-Schwarz inequality. Here, this boundary term vanishes identically by the foregoing. We obtain therefore a sequence of equalities (rather than inequalities as in the proof done in class), which then gives the result.

Solution 4. (a) The solution is given by

$$u(t,x) = \frac{1}{\text{vol}(\partial B_t(x))} \int_{\partial B_t(x)} (u_0(y) + tu_1(y) + \nabla u_0(y) \cdot (y - x)) \, dS(y).$$

Since the data is compactly supported, there exists a R > 0 such that $u_0(x) = 0$ and $u_1(x) = 0$ for $|x| \ge R$, so that

$$u(t,x) = \frac{1}{\text{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_R(0)} (u_0(y) + tu_1(y) + \nabla u_0(y) \cdot (y - x)) \, dS(y).$$

Because the data is compactly supported, we have $|u_0|, |u_1|, |\nabla u_0| \leq C$ for some C > 0, so that

$$|u(t,x)| \leq \frac{C}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_R(0)} (1+t+|y-x|) \, dS$$

$$= \frac{C}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_R(0)} (1+t+\frac{t|y-x|}{t}) \, dS$$

$$\leq \frac{C}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_R(0)} (1+t+t) \, dS$$

$$\leq \frac{C(1+t)}{t^2} \int_{\partial B_t(x) \cap B_R(0)} dS,$$

where we used that |y - x|/t = 1 since $y \in B_t(x)$ and that $\operatorname{vol}(\partial B_t(x)) = 4\pi t^2$. Because $\partial B_t(x) \cap B_R(0)$ has area at most $4\pi R^2$, we have the result.

(b) Yes, it cannot be improved for arbitrary solutions of the wave equation. To see this, take $u_0 = 0$ and u_1 to be a non-negative compactly supported function that is equal to 1 on $B_1(0)$. Then

$$u(t,x) = \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} t u_1(y) \, dS(y)$$

$$= \frac{t}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_1(0)} u_1(y) \, dS(y) + \frac{t}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \setminus (B_t(x) \cap B_1(0))} u_1(y) \, dS(y).$$

Note that the second term on the RHS is always non-negative, thus

$$u(t,x) \ge \frac{t}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_1(0)} u_1(y) \, dS(y) = \frac{t}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x) \cap B_1(0)} dS.$$

For any x on the boundary of the lightcone, i.e., |x| = t, and such that $|x| \ge 1$, we have that the area of $\partial B_t(x) \cap B_1(0)$ is > C > 0, so that u(t,x) > C/t.

(c) Not necessarily, e.g., take $u_0 = 0$ and $u_1 = 1$, then u(t, x) = t is the solution.

Solution 5. Using D'Alembert's formula, we find

$$u_s(t,x) = \frac{1}{2} \int_{x-t+s}^{x+t-s} f(s,y) \, dy,$$

where we used the fact that D'Alembert's formula was derived for data at t = 0; for data at t = s we have to replace t by t - s in the limits of integration. Thus

$$u(t,x) = \frac{1}{2} \int_0^t \int_{x-t+s}^{x+t-s} f(s,y) \, dy ds = \frac{1}{2} \int_0^t \int_{x-z}^{x+z} f(t-z,y) \, dy dz,$$

where we made the change s = t - z.

Solution 6. Kirchhoff's formula gives

$$u_s(t,x) = \frac{1}{\operatorname{vol}(\partial B_{t-s}(x))} \int_{\partial B_{t-s}(x)} (t-s) f(s,y) \, dS(y).$$

6 MATH 8110

Thus

$$u(t,x) = \int_0^t \frac{t-s}{\operatorname{vol}(\partial B_{t-s}(x))} \int_{\partial B_{t-s}(x)} f(s,y) \, dS(y) ds$$

$$= \frac{1}{4\pi} \int_0^t \int_{\partial B_{t-s}(x)} \frac{f(s,y)}{t-s} \, dS(y) ds$$

$$= \frac{1}{4\pi} \int_0^t \int_{\partial B_r(x)} \frac{f(t-r,y)}{r} \, dS(y) dr$$

$$= \frac{1}{4\pi} \int_{B_t(x)} \frac{f(t-|y-x|,y)}{|y-x|} \, dy,$$

where we made the change of variables r = t - s and then wrote r = |y - x|.

Solution 7. We have

$$u(t,x) = \frac{1}{\text{vol}(\partial B_t(x))} \int_{\partial B_t(x)} (u_0(y) + tu_1(y) + \nabla u_0(y) \cdot (y - x)) \ dS(y).$$

The unit outer normal to $\partial B_t(x)$ is $\nu = (y-x)/t$, so that $\nu \cdot \nu = \frac{y-x}{t} \cdot \frac{y-x}{t} = 1$. Therefore, using this and Green's identities,

$$\frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} u_0(y) \, dS(y) = \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} u_0(y) \nu \cdot \frac{y - x}{t} \, dS(y)$$

$$= \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{B_t(x)} \operatorname{div}_y \left(u_0(y) \frac{y - x}{t} \right) \, dy$$

$$= \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{B_t(x)} \left(\nabla u_0(y) \cdot \frac{y - x}{t} + u_0(y) \frac{3}{t} \right) \, dy,$$

so that

$$\left| \frac{1}{\text{vol}(\partial B_t(x))} \int_{\partial B_t(x)} u_0(y) \, dS(y) \right| \le \frac{C}{t^2} \int_{B_t(x)} (|\nabla u_0(y)| + |u_0(y)|) \, dy$$
$$\le \frac{C}{t^2} \int_{\mathbb{R}^3} (|\nabla u_0(y)| + |u_0(y)|) \, dy.$$

A similar inequality holds for the u_1 integral (with an extra factor of t), and for ∇u_0 :

$$\frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} \nabla u_0(y) \cdot (y - x) \, dS(y) = \frac{t}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} \nabla u_0(y) \cdot \nu \, dS(y)
= \frac{1}{4\pi t} \int_{B_t(x)} \Delta u_0(y) \, dy,$$

so that

$$\left| \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} \nabla u_0(y) \cdot (y - x) \, dS(y) \right| \le \frac{C}{t} \int_{\mathbb{R}^3} |D^2 u_0(y)| \, dy.$$

Combining the foregoing produces the result.

Solution 8. We formulate it as follows. Let (u_0, u_1) and (v_0, v_1) be two data sets for the wave equation, and let u and v be the respective solutions. Solutions depend continuously on the data if given $\varepsilon > 0$ and t > 0, there exists a $\delta > 0$ such that if

$$||u_0 - v_0||_2 + ||u_1 - v_1||_2 < \delta,$$

then

$$|u(t,x) - v(t,x)| < \varepsilon$$

for all $x \in \mathbb{R}^3$.

We now prove the statement. Set $w_0 = u_0 - v_0$, $w_1 = u_1 - v_1$, and w = u - v. By Kirchhoff's formula:

$$w(t,x) = \frac{1}{\text{vol}(\partial B_t(x))} \int_{\partial B_t(x)} (w_0(y) + tw_1(y) + \nabla w_0(y) \cdot (y - x)) \ dS(y).$$

Proceeding as in problem 7, we find

$$\left| \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} w_0(y) \, dS(y) \right| \le \frac{C}{t^2} \int_{\mathbb{R}^3} \left(|\nabla w_0(y)| + |w_0(y)| \right) \, dy,$$

$$\left| \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} w_1(y) \, dS(y) \right| \le \frac{C}{t} \int_{\mathbb{R}^3} \left(|\nabla w_1(y)| + |w_1(y)| \right) \, dy,$$

and

$$\left| \frac{1}{\operatorname{vol}(\partial B_t(x))} \int_{\partial B_t(x)} \nabla w_0(y) \cdot (y - x) \, dS(y) \right| \le \frac{C}{t} \int_{\mathbb{R}^3} |D^2 w_0(y)| \, dy.$$

Combining the above we find

$$|w(t,x)| \le C \max\{\frac{1}{t}, \frac{1}{t^2}\}(\|w_0\|_2 + \|w_1\|_2),$$

which implies the result.