
VANDERBILT UNIVERISTY

MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 4

Unless stated otherwise, the notation below is as in class. You can assume that all functions are
C∞ unless stated otherwise.

1. Problems

Problem 1. Prove the differentiation of moving regions formula stated in class:

d

dτ

∫
Ω(τ)

f dx =

∫
Ω(τ)

∂τf dx+

∫
∂Ω(τ)

fv · ν dS. (1.1)

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1.1) in the
following particular case. Assume that n = 3 and that the domains Ω(τ) are given by a one-
parameter family of one-to-one and onto maps φ = φ(τ, x) : Ω → Ω(τ) = φ(τ,Ω), where Ω := Ω(0)
and φ(0, ·) = idΩ, where idΩ is the identity map on Ω, i.e., idΩ(x) = x, x ∈ Ω.

(a) For each fixed τ , consider the change of variables x = φ(τ, y), so that∫
Ω(τ)

f(τ, x) dx =

∫
Ω
f(τ, φ(τ, y))J(τ, y) dy, (1.2)

where J(τ, y) is the Jacobian of the transformation x = φ(τ, y) for fixed τ .

(b) Show that there exists a on parameter family of vector fields u(τ, ·) such that

∂τφ(τ, x) = u(τ, φ(τ, x)).

(c) Explain why u = v on ∂Ω(τ).

(d) Show that

∂τJ(τ, x) = (divu)(τ, φ(τ, x))J(τ, x).

(e) Use (1.2) and the above to compute d
dτ

∫
Ω(τ) f , and do an integration by parts to obtain the

result.

Problem 2. Let u be a solution to the Cauchy problem for the wave equation in Rn. Assume that
u0 and u1 have their supports in the ball BR(0) for some R > 0. Show that u = 0 in the exterior
of the region

I := {(t, x) ∈ (0,∞)× Rn |x ∈ BR+t(0) }.

I is called a domain of influence for that data on BR(0) (compare with the 1d case).

Problem 3. Let u be a solution to the Cauchy problem for the wave equation and assume that u0
and u1 have compact support.

(a) Show that the energy

E(t) :=
1

2

∫
Rn

[
(∂tu)

2 + |∇u|2
]
dx

is well-defined.
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(b) Show that

E(t) = E(0),

i.e., the energy is conserved.

Problem 4. Let u be a solution to the Cauchy problem for the wave equation in R3 with compactly
supported data (i.e., u0 and u1 have compact support).

(a) Show that there exists a constant C > 0, depending on u0 and u1, such that

|u(t, x)| ≤ C

t
, (1.3)

for t ≥ 1 and x ∈ R3. Thus, for each fixed x, u approaches zero as t → ∞, i.e., solutions decay in
time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes
outside BR(0) for some R > 0. This implies an estimate for the area of the largest region within
Bt(x) where the data is non-trivial.

(b) Is the estimate (1.3) sharp? (I.e., can it be improved to show that solutions decay faster in
time than 1

t ?)

(c) Do we still get decay if the data does not have compact support?

Problem 5. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 1d with zero data and source term f is give by

u(t, x) =
1

2

∫ t

0

∫ x+s

x−s
f(t− s, y) dyds. (1.4)

To do so, first use D’Alembert’s formula to conclude that

us(t, x) =
1

2

∫ x+t−s

x−t+s
f(s, y) dy.

Use the definition of u in terms of us and change variables to conclude (1.4).

Problem 6. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 3d with zero data and source term f is give by

u(t, x) =
1

4π

∫
Bt(x)

f(t− |y − x|, y)
|y − x|

dy. (1.5)

(The integrand in (1.5) is known as the retarded potential.) To do so, first use Kirchhoff’s formula
for solutions in n = 3 to conclude that

us(t, x) =
t− s

vol(∂Bt−s(x))

∫
∂Bt−s(x)

f(s, y) dS(y).

Use the definition of u in terms of us and change variables to conclude (1.5).

Problem 7. Show that there exists a constant C > 0 such that for any solution u to the 3d wave
equation it holds that

|u(t, x)| ≤ C

t

∫
R3

(|D2u0(y)|+ |Du0(y)|+ |u0(y)|+ |Du1(y)|+ |u1(y)|) dy

for t ≥ 1.

Hint: Use Kirchhoff’s formula, note that for any function f we have

f(y) = f(y)
y − x

t
· y − x

t

on ∂Bt(x), and use one of Green’s identities.
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Problem 8. Consider continuous dependence on the data for the wave equation in 3d, where
smallness on the data part is measured with respect to the norm

∥f∥2 :=
∫
R3

(|D2f(y)|+ |Df(y)|+ |f(y)|) dy.

Give a precise formulation of the continuous dependence on the data and prove your statement,
i.e., a statement saying that two solutions are close if their corresponding initial data are close.

Hint: Use the estimate of problem 7 as a basis for your statement, and give a similar proof (now
you have to also account for t < 1).

2. Solutions

Solution 1. (a) This is simply the change of variables formula from calculus.

(b) For each fixed x, the map τ 7→ φ(τ, x) is a curve in R3. ∂τφ(τ, x) is, therefore, the tangent
vector to this curve at φ(τ, x) at time τ . The collection of all such tangent vectors, as τ and x vary,
forms the vector field u.

(c) The map φ sends ∂Ω onto ∂Ω(τ) for each τ . Since ∂τφ(τ, x) is the velocity at time τ of the
particle that started at x ∈ Ω at time zero, u(τ, φ(τ, x)) is the velocity of ∂Ω(τ) at the point
φ(τ, x) ∈ ∂Ω(τ).

(d) According to the notation of part (a), we set

φi
j =

∂

∂yj
φi, ∂ju

i =
∂

∂xj
ui,

where we considered φ = (φ1, φ2, φ3). In particular, note that when we write φi
j = ∂jφ

i the

derivative is always with respect to y ∈ Ω, whereas when we write ∂ju
i the derivative is always

with respect to x ∈ Ω(τ).
Recall the following formula for the determinant of a n× n matrix a with entries aij = arowcolumn:

det(a) =
1

n!
ϵi1···inϵ

j1···jnai1j1 · · · a
in
jn
.

In our case, this gives

J(τ, y) =
1

3!
ϵi1i2i3ϵ

j1j2j3φi1
j1
φi2
j2
φi3
j3
.

Recall that the definition of J involves an absolute value, which we can omit here since J > 0
because J(0, ·) > 0. Compute

∂τφ
i
j = ∂j∂τφ

i

=
∂

∂yj
ui

= ∂ℓu
iφℓ

j ,

where in the second equality we used (b) and in the third one the chain rule. Therefore

∂τJ(τ, y) =
1

3!
ϵi1i2i3ϵ

j1j2j3(∂ℓu
i1φℓ

j1φ
i2
j2
φi3
j3
+ φi1

j1
∂ℓu

i2φℓ
j2φ

i3
j3
+ φi1

j1
φi2
j2
∂ℓu

i3φℓ
j3). (2.1)

Because ϵi1i2i3 is non-zero only for i1i2i3 all different from each other, for each triple i1i2i3, the

term ϵi1i2i3∂ℓu
i1φℓ

j1
φi2
j2
φi3
j3

is non-zero only when ℓ = i1. Similarly for the second and third terms
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on the RHS of (2.1), and we obtain

∂τJ(τ, y) =
1

3!

3∑
i1,i2,i3=1

j1,j2,j3=1

ϵi1i2i3ϵ
j1j2j3(∂i1u

i1 + ∂i2u
i2 + ∂i3u

i3)φi1
j1
φi2
j2
φi3
j3
.

Because the summand is non-zero only if i1i2i3 are all different from each other, the term in
parenthesis is always equal to ∂1u

1 + ∂2u
2 + ∂3u

3 = divu, which gives the result.

(e) We have

d

dτ

∫
Ω(τ)

f dx = ∂τ

∫
Ω
f(τ, φ(τ, y))J(τ, y) dy

=

∫
Ω
(∂τf(τ, φ(τ, y))J(τ, y) +∇f(τ, φ(τ, y)) · ∂τφ(τ, y)J(τ, y) + f(τ, φ(τ, y))∂τJ(τ, y)) dy

=

∫
Ω

(
∂τf(τ, φ(τ, y))J(τ, y) +∇f(τ, φ(τ, y)) · u(τ, φ(τ, y))J(τ, y)

+ f(τ, φ(τ, y))(divu)(τ, φ(τ, y))J(τ, y)
)
dy

=

∫
Ω(τ)

(∂τf(τ, x) +∇f(τ, x) · u(τ, x) + f(τ, x)(divu)(τ, x)) dx

=

∫
Ω(τ)

(∂τf(τ, x)− f(τ, x)(divu)(τ, x) + f(τ, x)(divu)(τ, x)) dx

+

∫
∂Ω(τ)

f(τ, x)u(τ, x) · ν(τ, x) dS(x)

=

∫
Ω(τ)

∂τf(τ, x) dx+

∫
∂Ω(τ)

f(τ, x)v(τ, x) · ν(τ, x) dS(x).

Above, we the steps are as follows: in the second line we used the product rule and the chain rule;
in the third line we used (b) and (d); on the fourth line, we changed variables back to x; on the
fifth line we integrated ∇f by parts (equivalently, used on of the Green identities); on the last line,
we used (c).

Solution 2. Let (t, x) /∈ I. Then K−
t,x ∩ I = ∅, and the result follows from the finite-propagation

speed for the wave equation.

Solution 3. (a) By question 2, the solution u has compact support for each fixed t.

(b) For each t0 and ε > 0, there exists, by (a), a R∗ > 0 such that u(t, x) = 0 for all t ∈ (t0−ε, t0+ε)
and |x| ≥ R∗. We now follow the proof of the finite-propagation speed property for the wave
equation (see the class notes) using the ball BR∗ , and observe the following. In that proof, we did
an integration by parts, and controlled the boundary term using the Cauchy-Schwarz inequality.
Here, this boundary term vanishes identically by the foregoing. We obtain therefore a sequence of
equalities (rather than inequalities as in the proof done in class), which then gives the result.

Solution 4. (a) The solution is given by

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).

Since the data is compactly supported, there exists a R > 0 such that u0(x) = 0 and u1(x) = 0 for
|x| ≥ R, so that

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).
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Because the data is compactly supported, we have |u0|, |u1|, |∇u0| ≤ C for some C > 0, so that

|u(t, x)| ≤ C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+ |y − x|) dS

=
C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+
t|y − x|

t
) dS

≤ C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+ t) dS

≤ C(1 + t)

t2

∫
∂Bt(x)∩BR(0)

dS,

where we used that |y − x|/t = 1 since y ∈ Bt(x) and that vol(∂Bt(x)) = 4πt2. Because ∂Bt(x) ∩
BR(0) has area at most 4πR2, we have the result.

(b) Yes, it cannot be improved for arbitrary solutions of the wave equation. To see this, take
u0 = 0 and u1 to be a non-negative compactly supported function that is equal to 1 on B1(0).
Then

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

tu1(y) dS(y)

=
t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

u1(y) dS(y) +
t

vol(∂Bt(x))

∫
∂Bt(x)\(Bt(x)∩B1(0))

u1(y) dS(y).

Note that the second term on the RHS is always non-negative, thus

u(t, x) ≥ t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

u1(y) dS(y) =
t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

dS.

For any x on the boundary of the lightcone, i.e., |x| = t, and such that |x| ≥ 1, we have that the
area of ∂Bt(x) ∩B1(0) is ≥ C > 0, so that u(t, x) ≥ C/t.

(c) Not necessarily, e.g., take u0 = 0 and u1 = 1, then u(t, x) = t is the solution.

Solution 5. Using D’Alembert’s formula, we find

us(t, x) =
1

2

∫ x+t−s

x−t+s
f(s, y) dy,

where we used the fact that D’Alembert’s formula was derived for data at t = 0; for data at t = s
we have to replace t by t− s in the limits of integration. Thus

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s
f(s, y) dyds =

1

2

∫ t

0

∫ x+z

x−z
f(t− z, y) dydz,

where we made the change s = t− z.

Solution 6. Kirchhoff’s formula gives

us(t, x) =
1

vol(∂Bt−s(x))

∫
∂Bt−s(x)

(t− s)f(s, y) dS(y).
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Thus

u(t, x) =

∫ t

0

t− s

vol(∂Bt−s(x))

∫
∂Bt−s(x)

f(s, y) dS(y)ds

=
1

4π

∫ t

0

∫
∂Bt−s(x)

f(s, y)

t− s
dS(y)ds

=
1

4π

∫ t

0

∫
∂Br(x)

f(t− r, y)

r
dS(y)dr

=
1

4π

∫
Bt(x)

f(t− |y − x|, y)
|y − x|

dy,

where we made the change of variables r = t− s and then wrote r = |y − x|.

Solution 7. We have

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).

The unit outer normal to ∂Bt(x) is ν = (y − x)/t, so that ν · ν = y−x
t · y−x

t = 1. Therefore, using
this and Green’s identities,

1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y) dS(y) =
1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)ν · y − x

t
dS(y)

=
1

vol(∂Bt(x))

∫
Bt(x)

divy

(
u0(y)

y − x

t

)
dy

=
1

vol(∂Bt(x))

∫
Bt(x)

(
∇u0(y) ·

y − x

t
+ u0(y)

3

t

)
dy,

so that ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y) dS(y)

∣∣∣∣∣ ≤ C

t2

∫
Bt(x)

(|∇u0(y)|+ |u0(y)|) dy

≤ C

t2

∫
R3

(|∇u0(y)|+ |u0(y)|) dy.

A similar inequality holds for the u1 integral (with an extra factor of t), and for ∇u0:

1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (y − x) dS(y) =
t

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · ν dS(y)

=
1

4πt

∫
Bt(x)

∆u0(y) dy,

so that ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (y − x) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

|D2u0(y)| dy.

Combining the foregoing produces the result.

Solution 8. We formulate it as follows. Let (u0, u1) and (v0, v1) be two data sets for the wave
equation, and let u and v be the respective solutions. Solutions depend continuously on the data
if given ε > 0 and t > 0, there exists a δ > 0 such that if

∥u0 − v0∥2 + ∥u1 − v1∥2 < δ,
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then

|u(t, x)− v(t, x)| < ε

for all x ∈ R3.
We now prove the statement. Set w0 = u0 − v0, w1 = u1 − v1, and w = u − v. By Kirchhoff’s

formula:

w(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(w0(y) + tw1(y) +∇w0(y) · (y − x)) dS(y).

Proceeding as in problem 7, we find∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

w0(y) dS(y)

∣∣∣∣∣ ≤ C

t2

∫
R3

(|∇w0(y)|+ |w0(y)|) dy,

∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

w1(y) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

(|∇w1(y)|+ |w1(y)|) dy,

and ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

∇w0(y) · (y − x) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

|D2w0(y)| dy.

Combining the above we find

|w(t, x)| ≤ Cmax{1
t
,
1

t2
}(∥w0∥2 + ∥w1∥2),

which implies the result.
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