
HOMEWORK 1

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Review multivariable calculus, especially the chain rule in several variables and
vector identities/operators.

Problem 2. Verify whether the given function is a solution of the given PDE:

(a) u(x, y) = y cosx+ sin y sinx, uxx + u = 0.

(b) u(x, y) = cos x sin y, (uxx)
2 + (uyy)

2 = 0.

Problem 3. Determine whether the PDEs below are linear or nonlinear:

(a)
∂2u

∂t2
+ et

∂u

∂x
+ u = 0.

(b) ∂xu∂yu = 1.

(c)
∂2z

∂t2
+ et

∂z

∂x
+ cos z = 0.

(d) (uxx)
2 + (uyy)

2 = 1.

Problem 4. Consider Maxwell’s equations:

divE =
%

ε0
,

divB = 0,

∂B

∂t
+ curlE = 0,

∂E

∂t
− 1

µ0ε0
curlB = − 1

ε0
J.

Assume that % and J vanish. Show that Maxwell’s equations then imply that E and B
satisfy the wave equation:

∂2E

∂t2
− 1

ε0µ0

∆E = 0,

and

∂2B

∂t2
− 1

ε0µ0

∆B = 0.

Interpret your result. Can you guess what the constant 1
ε0µ0

must equal to?
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HOMEWORK 2

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Consider Euler’s equations:

∂t%+ ui∂i%+ %∂iu
i = 0,

%(∂tu
j + ui∂iu

j) +∇jp = 0,

where we recall that p = p(%). A fluid is called incompressible if % = constant, in which case
we can set % = 1. In this case, the equations describing the fluid motion are

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0,

which are called the incompressible Euler equations. For an incompressible fluid, however,
the pressure is no longer given by p = p(%), since the pressure would then be constant, but
experiments show that the pressure can vary even if the density remains (approximately)
constant. Show that in the case of the incompressible Euler equations, the pressure is given
as a solution to

∆p = −∂jui∂iuj.

Problem 2. Consider the incompressible Euler equations (see previous question):

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0.

The vorticity ω of the fluid is defined as

ω := curlu.

The vorticity is an important physical quantity; it measures, as the name suggests, “eddies”
in the fluid. It is, therefore, important to know how it changes in time and space (i.e., what
the dynamics of the vorticity is). Show that ω satisfies the following PDE:

∂tω +∇uω−∇ωu = 0.

Above, the operators ∇u and ∇ω are defined as follows. For any vector field X, ∇X is a
short hand notation for X · ∇, i.e.,

∇X := X · ∇,
where we recall that X · ∇ has been defined in class as

X · ∇ = X i∂i.

Problem 3. Show that in spherical coordinates the Laplacian reads

∆ = ∂2r +
2

r
∂r +

1

r2
∆S2 ,
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2 Vanderbilt University

where

∆S2 := ∂2φ +
cosφ

sinφ
∂φ +

1

sin2 φ
∂2θ

is the Laplacian on the unit sphere, r ∈ [0,∞), φ ∈ [0, π], and θ ∈ [0, 2π).

Problem 4. Show that the Φ equation in the separation of variables for the Schrödinger
equation can be written as

sinφ

Φ

d

dφ

(
sinφ

dΦ

dφ

)
−m2 = −λ sin2 φ,

where λ = 2µ
~2 a.



HOMEWORK 3

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.
In the next two questions, you will be asked to perform some of the computations skipped

in class in our derivation of solutions to the Schödinger equation for an electrostatic potential.

Question 1. Consider the ODE

d

dx

(
(1− x2)dΦ

dx

)
+

(
λ− m2

1− x2

)
Φ = 0. (1)

Show that a solution to (1) is given by

Φ(x) = (1− x2)
|m|
2
d|m|P (x)

dx|m|
, (2)

where P solves

(1− x2)d
2P

dx2
− 2x

dP

dx
+ λP = 0. (3)

Hint: Differentiate (3) a few times and observe the resulting pattern, or use induction, to
conclude that if P solves (3) then

(1− x2)d
|m|+2P

dx|m|+2
− 2(|m|+ 1)x

d|m|+1P

dx|m|+1
+ (λ− |m|(|m|+ 1))

d|m|P

dx|m|
= 0. (4)

Next, let Φ̃ be defined by

Φ(x) = (1− x2)
|m|
2 Φ̃(x), (5)

where Φ is a solution to (1). Plugging (5) into (1), conclude that Φ̃ satisfies

(1− x2)d
2Φ̃

dx2
− 2x (|m|+ 1)

dΦ̃

dx
+ (λ− |m|(|m|+ 1)) Φ̃ = 0. (6)

Compare (6) with (4) to obtain the result.

Question 2. Consider the ODE

1

%2
d

d%

(
%2
dR

d%

)
+

(
−1

4
− `(`+ 1)

%2
+
γ

%

)
R = 0. (7)

Show that (7) does not admit a non-trivial solution of the form

R(%) =
∞∑
k=0

ak%
k. (8)

Hint: Plug (8) into (7) to derive

−`(`+ 1)a0%
−2 + ((2− `(`+ 1))a1 + γa0) %

−1

1
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+
∞∑
k=0

(
((k + 3)(k + 2)− `(`+ 1)) ak+2 + γak+1 −

1

4
ak

)
%k = 0. (9)

From (9), conclude that ak = 0 for all k.



HOMEWORK 4

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Consider the following initial-boundary value problem for the wave equation
in one dimension:

utt − c2uxx = 0, in (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ≥ 0,

u(0, x) = g(x), 0 ≤ x ≤ L,

∂tu(0, x) = h(x), 0 ≤ x ≤ L,

where g and h are given and satisfy the compatibility conditions g(0) = g(L) = 0 = h(0) =
h(L). Use separation of variables to show that

u(t, x) =
N∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
,

is a solution to the equation and satisfies the boundary conditions, where an and bn are
arbitrary coefficients.

Problem 2. Consider the following initial-boundary value problem for the heat equation in
one dimension:

ut − uxx = 0, in (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ≥ 0,

u(0, x) = g(x), 0 ≤ x ≤ L,

where g is given and satisfies the compatibility conditions g(0) = g(L) = 0. Use separation
of variables to show that

u(t, x) =
N∑

n=1

ane
−n2π2

L2 t sin
nπx

L
,

is a solution to the equation and satisfies the boundary conditions, where the an’s are arbi-
trary coefficients. What happens when t→∞? Interpret your answer physically.

Problem 3. Find the Fourier series of the given functions:

(a) f(x) = x, −1 ≤ x ≤ 1.

(b) f(x) = sin(5x), −π ≤ x ≤ π.

Problem 4. Consider the function

f(x) =

{
x2 sin 1

x
, x 6= 0,

0, x = 0.

1
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Show that f ∈ C0(R), that f is differentiable, but f /∈ C1(R).

Problem 5.

(a) Prove that Ck(I) is a vector space.

(b) Prove that the derivative d
dx

is a linear map between Ck(I) and Ck−1(I). What happens
in the case k =∞?



HOMEWORK 5

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. The goal of this problem is to prove the following theorem stated in class: Let
g, h ∈ C2([0, L]) satisfy g(0) = g(L) = 0 = h(0) = h(L) and g′′(0) = g′′(L) = 0 = h′′(0) =
h′′(L). Then, the formal solution

u(t, x) =
∞∑
n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
,

where an and bn are given by

an =
2

L

∫ L

0

g(x) sin
nπx

L
dx,

bn =
2

nπc

∫ L

0

h(x) sin
nπx

L
dx,

is a C2 solution of the initial-boundary value problem

utt − c2uxx = 0, in (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ≥ 0,

u(0, x) = g(x), 0 ≤ x ≤ L,

∂tu(0, x) = h(x), 0 ≤ x ≤ L,

To prove the theorem, proceed as follows.

(a) Show that g and h can be extended to 2L-periodic C2 odd functions on R. Call these

extensions g̃ and h̃.

(b) Use D’Alembert’s formula to solve the initial value problem for the wave equation on R
with data g̃ and h̃. (In class we derived D’Alembert’s formula with c = 1; here you need the
formula for a general c.)

(c) Consider the Fourier series for g̃ and h̃. Plug these into D’Alembert’s formula and using
trigonometric identities arrive at the expression given by the formal solution for x ∈ [0, L].
Observe that the boundary conditions are satisfied.

(d) In all the above, make sure that you have the correct assumptions to guarantee the
convergence of the Fourier series you employ and whatever other theorem you may need to
invoke.

Problem 2. In class we saw that if u0 ∈ C2(R) and u1 ∈ C1(R), then the Cauchy problem
for the 1d wave equation with data (u0, u1) admits a unique C2 solution. What can you say
if u0 ∈ Ck(R) and u0 ∈ Ck−1(R), k > 2?

1
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Problem 3. In class we solved the 1d wave equation for t ≥ 0. Making a change of variables
t 7→ −t, show that we can also solve the wave equation for negative times. Conclude that
D’Alembert’s formula is valid for −∞ < t <∞.

Problem 4. Let F,G ∈ C2(R). Show that F (x+ ct) +G(x− ct) is a C2 solution to the 1d
wave equation.



HOMEWORK 6 - PART I

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Consider the following initial-value problem for the wave equation in one di-
mension:

utt − c2uxx = 0 in (−∞,∞)× (0,∞),

u(x, 0) = f(x),

ut(x, 0) = g(x),

(1)

(a) Solve (1) when f(x) = x2 and g(x) = 0.

(b) Assume now that c = 1 and

f(x) =

{
1, −2 ≤ x ≤ 0

0, otherwise,

and

g(x) =

{
−1, −1 ≤ x ≤ 1

0, otherwise.

Draw a diagram in the (x, t)-plane indicating the different regions where the solution is
influenced by the initial condition f and g and the regions where the solution is identically
zero. (You do not have to find u.) Is the solution to this problem a classical solution?

Problem 2. Consider the Cauchy problem for the 1d wave equation with data (u0, u1) and
then with data (ũ0, ũ1). Let u and ũ be the corresponding solutions. Assume that on [a, b]
we have u0 = ũ0 and u1 = ũ1 Prove that u = ũ in the domain of dependence with base [a, b].

Problem 3. In the proof of existence of solutions to the initial-boundary value problem for
the 1d wave equation (HW5, problem 1), drop the hypothesis g′′(0) = g′′(L) = 0 = h′′(0) =
h′′(L). What can you say about the formal solution in this case? (Will it be an actual
solution in any sense? Classical, generalized?)

Problem 4. Write each PDE below in the form F (x, u,Du, . . . , Dmu) = 0, i.e., identify the
function F . State if the PDE is homogeneous or non-homogeneous, linear or non-linear.

(a) utt − uxx = f.

(b) uy + uux = 0.

(c) aijk∂3
ijkv + v = 0,

where i, j, k range from 1 to 3.

(d) uxx + x2y2uyy = (x + y)2.

1
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(e) uxy + cos(u) = sin(xy).

Problem 5. Consider a PDE F (x, u,Du, . . . , Dmu) = 0. Prove that the PDE is linear (as
defined in class in terms of linearity of F with respect to some of its entries) if and only if
it can be written as ∑

|α|≤k

aαD
αu = f,

as stated in class.



HOMEWORK 6 - PART II

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. For each set Ω below: (i) describe Ω in words (e.g., the first quadrant, in-
tersection of the ball of radius one with the third quadrant, etc), drawing a picture when
possible; (ii) identify ∂Ω, and Ω; (iii) identify the area element of the boundary, i.e., dS;
(iv) identify the normal to the boundary. The notation Br(z) is used for the (open) ball of
radius r centered at z ∈ Rn.

(a)

Ω =
{
x ∈ R2

∣∣∣ |x| < 5
}
.

(b)

Ω =
{
x ∈ R2

∣∣∣ − 2 < x1 < 2,−1 < x2 < 1
}
.

(c)

Ω =
{
x ∈ R3

∣∣∣ − 1 < x1 < 1,−1 < x2 < 1,−1 < x3 < 1
}
.

(d)

Ω =
{
x ∈ R2

∣∣∣ − 1 < x1 < 1,−1 < x2 < 1
}⋂

B1(0).

(e)

Ω =
{
x ∈ R3

∣∣∣x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}
.

(f)

Ω =
{
x ∈ R3

∣∣∣x3 > 0
}⋂

Br(0).

(g)

Ω =
{
x ∈ R3

∣∣∣〈x, (1, 1, 1)〉 = 0
}⋂

B1(0).

Problem 2. Recall the integration by parts formula in several dimensions:∫
Ω

f
∂g

∂xi
= −

∫
Ω

∂f

∂xi
g +

∫
∂Ω

fgνi. (1)

Use (1) to prove the following formulas:

(a) Green’s first identity: ∫
Ω

∇f · ∇g = −
∫

Ω

f∆g +

∫
∂Ω

f∇g · ν.

1
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(b) Green’s second identity:∫
Ω

(f∆g − g∆f) =

∫
∂Ω

(f∇g · ν − g∇f · ν).

(c) ∫
Ω

∆f =

∫
∂Ω

∇f · ν.

(d) Divergence theorem: ∫
Ω

divF =

∫
∂Ω

F · ν.

In all questions below, let Ω be a domain in Rn, i.e., Ω is an open and connected set
contained in Rn. For concreteness you can imagine that Ω is the ball of radius one centered
at the origin.

Recall that we say that a function u is k-times continuously differentiable if all derivatives
up to order k of u exist and are continuous.

Remember that we defined the spaces

Ck(Ω) =
{
u : Ω→ R

∣∣u is k-times continuously differentiable
}
.

Problem 3. Show that Ck(Ω) is a vector space.

Problem 4. Show that the Laplacian ∆ is a linear map between Ck(Ω) and Ck−2(Ω), k ≥ 2.

Problem 5. Recall that

C∞(Ω) =
{
u : Ω→ R

∣∣u ∈ Ck(Ω) for every k
}
.

Show that C∞(Ω) is a vector space and that the Laplacian ∆ is a linear map from C∞(Ω)
to itself.

Problem 6. Give a reasonable argument for why Ck(Ω) is an infinite-dimensional vector
space. You are not asked to provide a mathematical and rigorous proof. Instead, you should
use your knowledge of calculus and linear algebra, as well as the material we learned in
class, to construct a sensible explanation, even if only an intuitive one (but if you do know
a rigorous proof, that is welcome as well).

Problem 7. In class we said Ω has a Ck boundary if ∂Ω can be written locally as the graph
of a Ck function. Make this definition more precise upon using mathematical quantifiers.

Problem 8. Show that if aij is symmetric in i and j, then ai j = aji so that we can write

simply aij, but that this is not the case otherwise.

Problem 9. Let a be a n × n matrix with entries ai j, where i the row and j the column.

Show that the trace of a is given by ai i. If a is invertible with entries (a−1)i j, show that

ai j(a
−1)j` = δi`.

Show that the determinant of a is given by

det(a) =
1

n!
εi1i2···inε

j1j2···jnai1j1a
i2
j2
· · · ainjn .
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Above, εi1i2···in is the n-dimensional totally anti-symmetric symbol, defined as εi1i2···in = 1
if i1, i2, · · · , in is an even permutation of 1, 2, · · · , n, εi1i2···in = −1 if i1, i2, · · · , in is an odd
permutation of 1, 2, · · · , n, and εi1i2···in = 0 otherwise.
Hint: Show the determinant formula only for n = 2 and, perhaps, n = 3. The general case
is too lengthy for you to spend time on this. You can, however, see the general proofs in
textbooks if you are interested.



HOMEWORK 7

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Prove the following fact that we used in the construction of solutions to Pois-
son’s equation: let f : Rn → R be continuous, then

lim
r→0+

1

vol(∂Br(x))

∫
∂Br(x)

f dS = f(x).

Hint: Consider the difference f(x)− 1
vol(∂Br(x))

∫
∂Br(x)

f dS and use 1
vol(∂Br(x))

∫
∂Br(x)

dS = 1.

Problem 2. In class, we constructed solutions to Poisson’s equation in Rn for n ≥ 3. Carry
out the construction in the case n = 2. You do not have to do all the steps. Rather, follow
what was done in class and point out what changes in n = 2. This boils down to slightly
modifying some of the estimates for the fundamental solution.

Problem 3. Let u be a non-trivial harmonic function in Rn. Can u have compact support?

Hint: mean value theorem.

Problem 4. Prove the converse of the mean value theorem. I.e., let u ∈ C2(Ω) be such that

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

u dS

for each Br(x) ⊂ Ω. Show that ∆u = 0 in Ω.

Hint: Assume that ∆u(x) 6= 0 for some x ∈ Ω. Use the functions f(r), f ′(r) used in the
proof of the mean value to derive a contradiction.

Problem 5. Give an interpretation of Poisson’s equation in an application (e.g., in physics,
biology, etc.).

1



HOMEWORK 8

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Prove the differentiation of moving regions formula stated in class:

d

dτ

∫
Ω(τ)

f dx =

∫
Ω(τ)

∂τf dx+

∫
∂Ω(τ)

fv · ν dS. (1)

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1) in
the following particular case. Assume that n = 3 and that the domains Ω(τ) are given by a
one-parameter family of one-to-one and onto maps ϕ = ϕ(τ, x) : Ω→ Ω(τ) = ϕ(τ,Ω), where
Ω := Ω(0) and ϕ(0, ·) = idΩ, where idΩ is the identity map on Ω, i.e., idΩ(x) = x, x ∈ Ω.

(a) For each fixed τ , consider the change of variables x = ϕ(τ, y), so that∫
Ω(τ)

f(τ, x) dx =

∫
Ω

f(τ, ϕ(τ, y))J(τ, y) dy, (2)

where J(τ, y) is the Jacobian of the transformation x = ϕ(τ, y) for fixed τ .

(b) Show that there exists a on parameter family of vector fields u(τ, ·) such that

∂τϕ(τ, x) = u(τ, ϕ(τ, x)).

(c) Explain why u = v on ∂Ω(τ).

(d) Show that

∂τJ(τ, x) = (div u)(τ, ϕ(τ, x))J(τ, x).

(e) Use (2) and the above to compute d
dτ

∫
Ω(τ)

f , and do an integration by parts to obtain

the result.

Problem 2. Let u be a solution to the Cauchy problem for the wave equation in Rn. Assume
that u0 and u1 have their supports in the ball BR(0) for some R > 0. Show that u = 0 in
the exterior of the region

I := {(t, x) ∈ (0,∞)× Rn |x ∈ BR+t(0) }.

I is called a domain of influence for that data on BR(0) (compare with the 1d case).

Problem 3. Let u be a solution to the Cauchy problem for the wave equation and assume
that u0 and u1 have compact support.

(a) Show that the energy

E(t) :=
1

2

∫
Rn

[
(∂tu)2 + |∇u|2

]
dx

is well-defined.

1
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(b) Show that

E(t) = E(0),

i.e., the energy is conserved.

Problem 4. Let u be a solution to the Cauchy problem for the wave equation in R3 with
compactly supported data (i.e., u0 and u1 have compact support).

(a) Show that there exists a constant C > 0, depending on u0 and u1, such that

|u(t, x)| ≤ C

t
, (3)

for t ≥ 1 and x ∈ R3. Thus, for each fixed x, u approaches zero as t → ∞, i.e., solutions
decay in time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes
outside BR(0) for some R > 0. This implies an estimate for the area of the largest region
within Bt(x) where the data is non-trivial.

(b) Is the estimate (3) sharp? (I.e., can it be improved to show that solutions decay faster
in time than 1

t
?)

(c) Do we still get decay if the data does not have compact support?



HOMEWORK 9 - PART I

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave
equation in 1d with zero data and source term f is give by

u(t, x) =
1

2

∫ t

0

∫ x+s

x−s

f(t− s, y) dyds. (1)

To do so, first use D’Alembert’s formula to conclude that

us(t, x) =
1

2

∫ x+t−s

x−t+s

f(s, y) dy.

Use the definition of u in terms of us and change variables to conclude (1).

Problem 2. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave
equation in 3d with zero data and source term f is give by

u(t, x) =
1

4π

∫
Bt(x)

f(t− |y − x|, y)

|y − x|
dy. (2)

(The integrand in (2) is known as the retarded potential.) To do so, first use Kirchhoff’s
formula for solutions in n = 3 to conclude that

us(t, x) =
t− s

vol(∂Bt−s(x))

∫
∂Bt−s(x)

f(s, y) dS(y).

Use the definition of u in terms of us and change variables to conclude (2).

Problem 3. Show that there exists a constant C > 0 such that for any solution u to the 3d
wave equation it holds that

|u(t, x)| ≤ C

t

∫
R3

(|D2u0(y)|+ |Du0(y)|+ |u0(y)|+ |Du1(y)|+ |u1(y)|) dy

for t ≥ 1.

Hint: Use Kirchhoff’s formula, note that for any function f we have

f(y) = f(y)
y − x
t
· y − x

t

on ∂Bt(x), and use one of Green’s identities.

Problem 4. Consider continuous dependence on the data for the wave equation in 3d, where
smallness on the data part is measured with respect to the norm

‖f‖2 :=

∫
R3

(|D2f(y)|+ |Df(y)|+ |f(y)|) dy.

Give a precise formulation of the continuous dependence on the data and prove your state-
ment.

1
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Hint: Use the estimate of problem 3 as the basis for your statement, and give a similar proof
(now you have to also account for t < 1).



HOMEWORK 9 - PART II

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.
In this assignment, you will guided to construct solutions to the initial-value problem for

the heat equation in Rn:

ut −∆u = 0 in (0,∞)× Rn. (1)

Although this assignment has the complexity of a small class project, in that it is longer than
a typical HW and stands as a self-contained topic, it will be graded as a regular homework.

Unless stated otherwise, the notation below is as in class.

Problem 1. Look for a solution to (1) in the form

u(t, x) = t−αv(t−βx), (2)

where α and β will be chosen and v will be determined. More precisely, proceed as follows:

(a) Show that plugging (2) into (1) produces

αt−(α+1)v(y) + βt−(α+1)y · ∇v(y) + t−(α+2β)∆v(y) = 0, (3)

where y := t−βx.

(b) Set β = 1
2

in (3) to obtain

∆v(y) +
1

2
y · ∇v(y) + αv(y) = 0. (4)

(c) Assume that v is radially symmetric, i.e.,

v(y) = w(r), (5)

where w is to be determined. Show that in this case (4) becomes

w′′ +
n− 1

r
w′ +

1

2
rw′ + αw = 0. (6)

(d) Set α = n
2

in (6) to find

(rn−1w′)′ +
1

2
(rnw)′ = 0. (7)

(e) From (7), conclude that

rn−1w′ +
1

2
rnw = A, (8)

where A is a constant.

(f) Set A = 0 in (8) and conclude that

w(r) = Be−
1
4
r2 , (9)

where B is a constant.

1
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(g) Combine (2), (5), (9), and take into account the choices of α and β, to conclude that

u(t, x) =
B

t
n
2

e−
|x|2
4t , t > 0, (10)

is a solution to (1).

The previous question motivates the following definition. The function

Γ(t, x) :=

 1

(4πt)
n
2
e−

|x|2
4t , t > 0, x ∈ Rn,

0, t < 0, x ∈ Rn,

is called the fundamental solution of the heat equation. Note that for t > 0, Γ(t, x) is simply
(10) with a specific choice of the constant B. This choice of B is to guarantee Γ to integrate
to 1 (see the next question). In particular, Γ(t, x) is a solution of (1).

Problem 2. Use the fact that ∫
Rn

e−|x|
2

dx = π
n
2 (11)

to show that for each t > 0 ∫
Rn

Γ(t, x) dx = 1.

(You do not have to show (11).)

We now consider the initial-value problem for the heat equation:

ut −∆u = 0, in (0,∞)× Rn, (12a)

u(0, x) = g(x), x ∈ Rn. (12b)

Define

u(t, x) :=

∫
Rn

Γ(t, x− y)g(y) dy, t > 0, x ∈ Rn. (13)

For the next questions, in (12), assume that g ∈ C0(Rn) and that there exists a constant
C > 0 such that |g(x)| ≤ C for all x ∈ Rn.

Problem 3. Show that (13) is well-defined.

Problem 4. Show that u ∈ C∞((0,∞)× Rn), where u is defined by (13).

Hint: Use the following fact, that you do not need to prove. Let α be a multiindex and
t > 0. If ∫

Rn

Dα
xΓ(t, x− y)g(y) dy

is well-defined, then

Dαu(t, x) =

∫
Rn

Dα
xΓ(t, x− y)g(y) dy,

where we write Dα
x on the RHS to emphasize that the differentiation is with respect to the

x variable.
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Problem 5. Show that u given by (13) is a solution to the initial-value problem (12).

Hint: Use the following fact, that you do not need to prove. For each x0 ∈ Rn,

lim
(t,x)→(0,x0)

u(t, x) = g(x0).

Problem 6. In (12), assume further that g has compact support and that g ≥ 0. Show that
for any t > 0 and any x ∈ Rn, u(t, x) 6= 0. Explain why this can be interpreted as saying
that, for the heat equation, information propagates at infinite speed. Contrast it with the
finite speed of propagation for the wave equation.
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Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. In the equations below, identify the functions a(t, x, u), b(t, x, u), and c(t, x, u)
and write the corresponding characteristic system.

(a) (1 + t2)∂tu + 3∂xu + u2 = 0.

(b) sin(x)etut + |u|3ux = 0.

Problem 2. Solve the problem below using the method of characteristics and give a de-
scription of the (projected) characteristics.

x∂tu− t∂xu− u = 0,

u(0, x) = h(x).

Problem 3. Does the transversality condition hold for the problem of question 2? What
can you say about uniqueness and how is it related to the solution you found?

Problem 4. Solve the following problems. In each case, sketch the characteristic curves,
and indicate the region in the xy-plane where the solution is defined.

(a) ux + uy = u2,

for (x, y) in the region {y ≥ 0}, with the condition u(x, 0) = g(x), where g is a given function.
Find the solution in the case g(x) = x2.

(b) ux + uy + u = 1,

with the condition u = sinx on y = x + x2, x > 0.

Problem 5. Solve

uux − uuy = u2 + (x + y)2,

with initial condition u(x, 0) = 1.

Hint: after writing the characteristic equations, identify an equation satisfied by x + y.

1
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MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. In class, in our proof of existence and uniqueness of solutions to the Cauchy
problem for first-order quasilinear PDEs in one dimension, we employed a theorem for ODEs
about existence, uniqueness, and continuous dependence on the data. Give a precise state-
ment of this theorem.

1
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Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Consider the characteristics (t, x(t, α)) for Burgers’ equation ∂tu + u∂xu = 0.
Let v be u written with respect to (t, α) coordinates, i.e., v(t, α) := u(t, x(t, α)). Show that
v satisfies ∂tv = 0, so v is constant in time. Does this not contradict the fact that solutions
to Burgers’ equation with non-trivial compactly supported date blow up in finite time?

Problem 2. In this question, you will provide a blow-up proof for Burgers’ equation different
than the one given in class.

(a) Differentiate the equation and show that the variable ψ := ∂xu satisfies the equation

∂tψ + u∂xψ = −ψ2. (1)

(b) Show that (1) implies that y(t) := ψ(t, x(t, α)) satisfies the Riccati equation ẏ = −y2
along the characteristics (t, x(t, α)).

(c) Use your knowledge of ODE to conclude, from the Riccati equation, blow-up for Burgers.

Problem 3. Define

‖u(t, ·)‖L∞(R) := sup
x∈R
|u(t, x)|.

Write Burgers’ equation as an ODE along the characteristics (similarly to what you did for
ψ in the previous problem) to conclude that

‖u(t, ·)‖L∞(R) = ‖u(0, ·)‖L∞(R) = ‖h‖L∞(R),

i.e., the L∞ norm is conserved over time.

1
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Unless stated otherwise, the notation and terminology below is the same used in class.

Problem 1. Consider the Cauchy problem for Burgers’ equation with data given by

h(x) =


1, x ≤ 0,

1− x, 0 < x < 1,

0, x ≥ 1.

(a) Show that the solution is given by

u(t, x) =


1, x ≤ t, t < 1,
1−x
1−t , t < x < 1, t < 1,

0, x ≥ 1, t < 1.

(b) The denominator of 1−x
1−t approaches zero when t→ 1−. Does that mean that |u(t, x)| →

∞ as t→ 1−? Does this not contradict your result from question 3 in HW 12? What exactly
is becoming singular when the characteristics intersect at (1, 1)?

(c) Let 0 < β < 1 and define, for t ≥ 1

ũ(t, x) =

{
1, x < βt+ 1− β,
0 x > βt+ 1− β.

Show that v given by

v(t, x) =

{
u(t, x), 0 ≤ t < 1,

ũ(t, x), t ≥ 1,

is a weak solution if and only if β = 1/2. (This was essentially done in class. Here, you have
to work out the calculations in more detail, including the case when Ω might intersect the
region {t ≤ 1}.)
Problem 2. Show that the function v in the previous problem verifies the Rankine-Hugoniot
conditions if an only if β = 1/2.

Problem 3. Prove that if u is a weak solution that is C∞ then it is in fact a classical
solution.

Problem 4. Formulate the definition of weak solutions, shocks, and the Rankine-Hugoniot
conditions for systems of conservation laws. Give a brief sketch of the proof of the Rankine-
Hugoniot theorem for systems (you do not have to do all the proof; it suffices to indicate
how to modify the N = 1 case done in class. Your answer should be two or three sentences
long.)

Problem 5. Show that the 1d compressible Euler equations form a system of conservation
laws.

1
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