
VANDERBILT UNIVERISTY

MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 2

1. Problems

Unless stated otherwise, the notation below is as in class.

Problem 1. Show that Laplace’s equation is rotationally invariant, i.e., if u solves ∆u = 0 and we
define

ũ(x) = u(Mx),

where M is an orthogonal matrix, then ∆ũ = 0.

Problem 2. Prove the following fact that we used in the construction of solutions to Poisson’s
equation: let f : Rn → R be continuous, then

lim
r→0+

1

vol(∂Br(x))

∫
∂Br(x)

f dS = f(x).

Hint: Consider the difference f(x)− 1
vol(∂Br(x))

∫
∂Br(x)

f dS and use 1
vol(∂Br(x))

∫
∂Br(x)

dS = 1.

Remark: The result is valid under weaker assumptions; in fact, it holds for a.e. x0 if f is assumed
to be locally integrable (this is sometimes known as the Lebesgue differentiation theorem).

Problem 3. In class, we constructed solutions to Poisson’s equation in Rn for n ≥ 3. Carry out
the construction in the case n = 2. You do not have to do all the steps. Rather, follow what was
done in class and point out what changes in n = 2. This boils down to slightly modifying some of
the estimates for the fundamental solution.

Problem 4. Let u be a non-trivial harmonic function in Rn. Can u have compact support?

Hint: mean value theorem.

Problem 5. Prove the converse of the mean value theorem. I.e., let u ∈ C2(Ω) be such that

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

u dS

for each Br(x) ⊂⊂ Ω. Show that ∆u = 0 in Ω.

Hint: Assume that ∆u(x) ̸= 0 for some x ∈ Ω. Use the functions f(r), f ′(r) used in the proof of
the mean value to derive a contradiction.

Problem 6. Prove uniqueness of solutions to the Dirichlet problem for Laplace’s equation in a
bounded connected domain.

2. Solutions

Solution 1. Write y = Mx. The chain rule gives

∂

∂xi
=

∂yj

∂xi
∂

∂yj

= Mji
∂

∂yj
,
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and

∂2

∂(xi)2
=

∂

∂xi
∂

∂xi

=

(
Mji

∂

∂yj

)(
Mℓi

∂

∂yℓ

)
= MjiMℓi

∂2

∂yj∂yℓ
,

where there is no sum over i above. Summing over i:

∆x =
∑
i

∂2

∂(xi)2

=
∑
i

MjiMℓi
∂2

∂yj∂yℓ

= δ
j
ℓ

∂2

∂yj∂yℓ

=
∑
j

∂2

∂(yj)2

= ∆y,

where we used that MMT = I, i.e., ∑
i

MjiMℓi = δjℓ.

Solution 2. We have to prove that given ε > 0, there exists a δ > 0 such that if 0 < r < δ then∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f dS − f(x)

∣∣∣∣∣ < ε.

Write

1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x) =
1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS − f(x)

vol(∂Br(x))

∫
∂Br(x)

dS(y)

=
1

vol(∂Br(x))

∫
∂Br(x)

(f(y)− f(x)) dS(y).

Thus ∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x)

∣∣∣∣∣ ≤ 1

vol(∂Br(x))

∫
∂Br(x)

|f(y)− f(x)| dS(y).

Fix ε > 0. Since f is continuous, there exists a δ > 0 such that if |x−y| < δ then |f(x)−f(y)| < ε.
If r < δ, then |x− y| < δ for all y ∈ ∂Br(x), thus∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x)

∣∣∣∣∣ < 1

vol(∂Br(x))

∫
∂Br(x)

ε dS = ε.

Solution 3. We use the following estimates in the n = 2 case:∫
Bε(0)

|Γ(y)| dy ≤ Cε2| ln ε| → 0 as ε → 0+,
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and ∫
∂Bε(0)

|Γ(y)| dS(y) ≤ Cε| ln ε| → 0 as ε → 0+,

and the rest of the proof is essentially the same.

Solution 4. No. Let u be harmonic and with compact support and fix an arbitrary x ∈ Rn. By
the compact support property, there exists a r > 0 such that u(y) = 0 for all y ∈ ∂Br(x). By the
mean value formula

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

u(y) dS(y) = 0,

so that u = 0 since x is arbitrary.

Solution 5. If u is not harmonic, there exists a x ∈ Ω such that ∆u(x) ̸= 0. By assumption, the
function

f(r) =
1

vol(∂Br(x))

∫
∂Br(x)

u dS

is constant equal to u(x) on the interval (0, R), where R > 0 is a fixed number such that BR(x) ⊂ Ω.
Thus f ′(r) = 0 for all r ∈ (0, R). On the other hand, by continuity, ∆u has a definite sign, say
positive, on a ball Br0(x) for some r0 > 0, which without loss of generality we can take such that
r0 < R. Arguing as in the proof of the mean value theorem, we find

f ′(r0) =
1

nωnr
n−1
0

∫
Br0 (x)

∆u(y) dy > 0,

contradicting f ′(r0) = 0.

Solution 6. Done in the class notes.
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