VANDERBILT UNIVERISTY
MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS
HW 3

1. PROBLEMS
Problem 1. Prove that harmonic functions are analytic.

Problem 2. Prove Liouville’s theorem for harmonic functions in R™.
Problem 3. Prove Harnack’s inequality for (non-negative) harmonic functions.
The remaining questions are about the heat equation in n-dimensions, i.e.,

ug —Au =0 in (0,00) x R™.
Problem 4. Look for a solution to (1.1) in the form
u(t,z) =t~ (t Px),
where a and § will be chosen and v will be determined. More precisely, proceed as follows:
(a) Show that plugging (1.2) into (1.1) produces
at~ (@ y(y) + Bt~y Vo(y) + ¢ Av(y) =0,
where y 1=t Pz,

(b) Set 8= % in (1.3) to obtain

Av(y) + %y - Voly) + av(y) = 0.

(c) Assume that v is radially symmetric, i.e.,

v(y) = w(r),
where w is to be determined. Show that in this case (1.4) becomes

n —

! ! 1 !
w + —w ~l—§rw + aw = 0.

(d) Set aw = % in (1.6) to find
(r" ') + %(r”w)’ =0.
(e) From (1.7), conclude that
r ! + 17’"w = A,

2
where A is a constant.

(f) Set A =0 in (1.8) and conclude that

where B is a constant.

(1.1)

(1.2)
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(g) Combine (1.2), (1.5), (1.9), and take into account the choices of « and 3, to conclude that

B _=?
ult,z) = Fe*%, >0, (1.10)
2
is a solution to (1.1).
Problem 5. Recall that
1 e n
I(t,z) = ()8 € w, t>0,zeR",
0, t<0,2eR",

is called the fundamental solution of the heat equation. Note that for ¢t > 0, I'(¢, x) is simply (1.10)
with a specific choice of the constant B. In particular, I'(¢, ) is a solution of (1.1).
This choice of B is to guarantee I' to integrate to 1, i.e., using the fact that

/ e 1P dy = 73, (1.11)
show that for each ¢t > 0

/nr(t,x)dsz

(You do not have to show (1.11).)
Problem 6. Consider the initial-value problem for the heat equation:
ur—Au=0, in (0,00) x R", (1.12a)
u(0,2) = g(z), = € R". (1.12Db)

In (1.12), assume that g € C°(R") and that there exists a constant C' > 0 such that |g(z)| < C for
all z € R™
Recall that we showed existence of a solution by defining

u(t,x) = /n I(t,z —y)g(y)dy, t > 0,z € R™. (1.13)

Show that (1.13) is well-defined.

Problem 7. Provide the details of the proof given in class that u € C*°((0,00) x R™), where u is
defined by (1.13).

Hint: Use the following fact, that you do not need to prove. Let a be a multiindex and ¢ > 0. If

A DT (t,x —y)g(y) dy

is well-defined, then
Dult.a) = [ DET(t ~ )g(w) d

where we write DY on the RHS to emphasize that the differentiation is with respect to the x
variable.

Problem 8. Look up the mean value formula and the maximum principle for solutions to the heat
equation.
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2. SOLUTIONS
Solution 1. See section 2.2.3 of Evan’s book.
Solution 2. See section 2.2.3 of Evan’s book.
Solution 3. See section 2.2.3 of Evan’s book.
Solution 4. These are a sequence of straightforward calculations that are done in the class notes.

Solution 5. Set z = :U/\/It and change variables to find

/ 6_% dr = / 6_|Z‘2(\/@)n dz = 7T§(4t)5.

C |z —y|?
lu(t,z)| < tg/ P dy.
Rn

Making the change of variables z = (y — x)/v/4t we find
Tr—1 2 n
/ e dy = (4t)2/ e 1* dz < 0.

Solution 6. We have

Solution 7. Let o = (o, a1, ..., @y) be an arbitrary multiindex. Then
p(t,x,y) _lz—u?
Dgr(t,x — y) = Te a (21)

where M is a non-negative constant and p is a polynomial on its arguments (If (2.1) is not clear,
take a few derivatives of I'(¢, 2 — y) and see the pattern that emerges.) Then, using the assumption
on g,

DET (L2 — y)g(y) dy\ <c /R DET(t 2 — )| dy

Rn
lp(t,z, y)| _le—ul®
<C - —ar € it dy
t
= /n |q( ’t]:f/’ Z)’e—‘z|2 dZ7

where in the last step we changed variables z = (y — x)/v/4t, N is a non-negative constant, and ¢
is polynomial on its arguments. We claim that there exists a constant C' > 0, possibly depending
on t, such that

!q(t;ﬁ, 122 < o tlel?, (2.2)
For, (2.2) is equivalent to
Weédz <C. (2.3)

For each fixed x and ¢ > 0, the function We_%‘ﬁ is a continuous function of z, and because
the exponential decays faster than any polynomial, we conclude that Mi’%e*az‘z is bounded in

R™ as a function of z for each fixed « and ¢ > 0, which is (2.3). Since the integral of e2l s finite,
we have shown the result in view of the hint and the fact that a, z, and ¢t > 0 are arbitrary.

Solution 8. See sections 2.3.2 and 2.3.3 of Evan’s book.
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