
VANDERBILT UNIVERISTY
MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 1

Unless stated otherwise, the notation and terminology below is the same used in class.
Problems 1–4 are very basic, feel free to skip them if you think they are not edifying.

1. Problems

Problem 1. Verify whether the given function is a solution of the given PDE:

(a) u(x, y) = y cosx+ sin y sinx, uxx + u = 0.

(b) u(x, y) = cos x sin y, (uxx)
2 + (uyy)

2 = 0.

Problem 2. Determine whether the PDEs below are linear or nonlinear:

(a)
∂2u

∂t2
+ et

∂u

∂x
+ u = 0.

(b) ∂xu∂yu = 1.

(c)
∂2z

∂t2
+ et

∂z

∂x
+ cos z = 0.

(d) (uxx)
2 + (uyy)

2 = 1.

Problem 3. Write each PDE below in the form P (x, u,Du, . . . , Dku) = 0, i.e., identify the
function P . State if the PDE is homogeneous or non-homogeneous, linear or non-linear.

(a) utt − uxx = f.

(b) uy + uux = 0.

(c) aijk∂3
ijkv + v = 0,

where i, j, k range from 1 to 3.

(d) uxx + x2y2uyy = (x+ y)2.

(e) uxy + cos(u) = sin(xy).

Problem 4. Consider a PDE P (x, u,Du, . . . , Dku) = 0. Show that P is a linear map if and
only if it can be written as ∑

|α|≤k

aαD
αu = f.

Thus, an equivalent definition of a linear PDE is that the map P is linear.
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Problem 5. Consider Maxwell’s equations:

divE =
ϱ

ε0
,

divB = 0,

∂B

∂t
+ curlE = 0,

∂E

∂t
− 1

µ0ε0
curlB = − 1

ε0
J.

Assume that ϱ and J vanish. Show that Maxwell’s equations then imply that E and B
satisfy the wave equation:

∂2E

∂t2
− 1

ε0µ0

∆E = 0,

and

∂2B

∂t2
− 1

ε0µ0

∆B = 0.

Interpret your result. Can you guess what the constant 1
ε0µ0

must equal to?

Problem 6. Consider Euler’s equations:

∂tϱ+ ui∂iϱ+ ϱ∂iu
i = 0,

ϱ(∂tu
j + ui∂iu

j) +∇jp = 0,

where we recall that p = p(ϱ). A fluid is called incompressible if ϱ = constant, in which case
we can set ϱ = 1. In this case, the equations describing the fluid motion are

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0,

which are called the incompressible Euler equations. For an incompressible fluid, however,
the pressure is no longer given by p = p(ϱ), since the pressure would then be constant, but
experiments show that the pressure can vary even if the density remains (approximately)
constant. Show that in the case of the incompressible Euler equations, the pressure is given
as a solution to

∆p = −∂ju
i∂iu

j.

Problem 7. Consider the incompressible Euler equations (see previous question):

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0.

The vorticity ω of the fluid is defined as

ω := curlu.

The vorticity is an important physical quantity; it measures, as the name suggests, “eddies”
in the fluid. It is, therefore, important to know how it changes in time and space (i.e., what
the dynamics of the vorticity is). Show that ω satisfies the following PDE:

∂tω+∇uω−∇ωu = 0.
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Above, the operators ∇u and ∇ω are defined as follows. For any vector field X, ∇X is a
short hand notation for X · ∇, i.e.,

∇X := X · ∇,

where we recall that X · ∇ has been defined in class as

X · ∇ = X i∂i.

2. solutions

Solution 1. (a) Compute uxx(x, y) = −y cosx− sinx sin y = −u(x, y), thus u is a solution.
(b) Compute uxx(x, y) = − cosx sin y, uyy(x, y) = − cosx sin y, thus

uxx(x, y))
2 + (uyy(x, y))

2 = 2 cos2 x sin2 y ̸= 0,

hence u is not a solution.

Solution 2. (a) Linear. (b) Nonlinear. (c) Nonlinear. (d) Nonlinear.

Solution 3. In order to find P , it is useful to identify whether the PDE is linear, homoge-
neous, the unknown function, etc.

(a) Unknown: u. Independent variables: x, t. Order: second. We have

P (p1, . . . , p9) = p9 − p6 − f(p1, p2).

The equation is linear and non-homogeneous.
(b) Unknown: u. Independent variables: x, y. Order: first. We have

P (p1, . . . , p5) = p5 + p3p4.

The equation is non-linear (because of the term uux) and homogeneous.
(c) It is instructive to consider a slightly more general case, with i, j, k ranging from 1 to

n. Unknown: v. Independent variables: x1, . . . , xn. Order: third. We have

P (x1, . . . , xn, p, p1, . . . , pn, p11, . . . , pnn, . . . , p111, . . . , pnnn) = aijkpijk + p.

The equation is linear and homogeneous.
(d) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p6 + p21p
2
2p9 − (p1 + p2)

2.

The equation is linear and non-homogeneous.
(e) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p7 + cos p3 − sin(p1p2).

The equation is non-linear (because of cosu) and non-homogeneous.

Solution 4. Denote by PH the homogeneous part of P .
Suppose the PDE is linear. Thus,

PH(x, u,Du, . . . , Dku) =
k∑

m=0

Pm(x,D
mu), (1)

where each Fm is a sum of linear functions on derivatives of u of order m, i.e.,

Pm(x,D
mu) =

nm∑
ℓ=1

Pmℓ(x, u
(ℓ)), (2)
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where each u(ℓ) represents one of the nm possible derivatives of u of order m. Let u and v
be two functions for which P (x, u,Du, . . . , Dku) and P (x, v,Dv, . . . , Dkv) are well-defined,
but are otherwise arbitrary, and let a and b be two arbitrary constants. Then

Pm(x, aD
mu+ bDmv) = a

nm∑
ℓ=1

Pmℓ(x, u
(ℓ)) + b

nm∑
ℓ=1

Pmℓ(x, v
(ℓ))

by the linearity of Pkℓ. Hence

PH(x, au+ bv, aDu+ bv, . . . , aDku+ bDkv) = aPH(x, u,Du, . . . , Dku) + bPH(x, v,Dv, . . . , Dkv).

Writing for simplicity Pu = PH(x, u,Du, . . . , Dku), we conclude

P (au+ bv) = aPH(x, u,Du, . . . , Dku) + bPH(x, v,Dv, . . . , Dkv) = aPu+ bPv,

as desired.
Reciprocally, suppose that P is a linear operator. Then it can be written on the form

Pu = ai1i2···im∂k
i1i2···iku+ ai1i2···ik−1∂k−1

i1i2···ik1
u

+ ai1i2···ik−2∂k−1
i1i2···ik2

u+ · · ·+ ai1i2∂2
i1i2

u+ ai∂iu+ au.

This implies that PH has the decomposition (1) with each Pm satisfying (2).

Solution 5. Under the assumptions, the equations become

divE = 0, (3)

divB = 0, (4)

∂B

∂t
+ curlE = 0, (5)

∂E

∂t
− 1

µ0ε0
curlB = 0. (6)

Take the curl of (5) and note that curl ∂
∂t

= ∂
∂t
curl to get

∂

∂t
curlB + curl curlE = 0.

But curlB = µ0ε0
∂E
∂t

by (6), thus

µ0ε0
∂2E

∂t2
+ curl curlE = 0.

Recalling the following identity from multivariable calculus

curl curl f = ∇(div f)−∆f,

and using (3), we obtain the wave equation for E. The wave equation for B is similarly
obtained.

The interpretation is that the electric and magnetic fields propagate in vacuum as waves.
From the discussion about the wave equation in class, we conclude that 1√

µ0ε0
is the speed

of propagation of the electromagnetic waves, which, from physics, we know to be equal to
the speed of light (in vacuum).
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Solution 6. Taking the divergence of the momentum equation and using that ∂iu
i = 0, we

find

0 = ∂j(∂tu
j + ui∂iu

j +∇jp)

= ∂t∂ju
j + ∂ju

i∂iu
j + ui∂i∂ju

j + ∂i∂
ip

= ∂ju
i∂iu

j + ∂i∂
ip,

where we denoted ∂i := δij∂j, with δ being the Kronecker-delta symbol defined as δij =
δij = δij = 1 if i = j and 0 otherwise. Noting that ∂i∂i = ∆, we have the result.

Remark. Note that while Euler’s equations in principle require functions that are only once
differentiable, the above calculation assumed that the functions are in fact twice continuously
differentiable.

Solution 7. Denoting by | · | the norm in R3, observe the following identity:

1

2
∇i|u|2 = 1

2
∇i(uℓuℓ) = uℓ∂iuℓ = uℓ∂ℓu

i + (uℓ∂iuℓ − uℓ∂ℓu
i),

where ∂i is as in the last question. Next, compute

(u×ω)i = ϵijkuiωk = ϵijkujϵ
ℓn

k ∂ℓun

= (δiℓδjn − δjℓδin)uj∂ℓun

= un∂iun − uℓ∂ℓu
i,

where we used the identity

ϵijkϵkℓn = ϵkijϵkℓn = δiℓδ
j
n − δjℓδ

i
n,

which can be verified directly. From the foregoing we conclude that

∇uu =
1

2
∇|u|2 − u×ω,

which implies

curl∇uu = − curl(u×ω).

Let us compute the RHS:

(curl(u×ω))i = ϵijk∂jωk = ϵijk∂j(ϵ
ℓn

k ∂ℓun)

= ϵijkϵ ℓn
k ∂juℓωn + ϵijkϵ ℓn

k uℓ∂jωn

= (δiℓδjn − δjℓδin)∂juℓωn + (δiℓδjn − δjℓδin)uℓ∂jωn

= ∂nuiωn − ∂ℓu
ℓ︸︷︷︸

=0

ωi + ui ∂nω
n︸ ︷︷ ︸

=0

−uj∂jω
i

= (∇ωu)
i − (∇uω)i,

which implies the result.


	1. Problems
	2. solutions

