VANDERBILT UNIVERISTY
MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS
HW 2

1. PROBLEMS
Unless stated otherwise, the notation below is as in class.

Problem 1. Show that Laplace’s equation is rotationally invariant, i.e., if u solves Au = 0 and we
define

u(x) = u(Mz),
where M is an orthogonal matrix, then Au = 0.

Problem 2. Prove the following fact that we used in the construction of solutions to Poisson’s
equation: let f : R™ — R be continuous, then

1
lim ——— — f().
50+ Vol(9B, (x)) /aBr(x)f 45 = J(@)
Hint: Consider the difference f(x) — m faBT(z) fdS and use m faBr(x) s =1.

Remark: The result is valid under weaker assumptions; in fact, it holds for a.e. x¢ if f is assumed
to be locally integrable (this is sometimes known as the Lebesgue differentiation theorem).

Problem 3. In class, we constructed solutions to Poisson’s equation in R" for n > 3. Carry out
the construction in the case n = 2. You do not have to do all the steps. Rather, follow what was
done in class and point out what changes in n = 2. This boils down to slightly modifying some of
the estimates for the fundamental solution.

Problem 4. Let u be a non-trivial harmonic function in R™. Can u have compact support?

Hint: mean value theorem.

Problem 5. Prove the converse of the mean value theorem. Le., let u € C?() be such that

o )
w(r) = ———— udS
= Sol@B, (@) Jos, o
for each B,(x) CC €. Show that Au =0 in .

Hint: Assume that Au(z) # 0 for some x € Q. Use the functions f(r), f'(r) used in the proof of
the mean value to derive a contradiction.

Problem 6. Prove uniqueness of solutions to the Dirichlet problem for Laplace’s equation in a
bounded connected domain.

2. SOLUTIONS

Solution 1. Write y = Mz. The chain rule gives
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where there is no sum over ¢ above. Summing over 4:
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where we used that MMT =1, i.e.,

> MMy = 8.
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Solution 2. We have to prove that given € > 0, there exists a § > 0 such that if 0 < r < § then
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Thus

1 1
ml@?Br(w))/aBr(x)f(y) dS(y) — f(z)| < ml(aﬁ«(w))/agr(w)my) — f(z)] dS(y).

Fix € > 0. Since f is continuous, there exists a 6 > 0 such that if [x —y| < J then |f(z) — f(y)| < e.
If r < 6, then |z — y| < 0 for all y € 9B, (x), thus
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Solution 3. We use the following estimates in the n = 2 case:

/ IT(y)|dy < Ce*|Ine| — 0 ase— 0T,
Be(0)
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and

/ IT(y)|dS(y) < Ce|lne| = 0ase — 07,
B.(0)

and the rest of the proof is essentially the same.

Solution 4. No. Let u be harmonic and with compact support and fix an arbitrary x € R™. By
the compact support property, there exists a > 0 such that u(y) = 0 for all y € 9B, (z). By the
mean value formula

1

) = ST /8 o, MA@ =0

so that u = 0 since «x is arbitrary.

Solution 5. If u is not harmonic, there exists a € Q such that Au(x) # 0. By assumption, the
function

1
f(r) = Vol(0B,(2)) /83,»(:[:) udS

is constant equal to u(x) on the interval (0, R), where R > 0 is a fixed number such that Br(z) C Q.
Thus f'(r) = 0 for all » € (0, R). On the other hand, by continuity, Au has a definite sign, say
positive, on a ball B, (z) for some r¢g > 0, which without loss of generality we can take such that
ro < R. Arguing as in the proof of the mean value theorem, we find

1
f'(ro) = nl/ Au(y) dy > 0,
nWnry " J By (@)
contradicting f'(rg) = 0.

Solution 6. Done in the class notes.
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