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1. Introduction

The purpose of these notes is to review some basic notions, set up the notation, and give students
an idea of some of the more basic material that will be required for the course. While not all of
this material is necessarily a pre-requisite, it is something that students are expected to quickly
acquaint themselves with. Some students may find most of what follows very basic. If you feel
that way, you are still urged to go over these notes carefully and make sure you understand them,
as some of its aspects contain subtleties that are many times overlooked when one first learns the
material.

While we tried to give a sufficiently precise treatment of the concepts involved, our approach
is primarily pragmatic, invoking certain mathematical ideas only as long as they are necessary to
solving partial differential equations in Rn. As a result, we have avoided the level of rigor usually
employed when many of these ideas are first introduced to a mathematical audience.

The conventions and notation described below will be adopted throughout the course, unless
stated otherwise. While for the most part, they are compatible with those of the course textbook [3],
there are some differences, so please be alert.

2. Vectors and coordinates

Recall that Rn consists of the set of n-tuples (x1, x2, . . . , xn), where each xi, i = 1, 2, . . . , n, is
a real number. This last statement is written briefly as xi ∈ R, where R denotes the set of real
numbers and ∈ means “belongs to” (the symbol /∈ will be used later on, and it means “does not
belong to”). We write x ∈ Rn to indicate that x is an element of Rn, i.e., x = (x1, x2, . . . , xn).
n is called the dimension of the space Rn. Each xi is called a component or coordinate of x
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2 Disconzi

(x1 is the first component or first coordinate, x2 the second component or coordinate, and so on).
We shall use the terminology point and vector interchangeably for elements of Rn. “Component”
and “coordinate” will also be used interchangeably. Notice that we do not use an “arrow,” i.e.,
the notation ~x (that you might have seen in Physics, Linear Algebra, or Multi-variable Calculus)
for elements of Rn. In particular, the zero element of Rn, also called the origin, will be denoted
simply by 0, i.e. 0 ∈ Rn corresponds to the vector whose components are all zero: 0 = (0, 0, . . . , 0).

While we typically use letters such as x, y, and z to denote elements of Rn, sometimes, when
dealing with R2 and R3, we reserve them for the components of a vector. For example, v =
(x, y, z) ∈ R3. On the other hand, in many situations we have to label a set of points in Rn, in
which case we use a subscript. For example, suppose we are given N points1 in Rn. We can denote
them by x1, x2, . . . , xN . Here, we have xi ∈ Rn for each i = 1, 2, . . . , N . In this case xi should
not be confused with the ith component of a vector, being rather the ith vector in the collection
of N vectors x1, x2, . . . , xn. Naturally, in such a situation a different notation is needed for the
components of the vectors x1, x2, . . . , xN . For example, if we want to write the components of, say,
the vector x3, we can use two indices, as

x3 = (x31, x32, . . . , x3n).

Above, the first index labels which vector we are talking about, i.e., the third vector in this case,
whereas the second index denotes the corresponding component of the third vector. More generally,
we write,

xi = (xi1, xi2, . . . , xin),

where i indicates the ith vector in the collection x1, x2, . . . , xN , and the second index indicates the
corresponding component of the ith vector. Therefore, we can denote all components of all the
vectors in our collection by xij , where i varies from 1 to N and labels which vector we are talking

about, and j varies from 1 to n and denotes the jth component of the ith vector.
Yet sometimes, it will be more convenient to denote the coordinates of a point with upper indices

or super-scripts, i.e.,

x = (x1, x2, . . . , xn),

in which case the components of a collection of N vectors can be written as xji , with i and j holding
the same interpretation as in the last paragraph, i.e., i varies from 1 to N and labels which vector
we are talking about, and j varies from 1 to n and denotes the jth component of the ith vector2.

All of the above may look very confusing at first sight. Sometimes xi is a component, sometimes
it denotes a point (=vector!) in Rn; but sometimes components are denoted by x and y. The point,
of course, is that it may be more convenient to use one notation over the other. It all depends on
the particular problem we are addressing, and we need to have enough flexibility to use the most
convenient notation in each case.

The important thing to have in mind is that what determines which type of object one has is not
its notation, but rather how it is stated in the relevant context. For instance, suppose you are given
a homework problem that begins with “Let x ∈ Rn...”. In this case, you are told that x is a vector
with n components. Similarly, you could find a statement in the textbook that reads “Consider
three points, x1, x2, x3, in R3...”. Here, you are told that each xi, i = 1, 2, 3, is a three-component

1Note that N and n have nothing to do with each other. N denotes the number of points we are given or have
chosen, so if we pick, say, ten points, we have N = 10. n denotes the dimension of the space. In a given problem,
n is usually fixed (say, we are working on the three-dimensional space R3), while N can vary (first we are given ten
points, N = 10; later on we pick six points, N = 6, etc.).

2Although we shall not explore it in this course, there is in fact a deeper meaning in the distinction between
denoting coordinates as xj and xj . The mathematically inclined reader can search for the concept of the dual of a
vector space, whereas Physics students may want to look at the distinction between vectors and co-vectors, or between
covariant and contravariant coordinates.
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vector3. Similarly, whenever you write your solutions, you should make clear what you mean by
each object you introduce. Except in very special cases, you should not, and cannot, assume that
it is obvious what is meant by the notation you are using. For example, if you are given a problem
that says “Let x ∈ Rn . . . ”, then it will be clear that by xi you mean the components of x. On the
other hand, if the problem makes no reference to x, then you cannot write things like xi assuming
that the reader will know what you mean, as it could be interpreted in several different ways. In
this case, you have to write in your solutions something like “Let x ∈ Rn...”, or whatever else is
meant in the context at hand.

While notation can, in fact, be a source of a great deal of confusion, it is important to know how
make the most of the convenience that different notations offer. Naturally, the importance resides
in the concepts themselves rather than in how one expresses them, although having a clear way of
expressing mathematical ideas is definitely preferable. This is not, of course, much different than
when you first learned about variables and functions, probably sticking to writing x for the variable
and y for the function, learning, later on, that you could use different letters without changing the
mathematical content of the problems.

The canonical or standard vectors in Rn, denoted by ei, i = 1, . . . , n, are the vectors with 1
in the iih component and zero in the remaining ones, i.e.,

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

e3 = (0, 0, 1, . . . , 0)

...
...

en = (0, 0, 0, . . . , 1).

We can write the above also as

ei = (0, 0, . . . , 1, 0, 0, . . . , 0)

↑

ith component.

According to the conventions previously discussed, the components of ei can be described as

eij =

{
1, if i = j,

0, if i 6= j.

The norm of a vector x ∈ Rn, denoted by |x|, is defined by

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n.

Notice that |x| measures the distance of x to the origin, or, equivalently, the “length” of the vector
x. If x, y ∈ Rn, then |x− y| is simply the distance between x and y.

The inner product or dot product between two vectors x and y of Rn is denoted by both
〈x, y〉 and x · y, and it is defined as

〈x, y〉 = x1y1 + x2y2 + · · ·xnyn,
or, more concisely,

〈x, y〉 =

n∑
i=1

xiyi.

Notice that |x| =
√
〈x, x〉. Two vectors are said to be orthogonal if their inner product is zero.

3Notice that it is just a coincidence that the number 3 appears twice here: we could have more, or less, than three
points in the three-dimensional space R3; see footnote 1.
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3. Functions

We recall that a function is a rule that assigns for each element in a set A, one, and only one,
element in a set B. The set A is called the domain of the function and B its co-domain. The
notation

f : A→ B

is used to indicate that f is a function with domain A and co-domain B. We sometimes say that
f takes values in B to refer to the co-domain of a function.

For the most part, we shall be dealing with functions defined in Rn (or in a subset of Rn, see
section 4) and taking values in R, i.e., f : Rn → R. In this case, if we write f(x), it is to be
understood that x ∈ Rn, i.e., x = (x1, x2, . . . , xn) and f(x) = f(x1, x2, . . . , xn). A function that
takes values in R is called a real valued function. The following are examples of real valued
functions:

(i)
f : R→ R,
f(x) = 2x+ 1.

(ii)
g : R3 → R,
g(x, y, z) = xy + xz + yz.

(iii)
h : Rn → R,
h(x) = 〈x, x〉.

The above are typical examples of how a function is usually presented. Consider example (ii). First,
we are given something like g : A→ B, which indicates how we are naming the function (g in this
case), and the domain and co-domain of the function (R3 and R, respectively); after all, if a function
is a rule between two sets, upon defining a function we better say what these two sets are. Next,
we define the rule that associates to each element in A one, and only one, element in B. In this
example, the rule is the following: given an element (x, y, z) ∈ R3, the corresponding element in R
is obtained by computing xy+xz+yz. For example, g(1,−2, 3) = 1×(−2)+1×3+(−2)×3 = −5.
Although this all sounds very trivial, you should make sure that you understand the notation
involved.

Less often, we shall need functions with domain Rn (or a subset of Rn, see section 4) and
Rm, where n and m may or may not be equal, depending on the particular problem. A function
f : Rn → Rm is called a vector valued function. The particular case when n = m is called a
vector field. The following are examples:

(iv)
u : R2 → R3,
u(x) = (x1x2, x1 − x2, x1 + x2).

(v)
v : R2 → R2,

v(x, y) = (
√

2
2 x−

√
2

2 y,
√

2
2 x+

√
2

2 y)

(vi)
w : Rn → Rn,
w(x) = −x.

Notice the difference between examples (i) − (iii) and (iv) − (vi). In (i) − (iii) the answer is a
real number, while in (iv)− (vi) the answer is always a vector with more than one component. For
instance, given (1, 1) ∈ R2, u(1, 1) is the vector (1, 0, 2) ∈ R3.

We remark that sometimes functions have a nice geometric interpretation. You are invited to
explore the geometric meaning of the function in example (v). By assigning values to x and y and
drawing both (x, y) and v(x, y), you should be able to verify that v rotates vectors in R2 by 45◦

counter-clockwise. The function w in example (vi) is a “reflection”: it sends each point x ∈ Rn to
its antipodal point.
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Looking at (iv)− (vi), we see that a vector valued function can be thought of as a vector where
each component is a real-valued function. Thus, we can write,

f : Rn → Rm,
f = (f1, f2, . . . , fm),

where

fi : Rn → R, i = 1, . . . ,m.

Even more explicitly, since each fi has domain Rn, we can write,

f : Rn → Rm,
f(x) = (f1(x), f2(x), . . . , fm(x)),

= (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)).

Notice that it is not always true that a “rule between sets” gives a well-defined function. Consider

f : R4 → R,
f(x) = x.

While f(x) = x seems a perfectly well-defined rule, it is inconsistent with f : R4 → R, in that this
last statement says that the co-domain is R, but x ∈ R4. We can correct this by either changing
the co-domain to R4, or by changing the form of f to make it real valued, for example, f(x) = |x|.

Consider a function f : A → B. Notice that not all elements of B have to be “hit” by the
function. For instance, we can define f : R → R by f(x) = x2. Then the co-domain is the set of
all real numbers, but if we pick −1 ∈ R, there is no x in the domain such that f(x) = −1. Given
an element y ∈ B, we say that it is the image (through f) of the element x ∈ A if f(x) = y. The
range (sometimes also called the image set or just image for short) of a function f : A→ B is the
set of elements in B that are the image through f of at least one element from A. In the previous
example, the range of f(x) = x2 is the set of non-negative real numbers.

4. Sets and subsets, and more about functions

In many situations it will be necessary to work with functions defined on subsets of Rn. We
shall also need to look at subsets of points and functions with certain properties, and therefore, we
introduce here some general notions of how to carry out such definitions.

A common way to define a set of elements with a certain property is to use curly brackets to

mean “set” and the symbol
∣∣∣ to mean “such that”. For example, consider the set Q defined

by

Q =
{
x ∈ R2

∣∣∣x2 ≥ 0
}
.

One reads this as “Q is the set of all points in R2 such that the second coordinate is non-negative.”

“All points in R2” is indicated by x ∈ R2; “such that” is indicated by
∣∣∣; and “the second coordinate

is non-negative” is indicated by x2 ≥ 0. In other words, Q consists of the first and second quadrants
together.

We can have more than one property defining a set. For example,

I =
{
x ∈ R2

∣∣∣x1 ≥ 0, and x2 ≥ 0
}

consists of all points in R2 such that the first coordinate is non-negative and the second coordinate
is non-negative as well. In other words, I is the first quadrant on the plane. Most of the time we
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omit the conjunction “and,” listing the defining properties of a set separated simply by a comma.
Thus, the set I above could also be defined as

I =
{
x ∈ R2

∣∣∣x1 ≥ 0, x2 ≥ 0
}
.

Notice that above a certain convention for how to denote coordinates in R2 is implicitly under-
stood (see the discussion on section 2). In most cases we assume that the notation for the elements
defining a set speaks for itself. For instance, the reader should have no trouble in understanding
that

S1 =
{

(x, y) ∈ R2
∣∣∣x2 + y2 = 1

}
defines a circle of radius one centered at the origin, with x and y denoting the first and second
coordinates in R2, respectively. Another example is

B1 =
{

(x, y) ∈ R2
∣∣∣x2 + y2 ≤ 1

}
.

The set B1 is a “ball” of radius one centered at the origin, i.e., not only the circle of radius one
but also its interior. Yet another simple example is

A =
{

(x, y) ∈ R2
∣∣∣x2 + y2 ≤ 1, x2 + y2 ≥ 1

4

}
.

How does A look like? Recall that x2 + y2 is the square of the distance from the origin to (x, y).
Thus, it reads, “A is the set of all points in R2 such that their distance to the origin is less than
or equal to one, and their distance to the origin is greater than or equal to 1

2 .” We conclude that

A is the annular region between the circle of radius one and the circle of radius 1
2 . Notice that A

could also have been written as

A =
{

(x, y) ∈ R2
∣∣∣ 1

4
≤ x2 + y2 ≤ 1

}
.

The definition of a set can also carry a parameter. Consider

Sr =
{

(x, y) ∈ R2
∣∣∣x2 + y2 = r2

}
.

Clearly, Sr consists of the circle of radius r centered at the origin. Notice that r does not appear
together with (x, y) ∈ R2, i.e., we are not saying that Sr is “the set of r’s with a certain property.”
Rather, given r, we define Sr so that for each r we pick, there is a different set Sr. In other words,
r is something we typically fix first, depending on the nature of the problem we want to deal with,
and then we define the set Sr.

Consider this other example:

Sr(x0, y0) =
{

(x, y) ∈ R2
∣∣∣ (x− x0)2 + (y − y0)2 = r2

}
.

Sr(x0, y0) is the circle of radius r centered at (x0, y0). Again, notice that (x0, y0) is something fixed
for the definition of the set, i.e., we are not considering “all (x0, y0) in R2 such that...”. A slightly
more elaborate example is

Πy =
{
x ∈ Rn

∣∣∣ 〈x, y〉 = 0
}
.

Πy is the “set of all vectors in Rn such that their inner product with the (fixed) element y is equal
to zero.” In other words, Πy is the set of all vectors in Rn that are orthogonal to y (the reader
familiar with Linear Algebra will recognize Πy as a n − 1-dimensional place through the origin in
Rn). Notice that, similarly to r above, the element y is fixed beforehand.

Now that we know how to define sets in Rn, we can look at functions whose domain is not the
whole of Rn but a subset of it. Consider

Bn
1 =

{
x ∈ Rn

∣∣∣ |x| < 1
}
.
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Bn
1 is “the ball of radius one inside Rn,” i.e., the set of all vectors in Rn whose norm is less than

one. Define

f : Bn
1 → R,

f(x) = |x|.

By definition, this function has domain Bn
1 , and thus it does not make sense to ask what f(x) is

if x /∈ Bn
1 (remember that /∈ means “does not belong to”). Some readers may find this example a

little silly, as we can perfectly compute |x| for any x ∈ Rn, and not only for those in Bn
1 . However,

such readers should remember that a function is a rule between two sets, A and B, and as such it
does not make sense to ask what should be assigned to elements outside4 A. If this puzzles you,
you can consider that this is a “minimalist” approach: if in a particular problem or application we
only care about points in Bn

1 , we restrict ourselves to defining functions on in Bn
1 , not caring about

what happens outside Bn
1 .

While for some readers the discussion of the last paragraph may sound conceptually abstract,
there are of course obvious cases where the defining rule of a function only holds in a subset of Rn.
E.g., let

Rn0 =
{
x ∈ Rn

∣∣∣x 6= 0
}
,

i.e., Rn0 is Rn except for the origin. Then

f : Rn0 → R,

f(x) =
1

|x|

is a well defined function, but the same expression cannot be used on the whole of Rn as we would
otherwise divide by zero. The set Rn0 is more commonly written as

Rn0 = Rn\{0},

where \ means minus, i.e, Rn0 is the set of all elements in Rn minus (i.e., except) the set consisting
only of the element zero, {0}.

Another example is

f :
{
x ∈ Rn

∣∣∣ |x| ≤ 1
}
→ R,

f(x) =
√

1− |x|.

f will not be real valued unless we restrict it to |x| ≤ 1. In this last example, we took a shortcut:

instead of first defining the set
{
x ∈ Rn

∣∣∣ |x| ≤ 1
}

, and then defining f as having that set as domain,

we preferred to define f and its domain simultaneously. This is useful to avoid “giving names” to
several different sets every time we define a new function.

We finish, noticing that there is a natural way to define f(U), where U is some subset of the
domain of f . If, say, f : Rn → R and U ⊂ Rn, then

f(U) =
{
f(x)

∣∣∣x ∈ U}.
In particular, if f : A→ B, then f(A) is simply the range of f .

4The fact that the same formula, f(x) = |x|, holds for elements outside Bn
1 means that our function f , initially

defined on Bn
1 , can be extended to the whole of Rn and, moreover, this extension is in a sense “the obvious” and

“best” one. We shall not get into this type of conceptual subtlety in our course, but the mathematically inclined
students is welcome to discuss this with me during office hours.
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5. Some topological notions in Rn

In this section we try to introduce some ideas from Topology without assuming any prior knowl-
edge of the topic. Our discussion will be applicable only to Rn and will be, as said in the intro-
duction, pragmatic and lacking rigor. This will make the way some ideas are introduced somewhat
awkward from a fully mathematical point of view. The interested reader is referred, for example,
to [2] for a more consistent treatment.

The symbol ⊆ means subset, and A ⊆ B reads “A is a subset of B. The case A = B is not
excluded (every set is a subset of itself). If we want to say that A is a subset of B but cannot equal
B itself, we use the symbol ⊂, so A ⊂ B. Sometimes we also say that “A is contained in B.” The
symbol 6⊂ means “not a subset,” e.g. R3 6⊂ R2.

Recall that (a, b) ⊂ R is an open interval, whereas [a, b] ⊂ R is a closed interval. (a, b] and [b, a)
are neither open nor closed. Notice that an open interval has the following property. Pick any
x ∈ (a, b). Then, we can always find another interval Ix containing x such that Ix ⊂ (a, b). Said
in a slightly different way, given any x ∈ (a, b), we can always find a number ε > 0 such that the
interval (x− ε, x+ ε) is contained in (a, b), i.e., (x− ε, x+ ε) ⊂ (a, b). A very similar idea is used
to talk about open sets in Rn. For this, we need the following notation and terminology, which will
be adopted from now on. The ball of radius r and center x0 in Rn is defined as

Br(x0) =
{
x ∈ Rn

∣∣∣ |x− x0| < r
}
. (5.1)

Sometimes we write Bn
r (x0) to emphasize that this is a subset of Rn, and the case x0 = 0 is

sometimes abbreviated Br — in which case we refer simply to the ball of radius r.
A set U ⊂ Rn is called open if for any x ∈ U there exists a r > 0 such that Br(x) ⊂ U . Notice

that Br(x) is always open for any x ∈ Rn. The complement of a set U ⊂ Rn, denoted U c, is the
set of elements in Rn that do not belong to U . More precisely,

U c =
{
x ∈ Rn

∣∣∣x /∈ U}.
Notice that this is the same as

U c = Rn\U.
A set is called closed if its complement is open. As an instructive exercise, the reader is invited to
show that the set

S1 =
{

(x, y) ∈ R2
∣∣∣x2 + y2 = 1

}
is closed, by first identifying its complement, and then showing that it is open.

The intersection of two sets A and B contained in Rn, denoted A∩B, is the set of all elements
that belong simultaneously to A and B. We write,

A ∩B =
{
x ∈ Rn

∣∣∣x ∈ A, x ∈ B}.
The reader can verify the following examples:

B 1
2
∩B1 = B 1

2
,

(−2, 2) ∩ (0, 4) = (0, 2),

and

B1 ∩Bc
1
2

=
{

(x, y) ∈ R2
∣∣∣ 1

4
≤ x2 + y2 < 1

}
.

When A and B have no element in common, their intersection results in the empty set, denoted
∅. For example, let x = (2, 2, 2) ∈ R3 and y = (−2,−2,−2) ∈ R3, then

B1(x) ∩B1(y) = ∅.
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Inductively, we can define the intersection of more than two sets, in which case we write A∩B∩C,
etc. In fact, we can take the intersection of infinitely many sets. For example, consider the sets
Ii ⊂ R defined by

Ii = [−1

i
,
1

i
], i = 1, 2, 3, . . .

Then
∞⋂
i=1

Ii = {0}.

To convince yourself of the above, draw the first few Ii’s and see what results from their intersection.
Given a set U ⊂ Rn, we can consider the “smallest” closed set containing U . To make this notion

more precise, let C(U) be the collection of all closed sets containing U . I.e., F ∈ C(U) if, and only
if, F is a closed set and U ⊂ F . If we consider the intersection of all F ’s with these properties,
then we obtain a set called the closure of U , denoted U . Thus,

U =
⋂

F∈C(U)

F.

To understand this notion, consider that, if U is a closed set, then its closure is U itself, i.e., U = U
whenever U is closed. If U is not closed, then U consists of U plus the points that are “missing”
to make U closed. For instance, [0, 1) is not closed, because the endpoint 1 is not included, thus

[0, 1) = [0, 1].

Different sets can have the same closure, e.g., the closure of (0, 1), (0, 1], and [0, 1) are all equal to
[0, 1]. The reader should notice that U is always a closed set5.

As another example, consider B1, whose definition was given in (5.1) and in the text that
immediately followed. B1 is not closed because, by its definition, it includes only the points whose
distance to the origin is less than one, i.e., it is “missing” the points whose distance is exactly equal
to one. Thus

B1 =
{
x ∈ Rn

∣∣∣ |x| ≤ 1
}
.

Analogously,

Br(x0) =
{
x ∈ Rn

∣∣∣ |x− x0| ≤ r
}
.

Notice that the crucial difference of the above to (5.1) is that < has been replaced by ≤.

When forming Br(x0), the points that were “missing” consists of a n− 1-dimensional sphere of

radius r and center x0 (if that is not clear, draw a picture of Br(x0) in two and three dimensions).
Therefore we define the n− 1 sphere of radius r and center x0 inside Rn as

Sr(x0) =
{
x ∈ Rn

∣∣∣ |x− x0| = r
}
.

We write Sn−1
r (x0) if we want to emphasize that Sr(x0) is a subset6 of Rn, and Sr for Sr(0) — in

this last case we refer simply to the sphere of radius r. The reader should check that Sr(x0) is a
closed set.

5It is an instructive exercise to show this, as follows. By definition, one has to show that the complement of U is
open. This is done using the so-called de Morgan’s law (see, for instance, [1]): U

c
= (∩FF )c = ∪FF

c. Since each
F c is open because each F is closed, and since (as the reader can check) the union of open sets is open, we conclude

that U
c

is open, and thus U is closed.
6Notice that we write Sn−1

r (x0), and not Sn
r (x0), because Sr(x0) always has “one less dimension” than Rn. For

example, in two-dimensions, the ball of radius one is {(x, y) ∈ R2
∣∣x2 + y2 ≤ 1}, but the sphere is only the circle

{(x, y) ∈ R2
∣∣x2 + y2 = 1}. Although we shall not define the concept of dimension for general sets, this should be

intuitive. Also, see the comments at the end of this section.
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Sr(x0) can be thought of as the outermost points of Br(x0), or the “boundary” of Br(x0).

Furthermore, Br(x0) can be decomposed into two pieces, one open and one closed, namely, Br(x0)
and Sr(x0), and such that Br(x0)∩ Sr(x0) = ∅. Next, we define some similar notions for sets that
are not necessarily a ball. To do that, we need to first recall what the union of sets is.

The union of of two sets A and B contained in Rn, denoted A∪B, is defined as the set of points
that belong to A or B, i.e.

A ∪B =
{
x ∈ Rn

∣∣∣x ∈ A, orx ∈ B
}
.

For example, (0, 2) ∪ (1, 3) = (0, 3), and B1 ∪ S1 = B1. As with intersections, we can consider the
union of more than two sets, and even of infinitely many sets.

Given a set U ⊂ Rn, we can consider the “largest” open set contained in U . More precisely, let
O(U) be the collection of all open sets contained in U . I.e., E ∈ O(U) if, and only if, E is an open

set and E ⊂ U . The interior of U , denoted Ů , is defined as

Ů =
⋃

E∈O(U)

E.

We point out that Ů is always an open set.
The boundary of a set U ⊂ Rn, denoted ∂U , is defined by

∂U = U\Ů.

From the definition, it follows that ∂U ∩ Ů = ∅.
Another important concept is that of connectedness. A set U ⊂ Rn is said to be connected if

any two points in U can be joined by a continuous curve7. The basic intuition is that a connected
set cannot be split into two parts that “do not communicate with each other.” For instance, Br
is a connected set, as are (0, 1) ⊂ R, [1, 3), and Sr. The sets R\{0}, and (−2,−1) ∪ (1, 2), on the
other hand, are not connected.

We can now define one of the main types of sets of interest in this course. A domain in Rn is
a connected and open set8. The notation Ω will always denote a domain, unless stated otherwise.
The balls Br(x0) are examples of domains. The spheres Sr(x0) are not domains because they fail
to be open.

Given a domain Ω, we can consider its boundary ∂Ω as defined earlier. A domain is said to have
smooth boundary if the following property holds: locally, ∂Ω can be written as the graph of an
infinitely differentiable function.

Probably the best way to understand this definition is via the following example. Consider the
ball of radius one in R3. Recall that it is the set

B1 =
{

(x, y, z) ∈ R3
∣∣∣√x2 + y2 + z2 < 1

}
.

Its boundary is the two-dimensional sphere

S1 =
{

((x, y, z) ∈ R3
∣∣∣√x2 + y2 + z2 = 1

}
,

i.e., ∂B1 = S1. Notice that S1 cannot be the graph of a function, as it fails the analogue of the
vertical line test in three-dimensions (any straight line through S1 will cross it in two points).
However, small pieces (this is roughly the meaning of “locally”) of S1 can always be written as a
graph, as we now show.

7To be precise, this is actually the definition of what we call a path connected set. Giving the precise definition of
connectedness would require a more extensive discussion. We point out, however, that in the main case of interest,
i.e., when the set U is open, the concepts of connectedness and path connectedness agree. The interested reader is
referred to [2] for details.

8The concept of domain here has nothing to do with the domain of a function.
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Consider first the upper hemisphere of S1, which we denote by S+
1 . It corresponds to the points

that satisfy not only
√
x2 + y2 + z2 = 1 but also that are “above” the xy-plane, i.e., z ≥ 0.

Therefore, S+
1 is given by the points that satisfy√

x2 + y2 + z2 = 1 and z ≥ 0.

Solving for z and using z ≥ 0 to pick the positive square root gives

z =
√

1− x2 − y2.

But this defines z as a function of x and y. Therefore, the upper hemisphere S+
1 is the graph of

the function h(x, y) =
√

1− x2 − y2, whose domain9 is the set {(x, y) ∈ R2
∣∣x2 + y2 ≤ 1}.

Similarly, the lower hemisphere, denoted by S−1 , is given by√
x2 + y2 + z2 = 1 and z ≤ 0.

Solving for z and using z ≤ 0 to pick now the negative square root gives

z = −
√

1− x2 − y2.

Again, z is a function of x and y, whose domain is the set {(x, y) ∈ R2
∣∣x2 + y2 ≤ 1}. Since S+

1

and S−1 completely cover the sphere, i.e. S+
1 ∪ S1

− = S1, we have shown that locally S1 can always
be written as the graph of a function.

The above does not quite show yet that B1 has smooth boundary. To do so, we need to show
that the functions whose graphs give S1 are infinitely differentiable. Consider the case S+

1 . Taking

derivatives of
√

1− x2 − y2, we will find expressions that involve

1√
1− x2 − y2

.

The above, and its derivatives, will be well-defined as long as x2 + y2 < 1, but for points such that
x2 + y2 = 1, we would be dividing by zero. The same statement holds for S−1 .

Noticing that the points satisfying x2 + y2 = 1 correspond exactly to the equator of the sphere,
we conclude that the above shows that S1 can always be written locally as the graph of an infinitely
differentiable function, except for the points on the equator. To remedy this problem, we simply
notice that there is nothing in the definition of a smooth boundary that requires us to limit ourselves
to only two pieces of ∂Ω. The points on the equator can also be shown to be part of graphs of
certain infinitely differentiable functions, except that now z will be one of the variables and x or y
will be the function. For instance, a similar reasoning as above shows that if we consider the right
hemisphere, given by √

x2 + y2 + z2 = 1 and x ≥ 0,

and the left hemisphere, given by√
x2 + y2 + z2 = 1 and x ≤ 0,

then we can solve for x in terms of y and z, obtaining the functions

x =
√

1− y2 − z2

and

x = −
√

1− y2 − z2.

9For technical reasons, when one says that ∂Ω is locally the graph of a smooth function, it is convenient to define the
domain of the function giving the graph to be always an open set. In this case we would take {(x, y) ∈ R2

∣∣x2+y2 < 1}.
We shall, however, avoid this kind of subtlety here.
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These functions both have domain y2 + z2 ≤ 1, and they are infinitely differentiable, except for
the points satisfying y2 + z2 = 1. These points constitute the “principal meridian” of the sphere.
But notice that these points are either on the upper hemisphere or on the lower hemisphere, which
we have already shown to be the graph of an infinitely differentiable function except for points on
the equator. However, the only points that are simultaneously on the equator and on the principal
meridian are the points (1, 0, 0) and (−1, 0, 0). Therefore, we have shown that all points on the
sphere, except those two, belong to the graph of an infinitely differentiable function. The reader
can now probably imagine how those last two points are shown to also satisfy this property: one
writes y as a (two) function(s) of x and z, and argue analogously.

The conclusion is that by using enough “caps” we can cover the sphere with pieces that are
always the graph of an infinitely differentiable function, as shown in figure 1.

Figure 1. Covering the sphere with several caps (credit: M. P. do Carmo, Rie-
mannian Geometry. Birkhäuser (1992)).

Hence, B1 is a domain with smooth boundary. Of course, there is nothing special about the
radius equal to one or the origin as the center. Nor is there anything special about the dimension
n = 3. Similar arguments can be used to show that Br(x0) ⊂ Rn is always a domain with smooth
boundary.

Some readers may find this last discussion too lengthy or complicated, but they should be able
to grasp it quickly after working out some of the details by themselves. We insist that this last
example be understood thoroughly, as B1 is the prototypical example of domains with smooth
boundary — which will be one of the most important sets used in the course.

A domain is called bounded if it can be enclosed inside a ball of radius r for some r > 0. For
example, the region

A =
{

(x, y, z) ∈ R3
∣∣∣ 1

16
< x2 + y2 + z2 < 1

}
is bounded because it lies inside10 the ball of radius 2; while

Ã =
{

(x, y, z) ∈ R3
∣∣∣x > 0, y > 0, z > 0

}
is not bounded.

10Of course, A also lies inside the ball of radius 3, or 1.5... The definition only requires that it belongs to a ball
of radius r for some r > 0.
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Lastly, we make a comment about dimension. It should be intuitive that Br ⊂ Rn has n
dimensions, whereas Sr has n− 1 dimensions (the reader can consider the case n = 3 for simplicity
if necessary). This is because in Br we have n variables x1, x2, . . . xn, but in Sr one variable can
always be written as a function of the remaining n− 1 variables, as we have shown above. Hence,
there are truly only n− 1 independent coordinates in Sr. Although we shall not define the concept
of dimension here, the reader should keep this intuitive notion in mind: that a domain Ω in Rn
is a n-dimensional spaces, whereas its boundary ∂Ω is a n − 1-dimensional space11. This will be
important later on when we discuss functions defined on Ω and ∂Ω, i.e., f : Ω→ R and g : ∂Ω→ R,
respectively. f is then a function of n variables, while g is a function of n− 1 varaibles.

6. Partial derivatives

In this section we recall some basic notions about partial derivatives. The reader can check the
standard literature for a more detailed review of the topics here presented. The partial derivative
with respect to the iih coordinate will be denoted by

∂

∂xi
, or ∂i,

with higher order derivatives denoted accordingly, e.g.,

∂2

∂xi∂xj
, ∂2

ij , or simply ∂ij .

We sometimes speak simply of “derivative” to mean “partial derivative.” If f is a function of n
variables (for instance, a function defined in Rn), i.e., f(x1, x2, . . . , xn), its derivative with respect
to the iih coordinate is also denoted by a subscript:

fi = ∂if,

or yet

fxi = ∂if.

Notice that if x ∈ Rn, then f(x) means that f is a function of n variables, i.e., f(x) = f(x1, x2, . . . , xn),
in which case fi(x) means the derivative of f with respect to the iih coordinate evaluated at x. You
should be careful not to confuse the notation fi for partial derivatives with the notation for the ith

component of a vector valued function.
A function is said to be k-times differentiable if all its partial derivatives up to order k exist,

and k-times continuously differentiable if all its partial derivatives up to order k exist and
are continuous. It is important to notice the difference between these two concepts. The reader is
encouraged to try to find an example of a function whose derivative exists but is not continuous;
i.e., find f : R→ R, such that f ′ is well-defined, but f ′ is not a continuous function. We denote by
Ck(Ω) the set of real-valued k-times continuously differentiable functions defined on Ω (recall that
Ω is always a domain in Rn). More precisely,

Ck(Ω) =
{
f : Ω→ R

∣∣∣ all partial derivatives of f up to order k exist and are continuous
}
.

The sets Ck(Ω) and Ck(∂Ω) are defined similarly12.
From now on, it will be assumed that the functions involved are sufficiently differentiable, so

that all the formulas involving derivatives will make sense.

11To be more precise, the boundary is a space of at most n− 1 dimensions. However, in all cases relevant for this
course, it will in fact consist of a n− 1 dimensional space.

12The reader should make sure that he or she understands the definition of derivative of a function defined on a
closed set, such as Ω.
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A very important tool to compute derivatives is provided by the chain rule. Recall that if
f : R→ R and g : R→ R are differentiable, then

(f ◦ g)′(x) = f ′(g(x))g′(x),

where f ◦ g is the composition of f and g. We can omit x and write the above as

(f ◦ g)′ = (f ′ ◦ g)g′.

Next, we recall how this rule generalizes to functions of several variables.
Consider g : (a, b) → Ω and f : Ω → R, so that f ◦ g : R → R is well-defined. We can write

g = (g1, g2, . . . , gn). Thus,

(f ◦ g)′(x) =
n∑
i=1

∂if(g(x))g′i(x),

or simply

(f ◦ g)′ =
n∑
i=1

(∂if ◦ g)g′i.

Sometimes one sees the above written as

(f ◦ g)′ =
n∑
i=1

∂ifg
′
i.

In this last expression, it is implicitly understood that for each x ∈ (a, b), ∂if is to be evaluated at
g(x), i.e., ∂if(g(x)), even though the composition ◦g in ∂if ◦ g has been omitted. Although this
may be a bit confusing at first sight, it is the only thing that makes sense, since we are computing
the derivative of the composition f ◦ g.

There is a simple mnemonics for the chain rule. Recall that for single variable functions, we can
write x = g(t) and f = f(x), so that

d

dt
(f ◦ g) =

df

dx

dx

dt
, (6.1)

where of course dx
dt = g′.

In the case g : (a, b) → Ω and f : Ω → R, let us write x = g(t), so that x = (x1, x2, . . . , xn) =
(g1, g2, . . . , gn), i.e., xi(t) = gi(t). Then

(f ◦ g)′ =
n∑
i=1

∂f

∂xi

dxi
dt
, (6.2)

where dxi
dt = g′i. Comparing (6.1) with (6.2), it is seen that they have exactly the same form, except

that because f is a function of n variables, in (6.2) the derivatives of f are partial derivatives and
we have to sum over the different components xi. Notice that each xi = gi is a function of only
one variable (the variable t). Notice also that with this notation, there is no need to write the
composition ◦g along with the partial derivative of f : since the coordinates in Ω are denoted by x,
and we wrote ∂f

∂xi
, it is implicitly understood that this is evaluated at x ∈ Ω; but x = g(t).

Sometimes, we shall also need to compute the derivative of the composition of two functions of
several variables. Suppose Ω0 ⊂ Rm and Ω1 ⊂ Rn are two domains in Rm and Rn, respectively
(notice that m and n can be different). Let g : Ω0 → Ω1 and f : Ω1 → R, so that f ◦g is well-defined.
Notice that f ◦ g is a function of m variables, thus, when computing derivatives of f ◦ g we have to
talk about its partial derivatives. To do so, we apply formula (6.2) for each partial derivative. More
precisely, denote the coordinates in Ω0 by x, so x = (x1, x2, . . . , xm) ∈ Ω0, and the coordinates in
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Ω1 by y, so y = (y1, y2, . . . , yn) ∈ Ω1. Then we have y = g(x) for each x ∈ Ω0, i.e., yi = gi(x),
i = 1, 2, . . . ,m. The ith partial derivative of f ◦ g is given by

∂(f ◦ g)

∂xi
=

n∑
j=1

∂f

∂yj

∂yj
∂xi

, (6.3)

where
∂yj
∂xi

=
∂gj
∂xi

. Notice that again, by the conventions we adopted to indicate the coordinates in

Ω0 and Ω1, there is no need to write ◦g along with ∂f
∂yj

since yj = gj(x). The reader should compare

(6.3) with (6.2) and realize that the latter is a particular case of the former when m = 1.
If f : Ω ⊂ Rn → R, its gradient, denoted ∇f , is the n-component vector defined as

∇f = (∂1f, ∂2f, . . . , ∂nf).

And if f : Ω ⊂ Rn → Rm, its Jacobian matrix, denoted Df , is given by

Df =


∂1f1 ∂2f1 · · · ∂nf1

∂1f2 ∂2f2 · · · ∂nf2
...

...
∂1fm ∂2fm · · · ∂nfm


Other notations for Df are

∂(f1, f2, . . . , fm)

∂(x1, x2, . . . , xn)
or (∂ifj).

With these notations, it is instructive to show that (6.2) is given by

(f ◦ g)′ = 〈∇f ◦ g, g′〉,

and that (6.3) can be written as

D(f ◦ g) = ∇f ◦ g ·Dg.
In this last expression, · is simply the matrix multiplication of the 1×n matrix ∇f ◦g by the n×m
matrix Dg. The result is a 1×m matrix whose ith column is the ith partial derivative of f ◦ g. The
attentive reader has probably already noticed that ∇f equals Df when f : R→ Rn. Therefore, all
of the above formulas for the chain rule are particular cases of the general formula:

D(f ◦ g) = Df ◦ g ·Dg.

7. Integrals

Here we recall some basic facts about integrals of functions of several variables. It will be assumed
that the functions satisfy all the required hypotheses to make the integrals involved well-defined.
The reader can check the standard literature for a more detailed review of the topics here presented.

The integral of a function f : Ω ⊂ Rn → R will be denoted by∫
Ω
f.

Notice that we do not write the volume element dV or d~x for this multidimensional integral,
although sometimes it may be convenient to do so (e.g., to stress which ones are the variables of
integration), in which case we shall write ∫

Ω
f(x) dx.

Notice, also, that dx represents the volume element in n-dimensions, i.e.,

dx = dx1dx2 · · · dxn,
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so
∫

Ω f(x) dx can be written more explicitly as∫
Ω
f(x1, x2, . . . , xn) dx1dx2 · · · dxn.

The above also implies that we avoid using the notations of “several integrals.” For example, if Ω
is a domain in R2, we do not write,

x

Ω

f(x1, x2) dx1dx2

since, once it is known that Ω ⊂ R2, it is superfluous to write the integral sign twice.
Consider a domain Ω with smooth boundary ∂Ω. Remember that it is possible to carry out

integration of functions defined over ∂Ω, which we write,∫
∂Ω
g,

where g : ∂Ω → R. As before, we do not use some of the “standard” notation found in calculus

books, avoiding writing dA, d ~A, etc. for the area element of ∂Ω. When it is necessary to write
such an area element, we denote it by ds, ∫

∂Ω
g ds,

or ∫
∂Ω
g(x) ds.

Intuitively, ds is the “restriction” of the n-dimensional volume element dx to the n−1-dimensional
boundary ∂Ω. For instance, if Ω ⊂ R3 is the upper-half plane,

Ω =
{

(x, y, z) ∈ R3
∣∣∣ z > 0

}
,

then ∂Ω is the xy-plane,

∂Ω =
{

(x, y, z) ∈ R3
∣∣∣ z = 0

}
,

and in this case ds = dxdy. It is important to remark that even if the boundary is n−1-dimensional,
ds is still referred to as an area element — although sometimes we also use volume element induced
on the boundary, induced volume element, or boundary volume element.

Again, the reader should notice that we avoid some of the more involved notation for the bound-
ary integrals. For instance, if Ω is two-dimensional, the ∂Ω is a curve, and

∫
∂Ω is sometimes written∮

∂Ω. This notation will not be employed here.
In some exceptional situations, one wants to integrate a function of n+m variables with respect

to, say, the first n variables. In such cases we write,

f = f(x, y) = f(x1, x2, . . . , xn, y1, y2, . . . ym),

and the integrals ∫
Ω
f(x, y) dx,

and ∫
∂Ω
g(x, y) ds(x),

where Ω ⊂ Rn. I.e., even though the functions f and g involve n+m variables, we are considering
an integral over a domain Ω that belongs to Rn — thus, we have integrals over the first n-variables.
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In the above, the x in ds(x) is used to emphasize that only the first n variables, encoded in x, enter
in the integration.

Consider the domain Ω ⊂ R3 given by

Ω =
{

(x, y, z) ∈ R3
∣∣∣ z ≥ 0

}
.

Then, as in the previous example, ∂Ω is the xy-plane,

∂Ω =
{

(x, y, z) ∈ R3
∣∣∣ z = 0

}
.

Given a function f : Ω→ R, one naturally gets a function defined on ∂Ω by simply setting z = 0,
i.e., the function f(x, y, 0) is a function defined on the boundary ∂Ω. The same idea works for a
general domain, as we next explain.

A function f : Ω → R naturally defines a function on ∂Ω, called the restriction of f to the
boundary, denoted by f |∂Ω, and given by

f |∂Ω (x) = f(x), for x ∈ ∂Ω.

From this it follows that we can also integrate a function defined on Ω over the boundary , i.e.,∫
∂Ω
f

is well-defined.
Another notion that needs to be recalled is that of the normal derivative. Given a domain ∂Ω

with smooth boundary and x ∈ ∂Ω, the normal vector to ∂Ω at x, denoted13 ν(x), or νx or yet
simply ν, is defined as the vector based at x that has unit length, is perpendicular to the tangent
plane to ∂Ω at x, and points towards the “outside” of Ω.

For example, if Ω is the domain

Ω =
{

(x, y) ∈ R2
∣∣∣ y > 0

}
,

then

∂Ω =
{

(x, y) ∈ R2
∣∣∣ y = 0

}
,

(i.e., ∂Ω is simply the x-axis) and for any (x, 0) ∈ ∂Ω, the normal is given by ν = (0,−1).
The normal to the n− 1-dimensional sphere Sr at x is given by ν = 1

rx. The reader should also

check that the normal to Sr(x0) at x is given by ν = 1
r (x− x0).

The normal derivative of a function f : Ω → R is a function on ∂Ω, denoted ∂f
∂ν or ∂νf , and

defined by

∂f

∂ν
= 〈∇f, ν〉, on ∂Ω,

or more explicitly,

∂f

∂ν
(x) = 〈∇f(x), ν(x)〉, x ∈ ∂Ω.

The Laplacian of a function f : Ω ⊂ Rn → R, denoted ∆f , is defined as

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

.

13Calculus books usually denote the normal vector by N , n, ~N , or ~n.
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The above can be written in several equivalent ways, e.g.,

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

=
n∑
i=1

∂2f

∂x2
i

= ∂2
11f + ∂2

22f + · · ·+ ∂2
nnf

=

n∑
i=1

∂2
iif

= f11 + f22 + · · ·+ fnn

=
n∑
i=1

fii

= fx1x1 + fx2x2 + · · ·+ fxnxn

=
n∑
i=1

fxixi .

With the above definitions at hand, we can now recall the following Green’s identities:∫
Ω
〈∇f,∇g〉 = −

∫
Ω
f∆g +

∫
∂Ω
f
∂g

∂ν
,

and ∫
Ω

(g∆f − f∆g) =

∫
Ω

(
g
∂f

∂ν
− f ∂g

∂ν

)
,

where f, g : Ω ⊂ Rn → R. These two formulas can be derived from the formula for integration
by parts in n-variables: ∫

Ω
g∂if = −

∫
Ω
f∂ig +

∫
∂Ω
gfνi,

where νi is the ith component of the normal vector ν = (ν1, ν2, . . . , νn).

8. Quantifiers and the formation of mathematical sentences

Here we introduce some mathematical symbols that are quite useful to make shorthand notation.
We also give some examples of their use, while making some general remarks about the form of
certain mathematical statements. Once more, we emphasize that our discussion is informal and
lacks proper mathematical rigor14.

Below is a list of mathematical symbols that are often used, along with their interpretation:

Symbol Reads as

∀ for all

∃ there exists

⇒ if... then

⇔ if and only if

Let us see some examples of how such symbols are employed, and also of how to structure mathe-
matical statements using them.

14The reader interested in a thorough discussion can consult [1, 4].
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For example,

x > 1⇒ x > 0

reads “if x is greater than one, then it is greater than zero.” While this statement is true (a number
that is greater than one is also greater than zero), the correct use of ⇒ has nothing to do with
whether the sentence is in fact true. In other words, the sentence x > 1⇒ x > 0 draws a conclusion
about x, namely, that x > 0, under the assumption that x > 1. But whether or not the x in question
is in fact greater than one is completely open. Thus,

x > 0⇒ x > 1

is also a correct use of the symbol ⇒, except that now the sentence is false: from the knowledge
that x > 0, it cannot be concluded that x > 1, since there are numbers that are greater than zero
but are not greater than one. Summing up, ⇒ is used in form

Claim 1⇒ Claim 2

to state that if Claim 1 is true, then Claim 2 must also be true. Whether or not Claim 1 is in
fact true is not addressed. As a colloquial analogy, the reader can imagine a sentence like “If it
rains, then the floor gets wet.” It does not say anything about the actual status of the weather,
i.e., whether it is raining or not.

Also, the full statement “if .... then ...” does not have to be true in order to carry a correct use
of ⇒. Although we shall not define what is meant by “correct use,” the idea is that it is employed
in a sentence that makes sense. The statement x > 0 ⇒ x > 1 makes sense, i.e., we can read and
understand it, even though it is a wrong statement (in fact, had we been unable to understand what
it says, we would not even be capable of saying whether it is right or wrong). As another colloquial
analogy, consider the statement “If I drink clean water, then I will get very sick.” This is a correct
use of “if” and “then”: the sentence is well-formed, it makes sense, and it is grammatically correct
— despite the fact that its content is false.

One important thing to keep in mind is that even if Claim 1 ⇒ Claim 2 is true, knowing that
Claim 2 is true does not say anything about Claim 1. For instance, consider the statement: if a
(differentiable) function f has a local maximum at a, then f ′(a) = 0. This statement is true, as you
learned in calculus. However, knowing that f ′(a) = 0 does not give information about the nature
of the point a; it could be a local maximum, a local minimum, or neither (e.g., the derivative of
x3 at zero is zero, but zero is neither a local maximum nor a local minimum). Using once more an
analogy, even if the statement “If it rains, the floor gets wet” is true, we cannot conclude that it
had rained by noticing that the floor is wet.
∃ is used to indicate that there is at least one element in a set satisfying a certain property. For

instance,

∃x ∈ R, x2 − 1 = 0

reads, “there exists an element x in the set of real numbers such that x2 − 1 = 0.” Notice that ∃
does not say that “there exists only one.” For instance, the above statement is true because x = 1
satisfies x2− 1 = 0, but x = −1 also satisfies the equation. Had we claimed that there existed only
one element satisfying x2 − 1 = 0, then the statement would have been false.

As it happened for⇒, the right use of ∃ has nothing to do with whether the statement is correct
or not. For instance,

∃x ∈ R, x2 + 1 = 0

is false, since there is no real number x satisfying the equation x2 + 1 = 0. However, this was a
perfect legitimate use of ∃, as the statement ∃x ∈ R, x2 + 1 = 0, while false, is something that
makes sense, in the sense that we can perfectly understand what is being claimed.
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∀ is used to indicate that certain statement being made is to be applied for all elements under
consideration. For instance,

∀x ∈ (−1,∞), x+ 1 > 0

reads “for all x belonging to (−1,∞), x+1 is greater than zero.” We sometimes find more convenient
to state this in the reverse order15, i.e.,

x+ 1 > 0 ∀x ∈ (−1,∞),

reading “x+ 1 is greater than zero for all x belonging to (−1,∞).” We use “for any” as a synonym
of ∀, so we could also have said “x+1 is greater than zero for any x belonging to (−1,∞).” As in the
previous examples, notice that the correct use of ∀ has nothing to do with whether the statement
being made is true or false.

Finally, ⇔ is used as follows:

Claim 1⇔ Claim 2

means that Claim 1 ⇒ Claim 2 and, reciprocally, Claim 2 ⇒ Claim 1. For instance,

x2 = 0⇔ x = 0

reads “x2 is equal to zero if and only if x is equal to zero,” and it encodes two statements: that if
x2 = 0 then x = 0, and also that if x = 0 then x2 = 0. Once more, we remark that while the above
statement is true, the correct use of ⇔ is independent of this.
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