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1. Problems

Problem 1. Prove that harmonic functions are analytic.

Problem 2. Prove Liouville’s theorem for harmonic functions in Rn.

Problem 3. Prove Harnack’s inequality for (non-negative) harmonic functions.

The remaining questions are about the heat equation in n-dimensions, i.e.,

ut −∆u = 0 in (0,∞)× Rn. (1.1)

Problem 4. Look for a solution to (1.1) in the form

u(t, x) = t−αv(t−βx), (1.2)

where α and β will be chosen and v will be determined. More precisely, proceed as follows:

(a) Show that plugging (1.2) into (1.1) produces

αt−(α+1)v(y) + βt−(α+1)y · ∇v(y) + t−(α+2β)∆v(y) = 0, (1.3)

where y := t−βx.

(b) Set β = 1
2 in (1.3) to obtain

∆v(y) +
1

2
y · ∇v(y) + αv(y) = 0. (1.4)

(c) Assume that v is radially symmetric, i.e.,

v(y) = w(r), (1.5)

where w is to be determined. Show that in this case (1.4) becomes

w′′ +
n− 1

r
w′ +

1

2
rw′ + αw = 0. (1.6)

(d) Set α = n
2 in (1.6) to find

(rn−1w′)′ +
1

2
(rnw)′ = 0. (1.7)

(e) From (1.7), conclude that

rn−1w′ +
1

2
rnw = A, (1.8)

where A is a constant.

(f) Set A = 0 in (1.8) and conclude that

w(r) = Be−
1
4
r2 , (1.9)

where B is a constant.

1



2 MATH 8110

(g) Combine (1.2), (1.5), (1.9), and take into account the choices of α and β, to conclude that

u(t, x) =
B

t
n
2

e−
|x|2
4t , t > 0, (1.10)

is a solution to (1.1).

Problem 5. Recall that

Γ(t, x) :=

 1

(4πt)
n
2
e−

|x|2
4t , t > 0, x ∈ Rn,

0, t < 0, x ∈ Rn,

is called the fundamental solution of the heat equation. Note that for t > 0, Γ(t, x) is simply (1.10)
with a specific choice of the constant B. In particular, Γ(t, x) is a solution of (1.1).

This choice of B is to guarantee Γ to integrate to 1, i.e., using the fact that∫
Rn

e−|x|2 dx = π
n
2 , (1.11)

show that for each t > 0 ∫
Rn

Γ(t, x) dx = 1.

(You do not have to show (1.11).)

Problem 6. Consider the initial-value problem for the heat equation:

ut −∆u = 0, in (0,∞)× Rn, (1.12a)

u(0, x) = g(x), x ∈ Rn. (1.12b)

In (1.12), assume that g ∈ C0(Rn) and that there exists a constant C > 0 such that |g(x)| ≤ C for
all x ∈ Rn.

Recall that we showed existence of a solution by defining

u(t, x) :=

∫
Rn

Γ(t, x− y)g(y) dy, t > 0, x ∈ Rn. (1.13)

Show that (1.13) is well-defined.

Problem 7. Provide the details of the proof given in class that u ∈ C∞((0,∞)× Rn), where u is
defined by (1.13).

Hint: Use the following fact, that you do not need to prove. Let α be a multiindex and t > 0. If∫
Rn

Dα
xΓ(t, x− y)g(y) dy

is well-defined, then

Dαu(t, x) =

∫
Rn

Dα
xΓ(t, x− y)g(y) dy,

where we write Dα
x on the RHS to emphasize that the differentiation is with respect to the x

variable.

Problem 8. Look up the mean value formula and the maximum principle for solutions to the heat
equation.
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2. Solutions

Solution 1. See section 2.2.3 of Evan’s book.

Solution 2. See section 2.2.3 of Evan’s book.

Solution 3. See section 2.2.3 of Evan’s book.

Solution 4. These are a sequence of straightforward calculations that are done in the class notes.

Solution 5. Set z = x/
√
4t and change variables to find∫
Rn

e−
|x|2
4t dx =

∫
Rn

e−|z|2(
√
4t)n dz = π

n
2 (4t)

n
2 .

Solution 6. We have

|u(t, x)| ≤ C

t
n
2

∫
Rn

e−
|x−y|2

4t dy.

Making the change of variables z = (y − x)/
√
4t we find∫

Rn

e−
|x−y|2

4t dy = (4t)
n
2

∫
Rn

e−|z|2 dz < ∞.

Solution 7. Let α = (α0, α1, . . . , αn) be an arbitrary multiindex. Then

Dα
xΓ(t, x− y) =

p(t, x, y)

tM
e−

|x−y|2
4t , (2.1)

where M is a non-negative constant and p is a polynomial on its arguments (If (2.1) is not clear,
take a few derivatives of Γ(t, x− y) and see the pattern that emerges.) Then, using the assumption
on g, ∣∣∣∣∫

Rn

Dα
xΓ(t, x− y)g(y) dy

∣∣∣∣ ≤ C

∫
Rn

|Dα
xΓ(t, x− y)| dy

≤ C

∫
Rn

|p(t, x, y)|
tM

e−
|x−y|2

4t dy

=

∫
Rn

|q(t, x, z)|
tN

e−|z|2 dz,

where in the last step we changed variables z = (y − x)/
√
4t, N is a non-negative constant, and q

is polynomial on its arguments. We claim that there exists a constant C > 0, possibly depending
on t, such that

|q(t, x, z)|
tN

e−|z|2 ≤ Ce−
1
2
|z|2 . (2.2)

For, (2.2) is equivalent to

|q(t, x, z)|
tN

e−
1
2
|z|2 ≤ C. (2.3)

For each fixed x and t > 0, the function |q(t,x,z)|
tN

e−
1
2
|z|2 is a continuous function of z, and because

the exponential decays faster than any polynomial, we conclude that |q(t,x,z)|
tN

e−
1
2
|z|2 is bounded in

Rn as a function of z for each fixed x and t > 0, which is (2.3). Since the integral of e−
1
2
|z|2 is finite,

we have shown the result in view of the hint and the fact that α, x, and t > 0 are arbitrary.

Solution 8. See sections 2.3.2 and 2.3.3 of Evan’s book.
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