VANDERBILT UNIVERISTY
MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS
HW 4

Unless stated otherwise, the notation below is as in class. You can assume that all functions are
C*° unless stated otherwise.
1. PROBLEMS

Problem 1. Prove the differentiation of moving regions formula stated in class:

d/ fda::/ 8dea:—|—/ fv-vdS. (1.1)
dr Jae Q(r) o0(r)

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1.1) in the
following particular case. Assume that n = 3 and that the domains Q(7) are given by a one-
parameter family of one-to-one and onto maps ¢ = (7, ) : @ = Q(7) = ¢(7,Q), where  := Q(0)
and ¢(0,-) = idg, where idq is the identity map on €, i.e., idg(x) =z, x € Q.

(a) For each fixed 7, consider the change of variables x = ¢(7,y), so that
J frarae= [ oI (1.2

where J(7,y) is the Jacobian of the transformation z = ¢(7,y) for fixed 7.

(b) Show that there exists a on parameter family of vector fields u(r,-) such that
Orp(7, ) = u(7, p(7, 7).
(c) Explain why u = v on 9€(7).
(d) Show that
O J (1, z) = (divu) (7, o(1,x))J (T, x).
(e) Use (1.2) and the above to compute % fQ(T) f, and do an integration by parts to obtain the
result.

Problem 2. Let u be a solution to the Cauchy problem for the wave equation in R™. Assume that
uo and u; have their supports in the ball Br(0) for some R > 0. Show that u = 0 in the exterior
of the region

I:={(t,z) € (0,00) x R" |z € Br4+(0) }.
I is called a domain of influence for that data on Br(0) (compare with the 1d case).

Problem 3. Let u be a solution to the Cauchy problem for the wave equation and assume that wug
and u; have compact support.

(a) Show that the energy

is well-defined.
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(b) Show that

i.e., the energy is conserved.

Problem 4. Let u be a solution to the Cauchy problem for the wave equation in R? with compactly
supported data (i.e., up and u; have compact support).

(a) Show that there exists a constant C' > 0, depending on ug and u;, such that
C
u(t, ) < = (13)
for t > 1 and = € R3. Thus, for each fixed z, u approaches zero as t — oo, i.e., solutions decay in

time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes
outside Br(0) for some R > 0. This implies an estimate for the area of the largest region within
By (x) where the data is non-trivial.

(b) Is the estimate (1.3) sharp? (I.e., can it be improved to show that solutions decay faster in
time than 17?)

(c) Do we still get decay if the data does not have compact support?

Problem 5. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 1d with zero data and source term f is give by

1 t x+s
u(t,z) = 2/0 /z_s f(t —s,y)dyds. (1.4)

To do so, first use D’Alembert’s formula to conclude that

r+t—s
wwmzl/ F(s,y)dy.

2 —t+s
Use the definition of v in terms of us and change variables to conclude (1.4).

Problem 6. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 3d with zero data and source term f is give by

u(t,z) = e /Bt(m) oy —al dy. (1.5)

(The integrand in (1.5) is known as the retarded potential.) To do so, first use Kirchhoff’s formula
for solutions in n = 3 to conclude that

t—s
BT 850

Use the definition of v in terms of us and change variables to conclude (1.5).

us(t,x) =

Problem 7. Show that there exists a constant C > 0 such that for any solution u to the 3d wave
equation it holds that

lu(t, )| < (tj/]RS(!DZUO(y)I + [Duo(y)| + luo(y)] + [Dur(y)] + [ur(y)]) dy

for t > 1.

Hint: Use Kirchhoff’s formula, note that for any function f we have

O

on 0B(x), and use one of Green’s identities.



Vanderbilt University 3

Problem 8. Consider continuous dependence on the data for the wave equation in 3d, where
smallness on the data part is measured with respect to the norm

I£l2:= | (D?F@)+ DS + 1)) do.

Give a precise formulation of the continuous dependence on the data and prove your statement,
i.e., a statement saying that two solutions are close if their corresponding initial data are close.

Hint: Use the estimate of problem 7 as a basis for your statement, and give a similar proof (now
you have to also account for ¢ < 1).

2. SOLUTIONS
Solution 1. (a) This is simply the change of variables formula from calculus.

(b) For each fixed z, the map 7 + ¢(7,z) is a curve in R3. 8,¢(r,x) is, therefore, the tangent
vector to this curve at ¢(7,x) at time 7. The collection of all such tangent vectors, as 7 and x vary,
forms the vector field u.

(c) The map ¢ sends 02 onto 9€(7) for each 7. Since 0;¢(7,x) is the velocity at time 7 of the
particle that started at x € Q at time zero, u(7, p(7,x)) is the velocity of 02(7) at the point
(1, ) € 00(T).

(d) According to the notation of part (a), we set

i Y iigi_ 9 i
(Pj - 6yj<p ) 8]“ 81’ju )
where we considered ¢ = (¢!, 0% ). In particular, note that when we write gpé- = 8jg0i the
derivative is always with respect to y € €2, whereas when we write Jju’ the derivative is always

with respect to z € Q(7).

Recall the following formula for the determinant of a n X n matrix a with entries aé- = Qgoytiin’

1 o ,
— . edtdn iy i
det(a) = —j€inin €A aj.

In our case, this gives

J(7,y) = gy €iriaia€” "0 07 5
Recall that the definition of J involves an absolute value, which we can omit here since J > 0
because J(0,-) > 0. Compute
87g0§- = BjaTcpi
0
“ oy
= 8€u190§a

%

where in the second equality we used (b) and in the third one the chain rule. Therefore
1 L 0 i . 0 L .y
OrJ(T,y) = 51 €iniain €12 (O0u™ 5, G 05, + 25, 00u 95,05, + @5 03,00y, ). - (21)
Because €;,,i; iS LON-Z€ero only for i1i9i3 all different from each other, for each triple i1igt3, the
term €;,4yis 8gu“cp§1 gpﬁ gpﬁ is non-zero only when ¢ = ;. Similarly for the second and third terms
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on the RHS of (2.1), and we obtain

3
z 3 KA 15 (3 1 (A
o J(1,y) = 3 E €i1igia €927 (9; U + O u’ + Diyu 5)90]'11 %;2()0];;
" iq,ig,ig=1
Ji,j2,93=1

Because the summand is non-zero only if i1i9i3 are all different from each other, the term in
parenthesis is always equal to dju' + dpu? + O3u® = divu, which gives the result.

(e) We have
d
i | rar=o [ ey

= /Q O f(r,o(T,y) (T, y) + Vf(1,0(1,y)) - Orp(T,y) I (T,y) + f(T,0(7,9))0-J(T,y)) dy

:/Q(&f(ﬂ@(ﬂy))J(ﬂy)+Vf(7,s0(7,y))'U(T,sD(T,y))J(T,y)
+ f(m, (1, 9) (divu) (7, o(1, ) J (1, 9)) dy

— /Q( | (Or f(1,2) + Vf(r,2) -u(t,z) + f(7,2)(divu) (1, z)) dz
— /Q( )(aff(T, z) — f(r,2)(divu)(r,z) + f(7,2)(divu)(r,z)) dv
+ /89<T) f(r,z)u(r, z) - v(r,z) dS(z)

= O f(7,x)dx + / flr,z)v(r,z) - v(r,z)dS(x).
Q(r) o0(T)

Above, we the steps are as follows: in the second line we used the product rule and the chain rule;

in the third line we used (b) and (d); on the fourth line, we changed variables back to x; on the

fifth line we integrated V f by parts (equivalently, used on of the Green identities); on the last line,

we used (c).

Solution 2. Let (t,z) ¢ I. Then K;, NI =@, and the result follows from the finite-propagation
speed for the wave equation.

Solution 3. (a) By question 2, the solution v has compact support for each fixed t.

(b) For each ¢y and € > 0, there exists, by (a), a R, > 0 such that u(t,z) = 0 for all t € (tg—e,to+¢)
and |z| > R.. We now follow the proof of the finite-propagation speed property for the wave
equation (see the class notes) using the ball By, , and observe the following. In that proof, we did
an integration by parts, and controlled the boundary term using the Cauchy-Schwarz inequality.
Here, this boundary term vanishes identically by the foregoing. We obtain therefore a sequence of
equalities (rather than inequalities as in the proof done in class), which then gives the result.

Solution 4. (a) The solution is given by

1
U6 = B o, (00 )+ Feoly) (3 =) dS ).

Since the data is compactly supported, there exists a R > 0 such that ug(z) = 0 and u;(z) = 0 for
|z| > R, so that

1

U6 = BB Do (O B (8)+ Vo) (=) dS(0).
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Because the data is compactly supported, we have |ug|, |ui|,|Vug| < C for some C > 0, so that

5 ),
wtz) < — & L+t |y —z|)dS
Ju(t, z)] vol(0By(z)) GBt(:t:)ﬂBR(O)( | )
C / tly — x|
__ ¢ L+t +——")dS
vol(0By(z)) 8Bt(I)ﬂBR(O)( ¢ )
50 .
< v 1+t+41t)dS
vol(0By(z)) 6Bt(I)ﬂBR(O)( )
C(1+1)

Ly
t 8B, (z)NBr(0)

where we used that |y — x|/t = 1 since y € By(x) and that vol(0B;(x)) = 4nt2. Because 0B;(z) N
Bg(0) has area at most 47 R?, we have the result.

(b) Yes, it cannot be improved for arbitrary solutions of the wave equation. To see this, take
ug = 0 and u; to be a non-negative compactly supported function that is equal to 1 on By(0).
Then

1
vol(OBy(x)) /BBt (2) fur{y) d5(y)

o | W dSW) + o |
= ur(y) dS(y) + —mp—
vol(0By(2)) Jop,minmo) vol(0Bi()) Ja,(2)\(B:(2)nB:1(0))

u(t,z) =
u1(y) dS(y).

Note that the second term on the RHS is always non-negative, thus

t t

u(t,x 2/ udey:/ ds.
.2) vol(0B(z)) Jap,(x)nB.1(0) 1(y) d5() vol(0Bt(x)) JaB,(z)nB (0)

For any x on the boundary of the lightcone, i.e., |z| = ¢, and such that |z| > 1, we have that the
area of OB;(x) N B1(0) is > C > 0, so that u(t,z) > C/t.
(c) Not necessarily, e.g., take ug = 0 and u; = 1, then u(t,x) =t is the solution.
Solution 5. Using D’Alembert’s formula, we find
1 T+t—s
wtto) =3 [ fswdy
T

—t+s

where we used the fact that D’Alembert’s formula was derived for data at t = 0; for data at t = s
we have to replace ¢t by ¢ — s in the limits of integration. Thus

T+t—s
// f(s,y)dyds = = // f(t—z,y)dydz,
T—t+s

where we made the change s =t — z.

Solution 6. Kirchhoff’s formula gives

1
%@“:wwwmm»LMMJ“””“””@”
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Thus
)= [ lE)tB_())/aB , fendsds
=[], Ee s
//aB,(x) r )dS( ar

[t —|y—x|y)
47T By(x) ly — |

9

where we made the change of variables r =t — s and then wrote r = |y — z|.

Solution 7. We have

1
ute) = s [ (o) + () + Fuoly) - (5 ) dS(y).
vol(0B:()) JaB,(x)
The unit outer normal to dBy(x) is v = (y — x)/t, so that v - v = 5= . =% = 1. Therefore, using
this and Green’s identities,

I " _ un(y)y - L= E
wol(@B,(@)) /aBtm o) dSW) = B, @) /aBt(m) olgv: 5~ d5w)

- VOl(alBt(fU)) /Bt(;r) divy (uO(y)y ; 33) %

1 Yy— 3
S — Vuo(y) - 2 ay,
TG oy (F000 27+ a7
so that
o | @ dsw| <5 [ (Vu)+ () dy
vol(0Bi(z)) Jop,(x) ’ ~ 12 By 0 ‘
C
<5 [ (Fuolw)] + o)) dy.
R3
A similar inequality holds for the uy integral (with an extra factor of ¢), and for Vug:
1 / t
— Vuy-y—dey—/ Vug(y) - vdS(y
vol(0Bi(z)) Jap,(x) olv) )d5w) vol(0Bi(z)) Jop,(x) olv) )
1
S A
At Bu(z) UO(y)dya

so that

1
vol(9By(x)) /a Bi(o) Vauo(y) - (y — z) dS(y)

Combining the foregoing produces the result.

C
<$ [ 10wty
R3

Solution 8. We formulate it as follows. Let (ug,u1) and (vp,v1) be two data sets for the wave
equation, and let w and v be the respective solutions. Solutions depend continuously on the data
if given € > 0 and t > 0, there exists a 6 > 0 such that if

lluo — voll2 + [|u1 — vill2 < O,
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then
lu(t,z) —v(t,x)| <e

for all z € R3.
We now prove the statement. Set wg = ug — vg, w1 = u; — v1, and w = v — v. By Kirchhoff’s
formula:

1

W) = B oy (I L) Tan(0) - ) dS ).

Proceeding as in problem 7, we find

1 C
vol(ﬁBt(l‘))/aBt(m) wo(y) dS(y)| < ﬂ/RS(’Vwo(y)’+|wo(y)|) dy,

1 C
ST oy 0980 < F [ (Tl )

and

1
TGN o 700 =850

Combining the above we find

C
<% [ IPPwow)dy
R3

11
w(t,z)] < Cmax{~, 5 }(llwoll2 + [lwil2),

which implies the result.
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