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Abbreviations

ODE ordinary differential equation
PDE partial differential equation
Itw homework

LHS left hand side
RHS right hand side
iv v t with respect to

implies

E X example

Def definition

Theo theorem

Prop proposition

I end of a proof

LHS kits means that the LHS is defined

by the RHS
nd e

g Il Ld n dimensional

iff if and only if
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What are partial differential equation and why

t yth

Recall that an ordinary differential equation OBE
is an equation involving an unknown function of a single
variable and some of its derivatives For example

t y
2

0 unknown
Y nos linear 1stouter

y t y t y 0 1 unknown y linear 2 order

X 1 DI f u 0 whom u linear 2 under

1 2

are ODES We can also have systems of ODES i.e a system
of equation involving two or more unknown functions of a single
variable and their derivatives For example

Yy t t 0 unknowns Y and X linear 1st order

di yIt

a t v o

o t w u

y
o

h W non linear

2 order

w t w t w o 7














































































































are systems ofODE As we learn in ODE course one typically studies
ODE because many phenomena in science and

engineering are

model with ODES A limitation of ODE however is that they
are restricted to functions of a single varible whereas many important
phenomena are described by function of several variables For
instance

suppose we want to describe the temperature T in a
room It will in general be different at different positions in
the room so T is a function of Hy t T ca al change over
time thus T Ttt x y z An equation involving T and its1

f quit
it x y z

t t t ca tha hare denirah.ae
a with respect to any of the variable
i

y y y
t't Y o t which will be partial

ir o tires If of of if This will
be a partial differential equation Formally

Def.tt diff.etiqisPDE is an equation

rotting an uhknowfunction of two one more variable and some of itpartial derivatives AsystDEs is a system of equations
involving two or more unknown functions of two one more rariable
at some of their partial derivations A to a PDE
or system is a function that verifies the PDE
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Notation Since most of the fire we will be dealing with
functions of several variables the derivation will be partial
derivatives but we will often omit the word partial referring
simply f derivatives We will also often omit system
and use PDE to refer to both a single equation and
systems of PDEs

Basile application to science and engineering PDE arealso used in many branches of mathematics such as in complex
analysis or geometry see in particular Ricciflow and thePoisonconjecture PDE are also studied in mathematics for their ownsake i e from a pure point of view
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tentation
we will now give examples of PDEs Along the way we willintroduce some notation that will be used throughout
Re A it was the case fo obes whos we introduce a PDE

strictly speaking we have to specify where the equation is defined
We will often ignore this for the time being until u get to some
more fo nd aspectsof PDE theory

Laplacian
D u O

where B is the tapas operator defined by
Aia at II t

so explicitly Laplace's equation reals

9 t at 2
0

We will often denote coordinates in 112 by X xd x'I
in which case we write d as D 9 t yet ga
wa write expression of the form u ul X H X to indicate
the variable that a function depends on

e.g in this case that10



h is a function of X y and 3 We can also consider Laplace's
equation f u a function of x H r for some arbitrary nU i al H X o th i which case

D t a t t fair
so Laplace's equation reads

An 1 to y.t ntfII II 9 0

Laplace's equation has
many applications

Typically u represent the density of some quantity
e.g a chemical concentration Closely related to
Laplace's equation is the Poisson

Dn f
where f is a given faction

Heateguationordiegation
7th Du 0

This equation has many applications For example u
can represent the temperature so htt ex x't is the
temperature at the point CH H X at instant t More

11



generally u can represent the concentration of some quantitythat diffuse over time

Iota Throughout these notes we will use t to
denote a fine variable unless otherwise specified

Remarly The heat equation is also written a

7th k Bu 0 where he is a constant known as

diffusivity I most of these notes we will ignore physical
constants in the equations setting them

equal to L

Variegation
Utt An 0

Hen we recall the notation ut 9th htt h

Tff etc This equation describes a ware propagating

in a medium eg a radio ware propagating in space

n is the amplitude of the wave

Sometimes one writes htt c Du 0 where the constant
c is the speed of propagation of the wave we will see
later on why c is indeed the speed of propagation 12



Schridingation

iff t AI t VI o

where i is the complex unit in L V Vlt x H y
is a known

function called the potential whose
specific

form depends on the problem we are studying and the
unknown function 4T called the wave function is a

complex function i e

I u t i r

where n and v ane real valued functions

The Schrindinger equation is the fundamental
equation of quantum mechanics

B ios

Ut t hug 0

Burgers equation has applications is the study of
shock waves

13



Inelleuations
Of E curl B J

t B curl E 0

dir E 5
dir B 0

where the E and B are vector fields that are the

unknown functions or sector valued functions so they
have three component each

E E E E

B B B B

dis and curl are the divergence and curl operators
sometimes written as 0 and DX respectively curl
is also called the rotational Let us recall the

definition of these operators for any vectorfield
It I I we have

dir I 9 I 7 I t 9

and 14



curl I 9 I 9 QI't SI I

where we have introduced the following notation

9

E and B represent the electric and magneticfields
respectively g represents the charge density and

J the current density which are given

Maxwell's equations are the fundamental equations
of electromagnetism

Notation Note that above we did not
denote vectors with an arrow i e E and B as

usually done in calculus We will avoid using arrows

for sectors it will always be clear from the context

if a quantity is a scalar a vector field etc
We also denote the components or entries of a vector with

superscrips and not with subscripts as usually in calculus i.e

and not Ii but see belowfor exceptions 15



Similarly we will denote points in space by a single
letter without an arrow e y X x X x

in IR or more generally X X X X X l

in Mn So Sometimes we write expression like
u ult x instead of Gault x x x'I

µot The cure can be written in a compact for as

cure E i
e j h f Eh

meaning the ith
component of the
vector curl

In this expression the following consentios is adopted E i

thtottisynnetisymbol defined as

n fi i i i ttti t i
0 otherwise

16



E g et L e
t
L e't L

12
O Ih means Ih but we write

it here with a subscript because of the following
summatio convention which will be used throughout

when an index such as i j etc

range

E g we can write the divergence as
3

dir I 9 Ei I 9 i

i I

QI't I t E

R we will give
another interpration to

Ih i.e Eh but with the index downstairs which will
make our convention more systematic later on

17



In the expression for curl for example

curl E
2 e'Jh 9 Ihj

e GE te

7 I t 9 I

We also sometimes use the notation

cure I curl x

EuterSthequation

Ots t 4 8 g t g dir a O

stfu t K o n t Op p
Du

These equations describe the notion of a

fluid The first equation is sometimes called

the continuity equation conservation of mass
and the second one the momentum equation

18



conservation of momentum

g a git x is a scalar function representing
the fluid's density and u htt xl is a recta

field representing the fluid velocity fail
h ane the unknowns p is a giron function
of S i e p pls e.g pig ft P
represents the pressure of the fluid M Zo
is a constant known as the viscosity of
the fluid O is the gradient operator recall

that Vf def 91,93ft where f is a

scale function so the ith component read

f
i
dif we also crite Oif for f i

U O is the operator

u P ui Ji
u l t n'T t u'T

19



when a 0 acts on a rector field it does
so componentwise D also acts on a vector

field componentwise

These equations are known as the

Navier Stokes equation if y O and

Erle equations if y 0 They are the

fundamental equations of hydrodynamics

In models where the density is assumed

to be constant in which case we take 8 1

we have the incompressible Euler or Meier

Stokes equations

dion D

I 9 u t 6 D ut Op p Du
In this case however it is no longer
assumed that p pls and p is gives20



by some other expression we will see

this later

other examples

There are many other important PDEs
that we will not have time to discuss
we mention a few more of them without

writing then explicitly

Einsteins fundamental
equations of general relatirit

Y i s fundamental

equations of quantum field theory

Detection models the price
of European options 21



Remate The concepts of the order of a
PIE and tongue Dts
are defined similarly to their analogue is ODES We
will definlinea li.DE later on but

this definition is also similar to ODE and reader

should be able to identify which of the above

examples are linear or non linear PDEs

TheonyandexampleI Before investigating more

general and theoretical aspectsof PDEs it is useful to find
consider a few specific equations that can be solved explicitly
Thus at the beginning will be more computational and equation

specific Later on we will consider more robust aspectsof the
general theory of PDEs

22



The Schrodinger equation and the

metholofseparationifia
If we write the physical constants the

Schrodinger equation can be written as

it
II BE VI

where h is Planck's constant
p is a constant

called the mass and i 2 L V Vlt x Ram IR

is a given function called the potential and
I tax Rx in 7 I is the unknown function

called the wave function and I is the set

of complex numbers

Notation We have a function depending on

time antspace i.e t and x we will often write
23



its domain as Rx in instead of IR to e phasic

that t E N is the time variable and ER is

the space variable

The Scio dinger equation describes the evolution

of a particle of mass p interacting vith a

potential V according to the laws of quantum
mechanics

PhysipretatifLI Gives a

subset U E IR the integral

f I Ect x 12 Lx
U

is the probability of finding the particle in

the region U at time t when 1451 is

the
square of the absolute value of 4J

24



III 45 45

when 4 is the complex conjugate of ZI
Note that one must have

f
µ
IIttitll Ix 1

This latter condition can always be satisfied

upon multiplying 4 by a suitable constant

as long as

fNIECE.nl dir Lae

Notation Above a 1 throughout we use

It to denote the volume element is Rh i.e

dx Dx Ly dy
so in particular is IT

Lx Lx Lx Ir
25



we dunk the integral of a function fore
a region U ER by J fix tax on sometime

u

simply fuf
dx i.e we don't write ff gfdx

h
as in multivariable calculus

Separation of variables for a fine independent
potential

e now suppose that V does not depend out
Vix

One of the simplest method to try to solve
a linear PDE is called the meth.to sepaatio

s We will apply this method bone

Further application of the method will be given
as HL

The method of separation of rariables assists
in
supposing that the unknown function is a

26



product of functions of a single raniable this
does not need to be always true but it is a

good starting point and it will work here

Thus we suppose that

It t.nl TCHYCH
Plugging this into the Sdn Liger equationgives

it
If ta AL t V

fnotion of function of x onlyt only

Since LHS function of f only NHS functionof
X only the only way to have LHS NHS is

if both site equal a constant E

its E it T ET

tf tune at 44 try EY
27



The first equation has solution Ttt e
t
when

we ignore1 and often will an arbitrary constant of
integration since the PDE is linear The second

equation is known as the time independent
s i t oh

Thefimeindependentscviili.geaofoaradiUysymnetptcntial
We now focus on

LI DY t VY EY

we make another assumption o V We suppose

that it is radially symmetric i e

Cx V WH 2 t Lx

or in spherical coordinates that
r 4,0 VU 28



where r f 01 are spherical coordinates

y r E CIN

f E Coo I

O E co art

i r

X

we will work in spherical coordinates so

4 4174,0 1 The Laplacian in spherical
coordinates real

D Of t Idr t t Asa
where

Ds I t opt yo
is He called the Laplacian on the unit
sphere

29



We apply separation of variables again

4 v 6,0 R r I 4,0
Plugging in the equation and using Δ in

spherical coordinates

IV E

FEET function onlyof 4,0

LHS RHS constant a Thus

ER t Vt f R ER radial eq

4 Asa I aI angula eg

30



Remarle Note that we do not know at
this point the values of the constants E and a

theeguation
Using the formulafor Dga the angular

equation real

II to x'It fo t t

Apply separation of variable again

I 14,01 141 Col

S o

sit of
Iq

s t cost
Eq t 2ysi

42
function of

function of 4 only0 only
31



LH s RHS constant b

Then

b

sido I t sist cost E t f of b of
42

Since the coordinate O and O t 2T represent

the same point is M must be periodic

Otay i O

Solutions to the equation depend on the sigh
of b If b L O then the only periodic solution
is the zero solution Thu b 20 and solutions are

linear combinations of cool fool and si's bro and

we must have Tb integer for 25 periodict
32



Thus we can write

b ma m E 21

which determine b and we find

Col e
i mo

I
m E 21

We now investigate the E equation Using

the chain rule and b n it can be written

as

to singDII n e Isin't

where

I i I a

F

33



To solve the equation we make a

change of variables

x cos O f f ET

not to be confusedwith a point X E R

Using the chain rule the equation becomes

1 I Itt IE o

which is how a teats To solve
it we seek a solution of the form

OILx1 L 2 I dm'p
d y 141

where P is a solution to

a x'll 2x

1 t 1 P 0

34



It is an exercise to verify that if P solos
the above equation then I as green above is
terms of P solve the Legendre equation
So it suffices to find P

We seek a power series solution

a

PCH ah Xh

Plugging
Leo

c xy.fioLlh i1ahxh 2xuIIoLahxh i

t I E ah xh O

y
letatchtilahn huh d ah x

35



This implies the recurrence relation

ah a
hlht

ah Leo 1,2
htt Chi

Haoa arbitrary
what about

convergence writing the sun
as separate linearly independent even and odd power

fin that't ixia

so the series converges for 1 1 LI Testing
the endpoint X IL i.e 4 0 all of IT

a

PCI 1 I ah
1 0

From the recurrence relation

Lt h't och
ah

k't 004
36



L t Och h y tock al
ah

L t Ock h y't 0th L

htt2 ochlet
ao heres

Lht2 OChtt

im

Therefore lin ah O and NII diverges

unless ah o for h l for Sone l te

et llet't l
ae 0

ti lta

with are 0 Then

I ell t Il l 91 2 37



which determines I and thus the constant a

we see that we obtained a family

pet of solutions parametrized ly l t.to

that Pe is a polynomial of degree l th
OI 0 for 1mi l Iml El w

un't na me to stress that the allowable
values of n depend on l The Pe's are

calleltepolynomials we then obtain

family life me of solutions For example

Poli L P Lx Pact I 3 3

too x I f Lol x x I Cx L X't d

where we chose a and a conveniently to obtain
integer coefficients 38



We have to go back to the variable ol Denote

Fe met it d pai

Then
recalling X cos if

Ie neck sin of Femeccost

b 91 a.i.i.me c The functions fe.me are

callclass.ci egendrefusc ions

We finally obtain the following family
of solution to the angular equation

IIemeld.ie eime0siimfFemeccoso

l 91,2 I melt l The function Ie we are called

sphericalharmoni
39



Note that now that we found the constant
on the TI equation reads

Asi Ie n et et II eme
which is an eigenvalue problem for the Laplacian
on the sphere whose solution is fires by the spherical
harmonics

them Spherical harmonic and Legendre
polynomials have many applications in physics

The radial equation

The radial equation can be written a

ta fi idf t t.f.IE VIR Meth

Everything we dil so far hold for a general Url But
in order to solve the radial equation we need to specify
us We henceforth assume that V is the potential describing40



the electromagnetic interaction of an electron and a

nucleus

2 eVer
41TEo r

l

2 nuclear charge e electron charge Eo vacuum

permittivity

Let us begin showing that the constant E is red

Multiplying the equation by in and integrating from oto
N

J R teCr Itv dfa In r'Ln lien R'Idr

integrate by tf E J IRI n'tenparts

to

f n'dnt rtfrfr't
o 0

To for R R decayiy sufficiently
fastfor layer

f 471 t III fo R Retiro
41



Thus we conclude that E is real Let us next
show that E 20 For r 1

ER
4 EC RI

II 2 E.CM

I rR 5 RR which has approximate

solution rR et Thus if E 10 then R

is a comeler function satisfying In R 1 and

I it dt
1114,011 trust

n'sinodtdodr.IT2T

f I 0,01 sin 10 do If I Rini r dr a

o o

since r R 1 for large r Thus E 0

Since ELO we can define the following real
42



numbers

E r hÉp
We make the change of variables g 2pr so that
the equation for R RCS becomes

1 r o

We will solve this equation using power series However itis an exercise to show that a direct application of the method
e Reg ahgh does not work To get a better idea

k o

of how to find solutions we first consider 57 1 so

E
Looking for Rig ets and plugging in we find A 112

RIS e
5 This suggests looking for solutions of theform

RIS e Gigs

Plugging in we find that satisfies
43



If.tl's 4 F Iff'ye o

We seek a power series solution of the form

C is g
oahsh.LY ahghts

where s is to be determined Plugging is gives
s 2O S stl lilt 11 a S t

sth ISth 1 1 Is tht 21 elett ah Isth ti r ah gk o

Vanishing of the first termgives s stil LUH o

s L or s Ceti

discarded a otherwise C o is not defined
Using s e wa tha find

let l t l r9kt ah
tetch kilts llety

44



Using the ratio test we can see that the series converges

for any f However flo above recurrence relation also goes

9kt h
ah L

ah L It
h't h t 9hLt n th 1 t

I t
ah jh h l Ch j t

and we conclude that Gop is asymptotic to sees
This implies RLS e tafog a geek which then

8 J 12Ict xsl dx so unless the series for

C terminates i.e for some L h te t L r o

r shtetl In particular r has to be an
integer P h h ltl let2 on p n b lo2,3

la O L 2 h L From the definitions of p and p ee

hav found the values of the constant E
G

E En
2 41TE 242ha

443
45



We can then write R Rye as

theirs e

fry Eye neha

t.o.n.is

whucyo 4TEotYre Our solutions 4 am tho

fires by 4 4 emei Yue me Rue Ie.me and

i t

II.fi1 An.e.nee4 e e

where h L 2,3
l e O L h L

me l let 1 0 l I l

and Aue me are constants down such that

f.pl ltixil2dx 1

The number n l we are called quantum numbers En can

be shown to correspond to energy levels of the electron

Remark Because the Scio'tinger equation is linen anylinear combination of solution ZIu.e.me for possibly different46



values of n l ne is also a solution

R h Because the Sohr linger equation is an evolutio
equation i.e it involves ft we might expect to be given
initial conditions as in ODES what we found above is a

family of general solutions like in ODES but given
4 o x i.e 4 It x at 1 0 we can find a unique solution

with the corresponding initial condition at teo we will
talk more about initial condition and initial value problems
later on

47



Separation of variable for the one dimensional
wave equation

Consider the wave equation is one dimension

Utt dux 0 c 1 01

Notation Whenever a PDE involves the time
variable by the dimension we always mean the
spatial dimension E g the one dimensional wave

equation abbreviated 11 wave equation1 is the

ware equation fo n ult x with ER

We are interested in the case when the
spatial variable belongs to a compact interval

e.g
O E X E L for some L 0 and u vanishes at the extremities
of the interval i e ult o o ult.LI Thi the situation
describing a string that can vibrate in the vertical

48



direction with it end fixed will ult x representing

the string amplitude at at time t

y
Luta i n

X
X i

t L

The condition hit 0 O and ult Ll 0 are

called boundation because they are conditions imposed
on the solution on the boundary of the domain where it is
defined Thus the problem can be stated as

Utt dux O c's o o x o L

this is called a b.nl luepnoblen because if
consists of a PDE ph boundary conditions Sometimes we

refer to a boundary wake problem simply as PDE 49



In the Hw you will be asked to show that
applying separation of variable we obtain the f flowing
family of
solutions.hn
tit1 ahcosCnLIct tbnsii II't sis x

where h L 2,3 and an acid bn are

arbitrary constants Since the equation is linear
sums of the above function are solutions i.e

unit xi 7 most t tb.si nIEt siskIx

is also a solution

Because this holds for any N we should be

able to sum all way to infinity and still get a
solution In other words the most general solution to
the above boundary value problem is

50



T
ult't

II Cancost t t b sis t Isis x

provided that this expression makes sense i e the series

converges

Terminology It often happen is PDEs that we have
situation as the above i e we have a formula for a
would be solution but we do not know if the formula
is in fact well defined e.g we have a series that

might not avenge or a function that might not be differenti
able etc solution of this type are called solutions

In other words a formal solution is a candidate for
a solution but extra work must be done or further
assumption made in order to show that they are are

in fact solutions

51



The
convergence of the above series

cannot be decided without further information
about the problem This is because as stated

the coefficient a a I bn in the formal
solution are arbitrary ash it is not

difficult to see that we can make
different choices

of these coefficients in order to make the senie

converge on diverge

Therefore we consider the above boudary value
problem supplemented by imitations i.e we assumed

giros function g
and h defisel on co.LI and look

for a solution in such that

U lo X gcx dtuco Xl hey O E X E L

Similarly to what happens in ODES we expect that
one initial contrition are given we will no longe obtain
a general solution but rather the

unique solution that satisfies
the initial conditions 52



h tote that any multiple of of the fondsolution u will also be a formal solution This is esconded

in the arbitrariness of a and bn since if we multiple
u by a constant A we can simply redefine her coefficient
as I A au I Abu This freedom however is not
present once we consider initial conditions since if
419 1 I girl Italo x hey then Autoitt gig Aleatory
f hit unless A L

The previous remark suggests that the coefficient
a and b should be determined from the initial condition
before investigating this let us stat the full problemwe want to find n such that

Utt Chuy 0 in Oro x 0,4

ult ol ult Ll O t 10I

53



The above problem is called as initialbou alu em since it is a PDE with boundary
conditions and initial conditions provided although wesometimes call it simply a PDE

Two initial conditions are prescribed i.e
Ul 9 X and ItaloX because the wave equation is second
outa in time Note that y and h have to satisfy
the following conpalityconditions

geol gel Lcos hell 0

We have already derived a formal solution to the
wave equation satisfying the boundary conditions It
remains to investigate the initial conditions Plugging
f so i

Uto x gets LT au sini x

h 21

Differentiating u w.r.tt and plugging to
54



q
Ital 9 1 a her L bn sis II x

hi

since y
and h are in principle arbitrary the

abore is essentially asking whether is possible to
write an arbitrary function on o L as a series of
sine function with suitable coefficients Or rephrasing
the question in a more appropriate for we are asking
whal.am rhcfunoiousonC9L3thatcanbewrit
as a convergent series of sine function with suitable

coefficient The function fo what this is true will
provide us with a class of function fo which the
above initial boundary problem admits a solution

The subject that investigates questions of this
type is known as Fo Vc will now make a

digression to study Fourier series After that we will
return to the wave equation

55



Fourier's
we begin with the definition of Fourier series

Def Let I C L L on C L L L o and

f I in be integrable on I The Fourierseries

off denoted F S fl is the series

F s f CH af t an cost Jt basis HII
where the coefficients a and by are given by

an t J fix cos Jdt n 91.2

bn I fix sis flex n L 2,3

The coefficient a and b are called Fourier
coefficients

56



Remates

F S f is a series constructed out of f we
are not claiming that F 5 f f Is fact at
this point we are not even claiming that F 5 f
converges although we want to find conditions forwhich it converges and fo which F 5 f if

The Fourier coefficients are well defined is
view of the integrability of f

We introduced Fourier series for function
defined on an interval C 4L This set up is slightly
different Has what we encountered above for the wave

equation where we worked on the internal coil we

will relate Fourier series on C L L with function defined
on O L later on

The Fou ie series is a series of sine art
cosine The situation discussed above in the wave

57



equation is a particular case where only sise is

present i.e au O

EI Find the Fourier series of

fat
1 i If co

L o f t f T

We compute

hi I 14 cool Hdx 0 evel oddfunction

L

bs i
ftp.ctisiscnxilx hzf fTisiscnxih

if Il It t

f
O b ewes

n't s odd

Thus 58



A

F 5 Ifl'm I ti sister

h Il

sis x tf siscix t f sisCsx t

Not that fco L but F s.lt Coi 0 so

F s f Ff

EI Find the Fourier series of fit HI Lex El

Compute

a f fit Lt 2fixLx L

a J fer coschTx Lx LJ x cost TttDX jd C l 1

I 1,2

b I J fix sisChitti di 0 even 0111

hus F 5 f Cti I ta t 45 1 coati

t cosCTx t ly const r t atcool stilt
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Piecewistions
We begin with some definition

Def Let IEN be an interval A function

fi I 7M is called k time.com inuouslydiffercntia

if all its derivative up to order h exist and are

continuous We denote by ChCI the space of all h time
continuously differentiable function or I tote that CCI
is the space of continuous function or I we denote byECIL
the space of infinitely many times differentiable function or I
Sometimes ee say simply that f is ch to mean that
f E Choi we write simply ch for ChLI if I is
implicitly understood Co functions are also called smooth
functions

EI e E C CR H1 E CR The

function f IR 7112 defined by

fox
tx x o

O X O
60



is co it is differentiable but it is not c this

is because flex exist for cray x incldig x o but

ft is not continuous at x 0

Remate Note that chcI E Cecil if he e

and COLI FT ICI
bio

Def Let IEN be an interval We say that

f I IR is a piecewitis if f is ch except
possibly at a countable number of isolated points

EI The function 1 1 ant

fly
I t

are piecewise smooth
L X Lo E functions

EI the finch's

is piecewise C 61



Ex The function f 0,2 1 it gives by

is not piecewise Ch because the set of points where it

fails to be ch are not isolated

Convergence of Fourier series

Ftion.w.de tesyfext and for the right and
left values of f at x defined by fixti fin 1 41

fix i lim
hyo

tht th

If f is continuous at t then text fix s foxy butotherwise these values might differ

EI For the function depicted below f 1st h and

fl t t 1
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I f Lt I

fir i

tho Let f be a piecewise C function on E 44
Then for any x E 4L

F S flexi fix't fix it
and

F s f IL ta fl L It fits
In particular I 5 Ifl conve ges

From the above theorem we see that
I s Iflexi fix when f is continuous art x Thus

if f is piecewise Ct and co we have

fix Eat a cool t basis HII
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EI we graph for f
l Itt Lo

and
L O E X E IT

F S f ox below not that f is piecewise d
a graphoff A graphof I s.gl

q flit I al
t
0 0

fcott l Ii
i

is ii
i i

io of.co I 0 0

fl Ttt 1

EI Sisco 1Xl is continuous and piecewise C i

1 1 i ta t II fish 1 cousin

text we consider differentiation and integrationof
Fourier series term by term
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Theo Let f be a piecewise C and continuous

function on C L D and assume that fl L fu Then

the Fourier seriesof f can be obtained from that off by differential
ten by term More precisely writing

fix I t Y Jt basisHII2

we have

F s f'this a foil 1 t b si't T

a sit I t cost 1

In particular it f is continuous at we have

f ca ht f assist t b cos HII

EI To see that we cannotaleay differentiate a Fourier
series tan by tan consider fix x it EXET Its Fourier
series is

F S f in a 2 simian
is

4 1 65



which
converges for any x but the termby term differentiated

series which is

22I C 11 cool x

divergesfor every X

Theo Let f be piecewise continuous on C L L with
Fourier series

F s f x Lao t hascost It basis It
u

Then for any X E C L L

ft fittdt ha It É Ia.co t tb.sir 1 It
L

L u L

Éttiimann
series is defined Given f defined on C 44 ourgoal is to
write

66



fix of t a co It basis E

Let us make an analogy with the following problem

fires a vector o e n we want to write

o Gili
is

where e is an orthogonal basis of R e.g e no
e 91,01 e o 0,1 is a In other words we have

to find the coefficient ai Since the vectors e are orthogon

e ej 0 if i j
where is the dot product a.k.a inner product of vectors
Thus for each j 1 is

zero only if i j
ej t

ciej.li Cj ej ej j
eis

we want to do something similar to find the
Fourier coefficient a and by Consider the function

E x
2
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Enix co Enlil sis hit he 1,2

Then f a to t E CauEn t heal H
n I 1

This is very similar to the case in R In fact the
space of piecewise Ch is a vector space so is

an equality between ocotous although ch is an infinite
dimensional rector space so we need a basis with infinitely
many sectors

To find the Fourier coefficient the same way
he found the coefficient Cj alone we need the analogue
of the dot product for functions It cannot be the
usual product of functions since the productof twofunclio
is another function whereas the dot product of twovectors
is not another rector but a number We also want our

Lot product for function to have all the standout
properties of the Lot product of vectors The relevant
product for function i dfinal below
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Def Let I E R be an interval The L2 inner

product or simply inner product of to function fig I R
is defined as

Lf g a ffar guidx
I

whenever the integral on the AHS is well defined We

often write L for L
us The L m o simple

horn of f I 7112 is defined as

FHL Lf
We sometime write 1111 for u

v
We also write

LILI a't 11
µ if we want to

emphasize the interval I

It is a simple exercise to show that
4 he has all the following properties which

are similar to the properties of the dot product69



11 Lfg E R cha defined

21 Lf g Lg f
3 Lf ag tbh

a fig t blf.lt aib EIR fg Ifusatio
4 Lf 02 0

S f f 10 In particular 11 Hu is a real mule

if Lf f La

them The dot producthas the property o o o

0 0 This is not true for L La as the example
fits Y of shows However if f is continuous

then it is true that Lf f u o f o

Consider now I C L L and let us go back

to H A simple computation shows that

Eu Em 0 if u fm L En En 0 if u m

Eu Em O LEn En L LEn E 14
L h O70



Taking the inner product of with En En
m 21 and Eo giros

x

f En a LEO En t a LEn En t bulEn En
I

am LEm Em an L am Lf En
L

x

f Eo 90 Eo Eo t a LE Eo t b LE Eo
n

no Eo Eo noLz ao Lf Eo

f En so LEO En t a LENTEN t b LEnEn

bn Em but bn 1
L

writing explicitly 4 in terms of an integral and using the
definitions of Eu Eu we see that the expressions we foundfor
an.ba are exactly the Fouriercoefficients
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thrisifperidiftions the
Fourier series of function on Oil

Suposse that f is defined on IR and has periol LL
e's fin fix 24 for all x Thus all informationabout
f is determined by its value on C 4L We can define
the Fourier series for f as a function on C L L and all
the previous results are immediately adapted to His care

Moreover given a function on C 44 we can extent it
to a periodic function on IR and consider its Fourier series
note however that this extension is not unique This is illustrate
in the picture below

n n

i
o
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Consider now a function f defined on coal
We define its cosine Fourier series by

F5 f CH Ia t a cost XE 0.4

where

an
J fix cos II Dx

Extend f to an even function on L L L by

Icr f t 0 Exec

fl H cc co

The Fourier
coefficients of I are

in fur cool Lx
fix cost 14 9

O

I ICrisi Lx 0

where we used that I is even Thus fo x C Good

F 5 E Cx F s flex 73



In other words the cosine Fourie series of f Cool 742
equals the restrictions to o u of the Fourier series of
the era extension of f

Similarly we define the sine Fourier series offi Co L IR by
a

F s If in basis

n

when bn 2 fcnsiy.IT dir

Letting I be an old extension off
fCr t t o E X E L

fl x L E x Lo

we find the Fourier coefficients of f to lo
in I fix cool dir D

In I crisis htt dx fcxiii.LY lx bs

tho F S If cx F s f HI x E cars 74



In other words the sine Fourie series of f Cool 742
equals the restriction to o u of the Fourier series of
the old extension of f

We conclude that the theorems on
convergence

differentiation and integration of Fourier series are immediatelyapplicable to the siscast cosine Fourier series

Baohtotation
we are now ready to discuss the problem

Utt Chuy 0 in 0,0 x oil c O

ult ol a ult 4 0 t 20I

where g and h are given functions satisfying the compatibilitycondition

geo gcl O blot hill

we saw that a formal solution to this problem isgivesby
75



N

ult x
fancos htt tbss.is hTft sis nIx x

h L

where a and by arc to be determined by

gets I an sin x

h Il

and

q
hori L bassist t

hi

The last to expression mean that g a L h equal their

sine Fourier series will Forien coefficient given by an
ant hitch respectively These

qualities will in fact be
true if we make suitable assumptions on g and b Let us
assume that g and h are C functions Thou from the
previous theorems fo Fourier series we know thaty and
h equal their sine Fourier series and the coefficients
on and bu are given by
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as
Jogensin tax b ftp.Yhcxssinttzjtt.CHx1

Our assumption
o
y and h allow us to co put the

coefficient a and bn We will have to develop a few more
tools before we are able to show thatCHI is in fact a solution
However we summarize the result here its proof will bepostponed
in fact it will be assigned as a Hw after mono
background is developed

Theo Consider the problem k and assume thatg andh are c function such that

glo igLL 0 4101 414

y co I g ly n O 4 co L CLI

Tha a solution to HJ is gives by Kk where a an
bn are

given by HAA

Remade We will explain the assumptions involving
second derivation of g and h when we prove this theorem
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The Id ware equation in R

we now consider the problem for a act

Utt c Uy 0 in Ora x l O c O

MIO X UolXl N l t L

This is asini.fi pnlem for Hc wave equation

Compared to the initial boundary value problem we studied
earlier we see that hour X E IR so there are no

boundary conditions This initial value problem is also known as
the Ca oblem for the wave equation a terminology that
we will explain in more detail later on We refer to the
function no and a a initial data for the Cauchy problem
A solution to this Cauchy problem is a function that satisfies the
wave equation and the initial conditions

we had defined the space Choi for a internal
IER For function of two variables we can similarly definechchi which we will use here we will define general Ch
space fo function several variable later on 78



pep Let u C don't be a solution to the Id
ware equation Thu there exist function F G C dual soul
that

ult.tl T lttcl.lt C x ct

proof set a x tot pier et so that t Ha piZo
X tht p and

orcap ul 1 dip Hari
Then from Uct.tl 0144 1 pit xs we find

Ut I 4 t r ft co cop

Uti cha t t coapft copadt Coppft
do c rap c op to'opp

my Jax topper re top
my i Osx xx t tap fx t Opada t oppfx

od t rap t opa t off
Thus O net in Go Sp where we used that
tap Tpa since is C because h i c and the change
of coordinates tix Kip is G Thus is ap coordinate

the wave equation reads Tap 0 79



Therefore Ea 0 i plies that re is a facto

of a oily i retail flat for some C function f Integrating
a r t d giro

cap J flat K t C f

for some function G Note that F i fflatda is C thus so is

G Therefore old f Flat t Glp a L in It coordinates

ult x Flirt at t C x att a

Tlc above formula has a clear physical interpretation

At t 0 uco x Fix it Ccat Fo each 1so the graph of
Gtx ct is the graph of CCxI moved at units to the right
so the graph ofGuy is moving to the rightwill speed c CCt et
is called a forward ware Similarly the graphof Fix is mooingto the left and Flirtott is called a backward ware The
general solution is thus a sum or a superposition of a forward
and a backward ware and we see that the constant is

indeed the speed of propagation of the ware
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CLN C x ct

Ar
x

Having found the interpretation of the constantc we will often set c L

Prof Let h E C Colo xn be a soft.us to
the Cauchy problem fo the Id rare equation with data
Uo Y Thes

Xt t
ult

uolttxla
u.li

ttaJu.cyily
X t

This formula is known as enbevtfna
p Note that a E ch n E c From

ult x Flirt t t C x t1
we have

81



u lo X Flex t CC x I U.CH

ut lo t I Flexi C ex 9 CX

Integrating this last equality
constant poor Gtd

Fln CCH J 441 dy t CT

adding to no x i

F Lx LuolXI t ta f n cy dy t call

Plugging back into ulo.rs

C Cx thoLX ta fjuicy dy Giz

Replacing x Xt t in F and X H X t is C and
alling giros the result a

The last two propositions derived formulas for
C solution of the war equation given such a solution

The next result shows that solution actually exist
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tho Let u E c'LM and u E C Lk

Then there exists a
unique n E C coin xD that

soles the Cauchy problem for the war equation with data
Uo u Moreover n is given by DAlembert's formula

P f Gives two C Ceo xR solutions both satisfy

DAlembert's found with thesane noir thus they are equal
establishing uniqueness To prove existence define u by DlAlembert's
formula Then u E C Csn x 112 since u E ch and n E C
and by construction or direct computation u satisfies the wave
efration art the initial conditions It

Deaf The line it t a constant and X t constant is

the tix plane ou x tot constant x at constantfor a 41
are called the characteristics o characteristic curves of the
war equation They and their Generalization to higher dimension

are very important to understand solution to the ware equation
as we will see
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IE.IE n

Since 4 t and nock t are constant along the line
t constant and x t constant respectively we see that

act x o only possibly for points tix that lie in the

region determined by the region lying between the characteristics

emanating from a and b as indicated in thefigure
t ult x 0

t t b
t.EE x tea

x t b

nexttes asx teb

x texttla
b x textt

ultix o
ult x o

I

b

Nutation Althong we ordered the coordinates as t x
we will oftter draw the tix plane with the x axis
on the horizontal

Suppose now that no 0 and that a cx 0 for84



cab Then fully dy 0 whenever we have
x t

x t t n a b i e if tca or

t b Therefore ultix 0 possibly only is the

region 2 a A x t b as depicted in the figure

t
t a

t a
x t band

t S
x texttla

b x textt
ult x 0

ult x o

I

b

For general he and 4 we can therefore precisely

track how the values of altix are influenced by the values

of the initial conditions It follows that the values of
the data on an interval carbs can only affect the
values of ultixt for t x E t2a A x tsb

This reflects the fact that waves travel at a finite
speed The region x t2a A 1 x t 1b is called 85



Effluence of a b

Consider now a point to to and a to to
Let D be the triangle with vertex to.to determined

by t otto x t rotto and t o

t.it

D

l I
to to rotto

this
rotto

ult to

Irottotholotl 1 juicy dy
to to

and we see that ulto.to is completely determined

by the values of the initial data on the internet
to to otto The region D is called the past

bing.dependenceof tosxol
86



Generalized solution
i

Htc that the RHS of D Alenient's fonutsmale
sense whos no ant U are piecewise functions This
motivates the following definition

Defy Let u be a piecewise C function and a a
piecewise C function Then u given by DAlembert'sformula
is called a generalization to the car equation If no
nd n are C and C functions respectively then u is called
a classicalsolut When u is a general tel solution thepointwhen u fail to be C are called thesingularitiesof thesolution sometime we abuse languageandsay singularitiesof thewaveequation

To understand what is
going on consider the case when youfixed to n i c except at the point Cto Xo Uniting

ult x FCxtt t C Ix El we see that F is not c
at totto and or G i not c al to to The two
characteristics

passing through It to are ttt x 1to a d
X t x to
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Thus for any fixed ti ult x fails to k c
except at one or two points namely x such that

Xt t t trot to K t x to
t
N te x j ti th

r i
r t t

to to
ie tx

to it
x

I

This shows that thesisgulariti.io tlc
ftiosremaiieispccanayfchan vistas

We will see that the result we obtained fon the Id waveefuation existenceand
uniquenessfo the Cauchy problem existence ofdrains of influence dependence propagationof singularitiesalong

characteristics hold for the rare equation is higher dimension
ayfact fo a class of equations called hyperbolic of which thewave equation is the prototypical example 88



somegene.at oolydefiniti tfothe study of PDEs
In order to advance further our study of PDEs is particular

to study PDEs is in we will recall a few toolsfrom multi
variable calculus and introduce some convenient notation terminology

Domains and boundaries

Deff A d i in IR is an open connected subsetofIR If red is a domain we denote by 5 it d
in it The b

y a r dental or is the set
or Iir We say that a boundary Orhasnegularity
or is a C y if it can be written locally n the

graph of a Ch function

Ratio We denote by 1 1 the Euclidean noun of an
element x c in I and Dr will always denote a domain andits boundary unlessstated other in

EI B f X E IR I 1 1 L 1 is a domain in

Ei Its boundary is the n i dimensional sphere

5 i D B X E R I 1 1 1

It is not difficult to see that s is C ie B has
89



a C boundary For example the upper cap of S given by
s n l x ol is the graph of the function f B E R

IR fires by

f174 x I L H H 12

which is C

Notation when talking about naps between
subsets of pi al him we will often write

f UE IN Mm whom it is implicitly understood that the
domain N of f is an open set unless said otherwise

Recall that if f UEA it is c for each x EU
the graph of f at ix first admits a tangent plan Thus ifJr is C for each x C Or there exists a tangent
to Ir al x denotal T 9h The to or
at is by definition the unit normal to T.ir that point
to the exterior of r The collection of unit outer normal
N as varies over 9h forms a recto field over 21

which is called the unit outa normal vector field We sometime

refer simply to the unit outernormal when the context a he
90



it clear whether we are talking about the vector field on a

specific vector field quit
outer non d

theme ASore we tookforgranted that student recall
or have seen the definition of a connected set is in Intuiteve

a set is connected if it is not splitinto separate parts

2 not connected

For the time being this intuitive notion will sufficefor studentwho have not seen the precise definition The mathematical definition
of connectedness will be given later on
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The Kroneche delta

Det The symbol in h dimensions or simplythe
Kronecker delta when the dimension is implictly understood is

defined as the collection of numbers Sijl j
such that

dig I f i'j and dij 0 if i j We identify the
Kronecker delta with the entries of the nah identity matrix in
standard coordinates We also define did Sij which we also
call the Kronecker delta and identify with the entries of the
identity matrix

Recall that the Euclidean inner product a L.a the dot
product of vectors is a is the map

L tix in in

giver in standard coordinate by

EI II Ii Ii
which is also denoted by I I We can write LE t as

recall our sun convention

I IS S.j Ii 92



In view of this lastformula we also identify the
Kronecker delta with the Euclidean inner product

Raising and lowering indices with 8

Given a rector I I I we define

F i dij It i L n

we say that we are loweringthcint of E and identify
th n tuple E In with the rector I itself

The point of introducing Ii is to achieve consistency
with our convention of sunning indices that appear once up and
one down For example if we want the inner product

I IS E Ii

using our sun convention thus avoiding to write 2
one of the indices i needs to be downstairs

I I E Ii
93



so that we had to break with our convention that
vectors here indices upstairs However if we now interpret

Ii as lowering the indices of I Hc

I I Sij I II Ii Sigt't Ii Iiin
Ii

Similarly recall that we wrote

curli I c th Oj F h

whom we had artificially written It with an index downstain

thus breaking with our convention that vectors had an index
upstairs But now we have a proper way of thinking
of Ih as Shj IT

Vote that using dig we could completely avoid
writing vectors with indices downstairs i e every time that
i appears in a formula we can replace it with

dij IT Eg
94



cure I sith shed El

But the point is precisely to have a compact notation
so She9g It DjShe Il f Eh

then In the above computations note that we
can move dhe pass the derivative because She is

constant for each fixed ball i e She is not a

function of the coordinates

We extend the lowering of indices to any objectindexed by ie ie ij E L n jet in E.g
E Jh dieelite

g jh djecilk etc

Vote that it is important to keep the order of
the indices on the LHS due to the anti symmetry of
E so that e j f Ej t In fact the order

of the indices alway matter unless one is dealing
95



with object that are symmetric in the respective

indices E g if aid are the entries of a matrix
then

a j Jie al j

and in general a I Taji However if the matrix
is symmetric a j aji the a j aji and we

write a for aid
The same way we lowered indices

using dij
we can raise indice

using Jit Fo instance
gives

an object indexed by downstairs indice ij i.e Aij
we set

Aig Sil Aej

Again the o der of the indica on the LHS matter
unless the object is symmetric It follows that
we can define the Kronecker delta with one index op
and one down 96



Sj Sieg
Ej

It follows that

I f
1 i j
O it j

Vote that raising a L the lowering o vice versa as
index gives the same object back E y
Ili fi II Sii Ej Siigge i

w i

gie
where we used die O fo ite

Recall that 9 we define the
derivative with an index upstairs by

Oi fiji
j

Using this notation we can write the Laplacian as

D di di S t 4Oj
We sometimes abbreviate d did I jL 9Ojdh etc
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Important remark he use of the Kronecker delta and
the

raisingand lowering of india provide us with a convenient
and compact notation But the overall discussion and definition
probity seem a bit ad hoc It turns out that those ideascan
be
given a more satisfactory content within the language of differentiae

geometry For example the Kronecker delta can be introducednot
a a collection of symbols but rather as a tensor

satisfyingcertain properties The raising and loveing of indices can be
interpreted as a map given by the inner product that
identifies elements of a rector space and its dual on vector
fields and one forms or yet more generally as the identified.ioof covariant and contravariant tensors Since we will not be
discussing differential geometry exceptforsome elementary aspects tielto PDEs here we will take a purely instrumental point of view
using the above machinery mostly as a matter of convenient notations
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Ca faot

we c leat a few calculus facts that we will
use later on

Def We say that a map f ish tims.com y
differentialif all its partial derivative up to order
k exist and are continuous in the domainof f We denote

the space of h time continuously differentiable function
is UE M by Ch h Sometimes we write simply
ch if U is implicitly understood and sometimes we

say simply fi ch to mean that f is h time
continuously differentiable

Integration If u r E c'CI
then

dino dx noir dx t

quo
vids

i L n where v V v is the unit outer99



normal to 7h and dS is the volume element
induced on 9h

students who have not seen the above integration
by parts in 1124 can view it as a generalization of
the divergence theorem in IR The latter can be written
using Stewart's calculus notatios

f SEI dir E LV J F DI

Take F no where I ha I is the itt

component and zero in the remaining components Thu

dirt 9 no t u o

For example if I e 1,90 and writing

Fy Fy Fz so that

d v E IF t dyFy t 9Fz
we find dirt dir no 0,01 9 1h01

9 u v t u 7 0
100



and similarly for Ia a I I Recalling also that

DJ I d S where it is the unit outer normal

E d J Curet 5 ds no E'i Ids

But Ei in it component of 5 hi Thu

F d J ur hi

Plugging the above into the divergence theorem

ff
9 not adirt DV

µ
nonids

which is the formula we stated is a different
notation

Def Let u E c'ca The eri

of u denoted flu is a function defined o Or by
i Ou u

where V is th unit outer normal to 71 and V is the

gradient
101



From the integration by parts formula we
can devise the following formulas sometimes called
Green's identities

For u C c'CI

J 4 u tax
Ju vids

r or

For u o C C I

t.edu f Ends

ffund fibotfiffds
do obaid

decaff
o Ids
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t ptfPEs

Def.am tio A rector of the form
Lz dir

where each e try is a non negative integer is called a
multiindex of order 121 I 4 t i t 2h

Gives a multiindex we define

old nDd n
71 1 7141

where u mix v If h is a non negative integer

Dhu Ddu I 121 h
is the set of all h order partial derivatives of u When

he 1 we identify Du with the gradient of n whos h 2 we

identify Dan with the Hessian

ii

ta
7 10 4

i 103



We can regard Dhuh a a point is Nhk
Its norm is

AIDhucal L IDducx I
121 L 1

where means the sun is over all nuthindice of141Eh
orde h

If u cu un is reotor valued no define

Ddu l Dd n D u

and set

Dhu D u 1121 h

and

IDhul INl Dhu12121 4

as before

We will now restate the definition of PDE usingthe above notation this new definition agree rith the one
previously gives
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Def Let AE Ti be a domain and 622 be
a non negative integer An expression of the fo n

F Dhulx Dh ult Ducts UCH X O

x E A is called a htt ordo partial differential
equation PDE where

F IR hi x Tix na r R

is given and

h I in

is the unknown A solution to the PDE is a friction
in that verifies the PDE Sometimes we drop x from the
notation and state the PDE as

F Dhu Dh u Du U x O is R

R is sometimes called thcdomai.intfhcPDE
EI Du O is R ca be written as

F Dh Dh h x O is R

with F Max N r Mx IR 112 given by the followingin
n
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expressions First we label the coordinates in IR N'x Mx IR

according to the o Le of the derivatives and x i.e

724 22g
i a

i 932 II u x x y

so
3 entries

F I F l p P z P Pa Pss P Ps Ps P X X X

9 centric

Tha F is given by

F p X p t Pa t Ps

EI Dh f is R where fix K'j't taj
can be written

using the notation of the previous example
a is the definition with F given by

Ftp x P tpa t p H1 t k't ta's
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Def A PDE

Fl Dhu Dh u Du h X 1 0

is called fine if F is linear in all its entries except
possibly in x Otherwise it is called nonlinear More precisely

eating F why in t xd thx r IR

by F ftp.x
PI Ph Phuh Ph s Ph i uh i i i i P

Tastefor an
M

we can write Fei x Fact ti t Eet where

FI contain all term that do not on F i.e terns
that do not depend on a o its derivatives The
PDE is linear if Fyep ti is a linear functionof p for fixed x Fy is called the homogeneous part
of F and F the inhomogeneous part The PDE is called
Yeon if I I 0 a i homogeneous otherwise 107



we clarify that when we say that F is linear in
say theH

entry Dhu we mean that it is linear in each component of Dba

His s s iii t.ti.it
linear in each entry of 9h duh plus in the entry u

A linear PDE FLDhu in u x 0 can always be written as

I an tin f121 Eh

where the a and f are known
functions defined on d

If the PDE is also homogeneous thes f so

A PDE as defined above where the unknown is a single
unction on R is also called a SIDE

108



Def A h orb PDE is called if ifit has the form

wax
D n t a Dh u Du n x O

h iwhen the a s I in and a Nh x HixMx r R are

given functions

A htt order PDE is called
g if it has the form

y waal
Dh u Dai xtDhu t a Dh u Da n x O

where a ao It t HixMx r R ane knownfunctions

A PDE is called f l if it depends non lines.lyon its highest order derivative

Defy An expression of the form

Fl Dhulx Dh next Dh u X 0

is called a h fPDEg when

F CF Fl Rm Mm Ai x Rnx r me
is giros and 109



u In um A Mm

is the unknown Asolution to the system of PDEs is a

function air R that satisfies the system of PDEs we sometime
drop the x dependence and write

F Dhh Du n X 0 in R
we sometimes

refer to a system of PDE simply as a PDE

The definitions of non I fhearKos homogeneous semilineauand quasilinear generalite in a
straightforward fashion to systemsIn particular A linear system can be written as

I A a D h f121Eh

where Ag I Them are known lxm matrices
depending on

X E r and fire Re is a knows function f o if the
system is homogeneous

Having introduced the basic definitions and terminology
for PDEs let us discuss the case of evolution equations i.e whey

of the variable represents time 110



When we study a PDE where one ofthe variables is the
time variable it is convenient to separate to separate timeand
space and denote the spatial variable Sy X H and the
time variable by Xo In this case we have htt variable
and extend the multiindex notation to

4 do au 191 do t this

9k n
D u

9105091114 9144

The domain of definition of the PDE in this case is rent
but it is conrient to take it to be T Ix R E R
for some interval TI Te E R and some domain IS in
Typically CTI Te o T for some T o Wealso write
IN Rain when we want to emphasize that the first
coordinate to corresponds to time We also write

t xo

for the time variable Thus IT of
111



potato We extend our indices convention by adopting the
convention that 1in love case indices

range from 1 to n as we

have used so far and Greek lower case indices rangefrom 0 to y

For instance

at 7 u a do n t aidin
a Itu t a din

e a 7th t a u t t a Qu
tote that we use Greek letters to denote both indices

varying from 0 to n and multiindices The context will
make the distinction clean In particular note thatfor
multiindico we never use the convention that repental is lice
are summel Thus for example in al da e is an index
summed from 0 to n whereas i I ah Dd n is a

121 hmultiinder summed over all multiindice with 121 Eh
Finally if

4 so di da

is a multiindex we write I for its spatialpart i.e
I Li au

112



We next state some useful calculus facts
using multiindex notation The formula below involve functions

in ul x and a I 4 i du but clearly similarformula hold
fon un alto X th and a do x xn For multiindices x and

P we define 2 q q ah a Ep aiEpi ti I n and
xD a xD x

Multinomial theorem

x t i t x 1h 4 xd
when 4g It

h

d

Leibniz's formula on product rule

D no 27 f DPh D Pv
pla

where f
p x p

Taylor's formula i

next at Ddulo x t 0 1 1
htt

as 0

1211k

Above u o R 7112 are sufficiently regular as to make
the formulas valid 113



12 When we introduce a PDE we indicate the domain

r where it is defined which says that we are looking for a solution
that is defined in R It may happen however Carl it is often
the case for non linear PDEs that we are able to find a solution u

but u is defined only on a smaller domain N CA I eu satisfies the PDE only for Er when n is strictly
smaller than l In fact we a priori donot know whute itis possible to satisfy the PDE for all r e r We still call
such a u that is defined only on r a solution and sometimecall it a loal solution if we want to emphasize that thesolutionwe found is defined on a domain smaller than when the PDE was
originally stated In other words the domain of definition of the PDEis a guide that helps us define the problem but it can happen
that solution are only defined in a subsetof r

Let us illustrate this situation with a simple ODE
example consider

1 y is 1 10 I with initial condition 4101 L

The solution is yet I This solution however is not defined
l t

f or t I Thus we in fact here a local solution defined on114



n o y n donot take D 10,11UCL 1 because this set
is not connected and we take the portion 0,11 because we need
to approach zero to satisfy the initial condition

we can also
define b y initialvalve problems and

initidaryvalueprobley as we haddone

for the Id wave equation We will notgive thesegeneral definitions
here but will introduce them as needed to study specific problemsWe note that is such cases we will in general seek a solution
defined on a larger domain than I For example we may want
hi I IR in a boundary value problem or h 9T x R 7 112 in
an initial value problem What exactly is

refined is usually aa e by case analysis

Importations In what follows u are

going to derive estimates and computation that involve numerical
constants whose specific value will not be important Thus we
will denote by G 0 a generic position constant that can
vary from line to line C will generally depend on fixed data
of the problem e g the dimension n Sometimes we indicate
the dependence of G using subscripts e.g Cin
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Laplaceision
we are going to study Laplace's equation is R
D u O is M

and its inhomogeneous version known as Poi f i

Dn f in Mn
where fin it is gives

we begin looking for a solutionof the four
UCx Tlr

where r 1 1 I't t h
is the distance to

the origin The motivation to loot f such a solution
is that Laplace's equation is rotationally invariant thiswill be a Hw Direct computation

gives
dir tfo

din o Ii
r

din r to II II
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Summing from L to bi

Dn o t v

Hence

Bu 0

H
o t o 0

which is a ODE f n v recall a oars If o fo
we can crite it as

Inuit II
which

gives

Cri I
h i

fo some constant A If u 0 integrating again cc

f to

ou fahr
t b n 2

a t b n 23

Lane a and b are arbitrary constants

This calculationmotivates the following definition
117



Defy The function

In1 1 4 2

In
is called the fundamental solution of Laplace's equation

Above and
henceforth we adopt thefollowing

Potato We denote by Brixi the Copa ball of radior ee teed at in IR i e

Brix y E R I IX yl Lv
Sometimes we write Bicx to emphasize the dimension he dnote

an i volume Biles

In particular w 4g'T

Not that DICH o for fo by construction
Sometimes we write Icixl to emphasize theradial dependence on r 1 1

Before solving Laplace's equation we need
one more definition 118



Def The support of a map f U IR
is the set

supplf L x E U I fix o

where is the closure Recall that a set UER
is called compact if it is closed and bounded

We
say that f ha compact support if suppl

is compact we denote by C Ch thesp.cc
fuotiihiHconpaotsupport

tho Let f E C coil Sati

UCH J Ic x y fly dy
112

Thai
lil u is well defined

Iii u E CCN

Kiit Dn f in N

p f we will carry out the proof for a13 The case
4 2 is done Lith similar arguments 119



To begin recall that a continuous function over a compact

set always has a maximum and a minimum Therefore Sisco f ha
compact support there exists a constant Ci o such that lfcxi.sc
for every Moreover again by the compact supportof f thenexista R o such that

f
µ
Itt ylf.ly dy fflx yifcHdy

Thus Bmx

Ifµfcxyifcy ly I f a'f 111 4114 Cif 4
Bnext 13pct

we now take polar coordinates r w centered atwhere v distance to X and W E S n i dimensional
unit sphere so that y X Vw Ix yl n

GOBcxi s

5

In those coordinates dy r da where dw is the
volume element or S fo n 3 du sin41410 Then

120



nifty
4 1 it

d d u 4

showing that h is well defined i.e lis

To prove oil first make a change of variables E X y so

next J Il x y flysly J Il 2 I fix 21 It
R in

tote that If a I 9j f also have compact support flu
a argument similar to the above shows that

1141 it Yildy and fmfcylo.jfcx.MIL

f it entry
are well defined Let e Co I 01 be the canonical basis vectors
in IR and let l go Then for any

nltthe.fi f.eiyiff tei f 14

go.co cyi fttthei Yf ftt dy

where the second equality holds for a sufficiently large 12 in
view of the compact support of f

121



Since lin fltteihYI fti Q.fi x y and
o h

the integral of 11417fix y is well defined

I thej fi O fm HtteihIn fh dy

fjrcy1ffijoftthei fly fund fix y dy
showing that the fruit fin ulttheil nut

h o T
exists i.e

9inch exists Repeating the argument with fix y replaced

by lift v y we conclude that 9 jhlH exists and

dig him J 1419 j fix y dy
1124

To show that a C Chris it remains to show that 9ja
is continuous Fil X E N fix E o and

consider.IQjhcxoi 0jucn1 fm lY7 0ijflto y1 0ijfcxys1dy

Ef
p

l cys1 10 foto yl differ yildy
122



Since diff is continuous and has compact support it is
uniformly continuous i.e given e there exists a d 0 such

that I dig f it dijly I L e whenever 12 412of Putting

e's with a flecyilly which we already know to
Balo

be finite we find that if It xl Ld so that
I Cro y x y l Ld we obtain that

iii alto d htt I l J 11141110 j far y Oigfix y Idy L e

Brio c e

showing that u E c4N
To show iii is from the expressionsfor Dijk Le obtain

Ducx sijo.j.ua J Icy D fix y dy
R

E et t.fiMdxfix yidy I.tIz
where SO and we write B to emphasize that is B fix y
the Laplacian is with respect to the variable
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Noticing that B fix y by fix y Green's identitiesgive
I f Icy byfix y dy J 0141.0 fix y dyAlBelol N'lBeco

J Icy ex y dScy I t I I
01340

whom we write Oy and dsly to emphasize that thegradientand
integration over 913,101 are on the y variable We also notice that
in the integration by parts there is no term to be evaluatedat a since f bas co pact support
et's now analyte the integrals If In and If Observe that

C a

E N
I I l E f 1114111 D fix y I dy f GJ 11411dy

Belo

fo't d a i

Since dscy e e d w and Ifcy E Ci j 2 on 7 Bidi

II it E J 11411114 411day E G e
DuDBelo 124



For I we integrate by parts again

I f 01141 Q fit Y dy J Atty fix y dy
Th l Belo IR lDeco

4lf Iden O

f fix yidsays

whom we used that A 741 0 for y o

From the explicit expression for Icy compute

0 Icy L Y
b wa Ty n Y 0

The unit outer normal is the integral is given by v 1
I thus 41

Ii I III fix indsan

i
a Isan

I n l

since 141 E on 9Belo 125



Making a change of variables X y Z we find

I
n J flat dsch

9BIX

i i
n 3 n un E 41TEl so

we write

Ii
int

Since we have

Dua J C I t f l I I t Iz
N lBglo Belo

which is valid for any ego we conclude that

Bhai Figo I t f Ii

f th limits exist From the foregoing
126



I
din I 0
Ot O

fi O I In't Iii

to I f 41 days
9Been

The result Ciii now follows from the lemma stated right below

whose proof will be a HW IT

Lemma For any continuous function h

liu f.huldscy box
ot vol 9741 gig c

him
1

J hey dy box
ot Vol Bears

Dent

P f Hw

R From the expression for Icx we

obtain the following useful estimates

Decril E e i b't t E fi X o
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Harmonious

Def A solution to Laplace's equation is called
a ha f q We say that u is a harmonic

function or simply that his harmonic is A if we

want to emphasize that it solves Laplace's equation
in 1

tho mean valueformulafor Laplace's equation Let
u C CHAI be harmonic in R This

mix 1
Juds

1
JudyVollOBCx volcBrix

913
Bret

for each 1371 C r

Regarh This theorem says that harmonic functions are
non local since their value at depend o thin values on

9Brits in particular v can be arbitrarily large for
I in

128



P f Define

for 1
11913 cn J H dsay

0Brix

changing variables 2 recalling that

dS v dw vol 9DrcXl h w v

fat J ult tra d Sch

9Byo

Taking the derivative and noticing that we can differentiate
under the integral

flirt J Pul X tr 2 I Z dSCH

913 co

Changing variable back to yi

f cri L J only days
u uh I

013,1 1

Since y V unit outer normal to 0Britt 129



f'cri e L J ency vdscy
huh h l

9BrcXl

I on

yuh l J Tv cyldscy
T B Ctl

I
J Shan dy 0

Duct

when we used Green's identities This flu is constant so

u.c t t'Iott u.w Iuds
7Brett

UCX

showing the first equality For the second integrate
in polar coordinates to fist

m I t.i.is
n w s hey

a
130



converse of the mean valueproperty If
u E dirt is such that non

finds
713rem

for each C r tha n is harmonic

P f This will be a Hw

Def Let UEM We say that a subset veu
is relatively open or open in U if V UAW for some
ope set w EN V E U is said to be relatised or
do 4 if V un w fo some closet set WEN A
set e ER is called connected if the only non empty subsetofr that i both open and closed in R is r itself

Remark Sometimes we say simply that V E U is opesclosed

to mean that it is open closed in U i e U is implicitly
understood

Students who have not seen the definition of connected
sets are encouraged to think about how the above definition
corresponds to the intuition that I cannot be split
into separate pieces

131



maximum principle Suppose that
u E c'lain coli

i's harmonic where I is bounded and connected They

may u math
I 9h

Moreover if act math for some Xo Er
i

then u is constant

th Replacing n by h we obtain similar
statement with min Thus we can summarite the maximum
principle by saying that a harmonic function achieves
its maximum and minimum on the boundary

proof Suppose that for some to E e we have

ultol M myth For o are dist to dr the

mean value property gives

Minato voting f u dy f M

B exo
132



Equality is E happens only if hey M for all Y C BiH
Therefore He set A x Er Iain M is both opes
and closed in R Thu A R

showing the second
statement The first statement follows from the second

a

Further results for harmonic function and Poisson's
elevation

Her we fist a few important results concerning An _f
that we will not prove

T owiU Suppose that u in R is

harmonic and bounded i.e there exists a constant M 10such that Inuit E M fo all X E N Then u is constant

Def Let fir in ant g or it be given Thefollowing
boundary value problem

Du f is r

n
g o or

is called the inhomogeneous Di pm for the Laplacian133



They Let 1 E N be a bounded domain with a

c boundary Let f E c'Cri and g E c'CI Tha there

exists a unique solution in E C LII to the Dirichlet problem

Dn f is rI n
g

on 9h

Renarh To solve Poisson's equation is A we introduced

the fundamental solution One approach to solve the Dirichlet
problem is to introduce an analogue of the fundamental solution
which takes the boundary into account known as the Greene

function

134



tequation
Here we will study the for the

wave equation in IR i.e

El U O is 0 x R

n u oh t ol x R

Ith u ou teo xx

where a i It t B is called the DAlenbertias on

the wave openaton and Uo u i IR 7 112 are given
The initial condition can also be stated as

419 X noLx Oth lo X hilt X E R

Deff The sets

Zt tix C C a talk IR It x I E I t toll

Ztt I It HE C a too x N Ix x I e t t l

Z to tix E x.to xR I x tol f to t

are called respectively the lig ef me
135



a I pastlight cone city vertex at to to The sets

tax 24,1ft
tix Ztt n t20

tix Got A t203

are called respectively the lightcone future light coneand ahh.no positioetimcathvertotatltexol
We often omit forpositive time and refer to the sots K
as light cones We also refer to a part of a cone e.g

for 0ft It as the fate futurepast light cone

AH x

alton Itoto
Ito

to to
2h

g

Gt

136



Lenya differentiation ofmoving regions Let

Nhl EIR be a family of boundel domain with smooth boundary
depending smoothly on the parameter e Let it be the
relocity of the mowing boundary 0hr4 and v the unit outernormal
to oral If f firm is smooth tho

T.fi fuhtdttofu fo.vds

proof Hw Conran with the fundamental theorem of calculus1

Theo finite propagation speed Let u C cdcco.mxR't
be a solution to the Cauchy problem for the wave equation If
u u 0 us t o x Btocrol then u 0 within KI
Thus the solution at It xo depends only on the data on Bix andthe cone kfo is also called a domainfdependence

P f Define the energy

ELH i ta J Cen t 10h12 dx 0 E t f to

B Cio
to t

137



Thu

It J Italia t 0h 00th dx t ta f l tag 10m70 vds
B Cto
to t OB Cto

t t
The points on the boundary more inward orthogonal t.tk

the sphere OBt and with speed linen is t flu u

Birdt t

Be i t t

f fo
att

titi

Gq att

Integrating by parts

J Vu 00th Lx J Ankh dir t f 9th ds

Bt Bt 013101
to t

Thus o

tf f th but'thds tf 9a
B Ct
to t 913 Cto

to t

t J Oth t 10h12 DJ

onto
138



f II 9a ta4Y Lloyd ds
913 to
to t

f J f IV ul 194 t 0th 10h12 DJ

DB to
to t

where we used that Yuka E 1 44 1 1194 I

Ift l Ira ul E 104171 Ital Now apply the Cauchy
Schwarz inequality ab f g by with a 104 be 174
to get

te f J 104 t fteal I 94 flour O

JB Cto
to t

thus Ect is decreasing Since Ect Z O and

Eto L Italo n t 10h10 rs 2 dx o

1B Ct
to u 1 1 0 Vuoloxs I 0

we conclude that Eat 0 for all Of t e to

Since Eltl is the integral of a positive continuous139



function over Bt I Ects o implies that for each t the

integrand must vanish i e

tuct.xi t 1044 112 0 for all Cit C KI
which then implies

quit x O and V ult x O fo all tix Chit.jo
Since kt.ro is connected we conclude that u is constant in

time and space cithin KI o i e ult r d constant ie

Uto Since Uto Xl u.CH O d must be zero

Potato Henceforth we assume that h 22 Set

uct y dScyl
Ulf x.ir

vou

rxnfBrcxsUolXirliiw
gy Juoltiy1dscy1

OBrix

U
w Igo

which are spherical
averages over 7Brett 140



Prop Euler Poisson Darboux equation Let u.com cgoixinY
m 22 be a solution to the Cauchy problemfor the wave equation
For fixed x C IN consider U Ult tir as a function of
f and r Then U E C co 1 1901 and U satisfies

thcE
Dabequatios

7EU 044 9 U 0 is co 1 1 4

U Uo on t o x 0,4

qu U on t o x Oso

Et Differentiability with respect to t is immediate as isdifferentiability w.nl r for r 0

Arguing as is the
proof of the men value formula

for Laplace's equation

Ult x r f ae J Duct ll dy
Brix

his implies him 9 Ult t v D textr ot

di ul tix I J Butt y dy
BrCX 141



f µ I i

But QJ Ault y dy J Butt y day and recall
Brix 0Brix

that v l Brits yr so

I uoe n i t.ec
E or u m for Fi so

QUIT x r l
w f Dutt ll dy

BrCH

to J Duct y dsays

913,1 1

This implies that Lin 9 Ult t li In Duct xo t

Proceeding this way we compute all derivative of U w v t r

and conclude that U E ch cool x com 142



Returning to the expressionfor IU

EU I uoecB J Sh I u J din th

Brix Bix

o.ci int innit in

ih
t.i.in

i 9 lotion f in
0 the other hast i

d r duh n i rn 29 h t v 9 U
Il

h l ofh

which
gives the result I
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Reflection
we will use the function Ultrin to reduce the higher

dimensional have equation to the Id wave equation fo ahd DIAle bat
formula is available is the variable f a d u However Ult 1

is defined onlyfor a 20 whereas DAlembert's formula is for
Lv Coo Thus we first consider

Utt thx O is L o o x 0,0

h ou 1 O x o 1
I ii

where 4 lot 4,101 0 Consider old extensions where t 20

htt
t.tl to

htt x so
1 To

401 1 t z

uol.in so
5,4 i

ti tso
u.cn TEO

A solution to the problem on lo 1 10 is obtained by
solving

Utc xx 0 is Lo a x IR

1
n

and restricting to co a x cop where 5 4
144



DAlembert formulagives

actin acxttithlx El t I f candy

t t

Consider now f 0 and v20 so that It.tl act x Then xtt 20
so that Tolxtt hocxtt If It the the variableof
integration y satisfies y 20 since y E t t rtt In this
case E ly 4,141 Thus

actin tluolxttlth.lt t t I f cady for x2 t
X t

If o f x et then t.lt th not ex til and

y'tfilly dy flicyldy t Juicydy fue y dy t It cyldyt t x t

y't
xtt

Juicy dy t fu.ly dy fuilyldy Tho
xtt

att

u text I holxtti holt x t fittingly for oftet
xtt

Summarizing
145



xtt

act
L ttt tho't tt t Juicydy X tzo

x t
X tiuolxi.tl 4 It ti t
Juicy Ly OE t Et

xtt

Note that is is not c except if no coi 0 Kot also
that ult 01 0

This solution can be understood as follows for 77120
finite propagation speed implies that the solution does not see

the boundary Fo o stet the waves traveling to the left
an reflect o the boundary where 4 0

t
x c t domains

It of dependence

l

to to X
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solutio fnihichffsfor.la
Sol Tra ru Ino ru i ru

where Fr Io El are a above Then

qiu rain r int au

no U t 21h

oil rut Iii
So I solve the Id wave equation on 0,201 190

with initial condition Ico r Trout firlois 414
By the reflection method discussed above a bare

rtt

init x u L in rttl Trott 1 t taJin cy ly
r tt

for 0 Erft when we used the notation I Lrtt and

Tr ly for Troixirth Trix y
From the definition of Tr and h and the

above formula
147



ultixl lijot e.cn Jatt ll dsay
7Brett

lion Ult x r

ot
Il t.ir rlim

v o t r

f o ta Tol t tri Golf r
th

t atJaysdy
t r

tote that

tin U tt
f o Troittarlin

o t 2 r

it it

and

f of tar lady Tritt this quality is

simply fine J f ly dy fox fon n L S

DrcXl

ult x Ero'tti t ii HI
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Invoking the definition of Ero and Tr i

n't often l tweetinI 1

Making the change of variable 2 recall that we are
treating the n 3 case so in the calculations that follow n 3 butwe write in for the sake of a cleaner notation

Fein I'T Juoundscy
7Deal

Juoctttz t dslay

7Bio

J uolxttzidso.tl
The 913cos

I uoeoo
ftp.go.yxtttsdscts

f Ou txt 1e at d Sct

913,101

Changing variable back to y i e y xttt and recalling

that dsly t d sett
149



F wei I iii f ten t Id

Using this in the above expression for ult x

Ult x 1

J holy t tu.ly dscyol013th
913th

go
9131 1

which is known as k ff nla

tho Let u E C CR a I n E c'ch Then Here

exists a unique n E CH co.mx in that is a solution to the
Cauchy problem for the wave equation in three spatial dimensions
Moreover U is given by Kirchhoff's formula

PIF Defino u by Kirchhoff's formula By construction
it is a solution with the stated regularity Uniquenessfollowsfrom
the finite speed propagation property D150



solutin 2 is onmula

We now consider u C C Co 1 1122 a solution to
the wave equation for n 2 Then

Oct x x ult x x't

is a solution for the wave equations in n 3 dimension with

data 001 4 4 31 no x x4 and o Ix HN U.Cx x4 Let
us write 1 1 and I x x o Thus from the 9 3 case

uctixi oit.it fi t 5
t.ec f4d5

95ft
where Deceit ball in M with center I anl radius t 15

volume element on OBeCEl We now rewrite this formula with info
Just involving only variable in 1172

The integral oven 95th can be written as

fair offer

where 9Bfoil and 7BEES are respectively the upper and
lower hemispheres of 05h51
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The upper cap 75th is parametrized by

fly t ly xi 4 4144 E Beas X Lx x'I
where Btcxl is the ball of radio t and center x is 1122

Recalling the formula for integrals aloyasurface gives by a graph

t.ci b d5 qFa 411th ly
75th
t

where we used that v x x x'I noch X't This lastfactalso implies that
volt x r't

t.in i rto
Vol X X x

Thus

iii tHF

l holy
I F dy
Bex th ly x 2
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In the last step we used

1 t Pfc111 l t
t.tn

Similarly

witty aI 4

Hence

n't E It 4 t's
µ
Ii

t
t.fi v.itTn ETIi4 ttwecotI IYT 4

Changing variable y 2 in the first integral s dy t da

tE thi f.i.it x4I ftlwn.ion i I

ton Y t.T.to It
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holy y x
u iY hi ITf2 ly xp

Btw
where in the last step we changed variable back to y Hence

nitin toe f tf I dyt ly X1
Btr

inni
t
E x

Btk

which is known as Poisson's formula

to Let u E C N and n E c'ch Then Here

exists a unique n E CH co.mx in that is a solution to the
Cauchy problem for the wave equation in two spatial dimensions
Moreover U is given by Poisson's formula

PIF Defino u by Poisson's formula By construction
it is a solution with the stated regulati y Uniquenessfollowsfrom
the finite speed propagation property D154



Sol f t 2

The above procedure can be generalized for any n 22 for
u odd we show that suitably radially averages of a satisfie
a Id wave equation for r 0 and invoke the reflection principle

for n even we view in as a solution in ht 1 dimensions apply
the result for a odd and then reduce back to h dimensions

The final formulas are

noted

aft ft wifi

t.lt.fi lads
713th

where

p i L S S h 2
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hereuntin
f fifth Tei 41th ly xi

Bt

att Et tonite l
where

u 2 4 c Ch 2 h

Remarh The method of using the solution in nth

to obtain a solution in n dimension for n even is known

as methodof descent

RemarL we alredy know that solutions to the wave
equation at to.to dependonly on the data on

Bfocxo For
h 23 odd the above shows that the solution depend only on
the data on the boundary 013µmol This fact is known as
the strong Huygens principle
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i
f in Canix R

m no on t o IT
9th 4 on t 01 12

where f 0,0 12 7112 no u in A are given f is called a

source and this is know as the inhomogeneous Cauchy problem forthe wave equation Since we alreadyknow how to solve the
problem when 1 0 by linearity it suffices to consider

a f in 1901 112

n 0 on t o IT
9th 0 on It 01 x IR

Let ugct.tl be the solution of

ns 0 in 5,0 x IR

us 0 on t s IT

0th f on t s IR

This problem is simply the Cauchy proplem with data on t s instead

of 1 0 so the previous solutions apply
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For T20 define

t
Ult x Judt aids

0

Note that uco x 0 we have

dealt X molt I t f 9 hslt.tldss t

Since u Lt x O fo t s the first term vanishes so

dealt H got fu.lt Hds

This Italo X 0 Taking another derivative

Initial f 414 11 t f It uslt.snIs
Since 4us fis x I fit x and 424 Bus

It ult n fit x t f Du it.in d

f It H t b f uit Is

fit x t Butt H i.e

9 n Du f 158



Therefore we conclude that u satisfies the inhomogeneous

wave equation with zero initial conditions We summarize this
in the next theorem

the Let f.CC t'cco.oixiR when IT is

the integer part of tea Let us be the unique solution to
au 0 is s a x IR

Us O on t s xD

Itu f o It slam
and define u by

ult n Jtousltixids

Tho u E C 0 Ix N and is a solution to the

Cauchy problem for the wave equation with source f and
ten initial conditions

R The procedure of solving the inhomogeneous

equation by solving a homogeneous one with initial condition

f is known as the Duhamel principle
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Vectorfidifferentialoperators
To proceed furtherwith ou study of the ware equation we

need some definition and tool that we present here
Consider a vector field I Ir Ih Recall

that the directional derivative of a function f in the directionof IT is

If E of Oif

tote that we have a map that associate to each
vector field the corresponding directional derivative i.e I 1 7 0
Observe that this map is linear e.g ETI t O

ty toy
Reciprocally given 0 we can extract back the vector field
I 0 1 7 I We conclude that It 0 is a linear

isomorphism Thus we identify E and 17 and thinkof
motor
fill a differentiation operators

I Ii 9 Ii I
2 1

In this setting as for I I E I we say that
I Ii di is ch if the function I ane ch
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Rc In differential geometry where manifolds are conceived
bitnactly and not as subsets of IRS veto field are defined as differentoperators

Def The composition of veto field E and I written

II is the differential operator given by

I 14,1 Il Iif't i e

II if I Ii di Eis f
for my c function we also write EI f fo 1741

Regard I luckily we can consider the compositionof an
arbitrary number of vector fill It etc Note that is general
II II and that II is not a vectorfield Li e in general

II Oz for some vector field Z1

Pres Let E and I be ch veto fields h 22 then the
expression

I I II II

called the commutator of II and I is a ch vectorfield
p f Hw D161



Pryor propertiesof the commutator It holds that
i's CE I is linear in IT and I
Kit CI I CI I
Hii Jacobiidentity

I LI ZI t LI Ct Il t Z CE II 0

P f lis and Iiis are straightforward and Ciii is a direct
calculation

a

Def Let It I I be a collection ofL smooth

vector fields in IR Given a non negative integer h2o defies

h L

se h I III Ii I eu
l il ie

for any smooth function ni N sin We define the norm

x h f Ii
and write 11ally a when the integral on the AHS does not

converge
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them Above we wrote norm in quotation mark because

Hully is only a semi norm We abuse language and often denote

semi noun by nouns Note that is the particular case h I
Ii di L n we have

is
lunily.pe I 19 nail I Vucxil

i i

Remade Above we assumed that the Ei's are u a a smooth

for simplicity We could consider limited regularity instead The same
is true for much of what follows

Defand notation The collection of numbersg Ig
when

go I
gi L i L n and gap 0 otherwise is

called the Mimetic It can be identified with the
entries of the matrix

L

fo
The collection

g
i girl p o where

go I gi L i l int
gM o othowise which can be identified with the entriesof the
matrix M t

l's call I thinkowskinetic Given
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as object with Greek indices i.e
varying from 0 to u

recall our indice conventions we can raise ant lower

indices using g and g
1 in analogy with what we did

using the Kronecker delta E.g
E c gap Ef

so that I E and I I We define the
Minkowski inner product by

E Ilg gap If I I

EI't II I t

Koto that L
g

i no degenerate like the Euclidean inner
product but it is not positre definite unlike the Euclidean
inner product We then define the ushi 1 a

III i Lt Sg

Vectors such that I Ig Lo arc called f k lElgh o

are called null like and I If O spacelike

students can cheat that ft consists of the set164



of rector basel at to x that are tin like o null and

Tbt consists of the set of vector based at to.to

that are hull like

I
Ilg o

h The previous identification of vector field
with differential operators and the definition that follow

commutator noun etc apply as well for vector fiell
containing a zeroth component I Io E Ih i.e
vector fields in Rx in or subsets of it and function
u ul t t X 165



The Love.tt rectorfiell

we introduce the following rectorfiell in MN

The translations

T I
Iif

Th ai

Apu xpou Idr
Thi

dialations
is xf9

r

Among the angular momenta we distinguish further

The spats Riji
Rig XiOj tjdi

The boost ou Yyp t Rio

Rio till t t 9
He plus comes from X go xp iron t tot that

Apu Rrr 166



Together those rectofield are called the Lorentz

outfields o Lovato fields we denote

L ftp.trv.snu o

the set of Louenti vectorfield
Notation Lol I be an ope set in Rh he denotes

cace am the set of all infinitely many tines differentiable
i.e smooth map win in We put c r is c Cr IR

although we can abuse notation and write Girl fo c ce.mil ifit is clear from the context

Def Let her be as one set f differentialoperator
P on r is a map p ICA Ecr of thefan

Pn x P DhulH D ult Dahl hurt

where X E r n E Ctrl and P is a function

P Whx n Fix Mar N

Th number h above is called the order of the operator we often identify
p with P and say the differential operator P
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EI Take A R2 Thon

Pu 9in t ly n t ud
is a second order differential operator To identify thefuoho Pdenote coordinates in 1122 IRL x IR x R by

2 Pxx Pty Pyx Pyy Px Py P ti't
so PLZ Px t Pyy t Pd

Observe that the definition of a differential operator
t.hu all entries into account

ignominy e.g 9 ya i 9y u etc
R s

I the atom definition it is implicitly assured that the
first entry in P is not trivial so that the order of P is welldefined
Other isc we could take say the first orde operator Pu 9 4 and

think of it as the second oudo operator Pu 0.0in 9 n et
P might in fact be defined only on a subsetof acts cgPai

n
is not defined on constants Situation like this will typically be

clean from the context

we can generalize tho above to C CA R

Differential operators will naturally extend to mone
gene d function spaces e y P Chl et Ch t r whenever
the corresponding expression make sense
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Def Let P be a differential operatorof orde h P is called

liar if it has the fo n
Ph ex LT aux D hits

121Eh
for some function a

if it has the form
Pujari yI aah D ult t ao Dh next Dalit UH X

for some function ay

quasi linear if it has the form
Puja I a DhLin Dahl ulti.irD4hlD1hlh

t ao Dh next Dalit 4171 X

P isf if it depends no linearly or
derivatives of orde h

Rina A PDE can be equivalently definite as an equation

Dun f when P is a differential operator and f is a

fire function
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Def Let P and Q be differential operators defined
on a common domain Their Immutator is the differential
penator defined by P Q u P Qur Q Pani

Prep The following identities hold

TpTo 0

Ctm Sap grate ImpTa

Tr S T

Cfo Sap graspo Japan grasp Juma
Rpv S 0

D T 0

Imo 0

1 51 2

pf tedios but straightforward calculations

Eh It follows that if a solve n 0 then
i tu Z E L also solves the equation 5 0 Because of
this the Lovente fields are referred to as symmetries of thewave equation
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ii i.it iiiiiprove the following

The Let h 2 2 be an integer and let
h be smooth solution to the wave equation

n 0 is 10,01 112

n 22 This there exists a constant 4 depending only

on n such that

Valtix dilltt 110
acosislly.at 119

419
1112

t 30 E M

The proof will begiven in steps

Def The n of a function f h it is

f Lara Sulfoxide
2

We write liftgaga a if the RH does not converge Sometimes we
write 1111122 if U is implicitly understood
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Let h be an integerm.IFiiit.it imnmmant
latest Ci even in x er

for any smooth win in

Pref The proof may be assigned as a HW

To understand Sobolev's
inequality note that in general weshould not expect to be able to bound next by one of its integralsE g take a 91 next Then

f'luixsidx 2 i.e 114112 52
0

Since so as of we see that there does not exist a

constant G 0 such that lacxil cellully for all x i e

we cannot control a pointwise by its integrals in the L sense

The Soboler
inequality says that for functions with a large

number of derivatives being integrable such control is possible
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Notation Let us denote by 0 the collection

of spatial angular momenta operators i e

O tijl

a Let h I Lh th Thou exists a constant

4 0 depending on n and h such that

kI ult't E C
guys

d Sey
J f x E mis

fo

for all smooth function u 913,101 N

p f Begin by noticing that the derivatives rig
are always tangent to 913,101 so that it makes sense to
consider Rijn fo h defined on 913,101 Indeed recalling flat
dir we have

fig r XOj tj I r i t i 0

Next split the integral arc OD.co as the integral over173



713 co a as integral over two hemesphere 713too and
713 Lol Parametrize the integral oven each sphere as
an integral one B co Ca we did in the methodof descent

The taunt space to ID cos at any point is spanned
by h I linearly independent vector fields Since there are n I

2
linearly independent ii j's we conclude that 0 spans the tangent
space to 913 lo Hence each integral over DDt Lol and 713701
contain all derivatives i.e Ddu Applying Sobolev's inequality
which is allowed since k EE ti we obtain theresult I

L There exists a constant G70 depending o n

such that for every smooth ui.IR 7N a L every t o

I
s 2141 11 f G IH 11h11 110am

TEETH oil Iti

p Fix C IN We can write XI ru w C9B.co

For fixel w

Incrwst shr filuirinacry m J lq.ucnw.in's Ln

see below 174



From the previous Iemma

Iuliu I E C J Intr 3 I d513
OB co ECE tl

Moreover

I t t L
DDLo

A similar
inequality holls for Jr Ulin which implies the

result

It remains to prove the inequality for Intrust
Keeping a fixed and considering ulna as a

function of r and noting that we can assume

u rw 0 as r consistent with
finiteness of

the integrals of h we have

lural e l for curtail
dr l
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E L J 1h1mn I 19 Unni 1 Y du

F J lucius I 1 ulna rt Ln

when we used that I fo r In

A Inimical ugh gg i.EiiiI

Then

lhlrlws lllr.nu wit f g Intr witty t II air'uilk'T
A B 272

Integrating a v t r fron r too the

RHS become ta t ta L which implies the

desired inequality I
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We now state another tyre of Sobolev inequality

prop local Sobolevinequality Let h z be an integer

There exists a constant d 0 depending on n and h Sud that

for every smooth u Brio 7112 and all x C Bhaji
1h t 42 Ri I

µ
I Munni'd

we will e it the proof of this proposition The idea is
to rescale u to reduce the problem to D lo this fire the powers
of R We next extend u from Bco to M and show that
this extension has non comparable to thatof h is B cos

Leza Let h2o be an integer There exists a
constant 4 o depending on n and h such thatfor any smoothU Ul t X we have

ID'uct til I I hit.nl
I ti r ti 1k 4h

for any 9 such that 141 2 ta t ta th
177



p f By induction in k l For any t.tl not on
the boundary of the lightcone w really cheat that

To ftp.lxtrmtxus
Indeed Him txus xfxq xfxuqtxuxrqs.lv E du
Thu

II cxrrmutx.sn
This implies

I I Interns fo tr HII

Indeed obscure that lXrl t l Xul E G since 1 1 v

rtl

rt

v El21
Let

Lt
lb ti z r t I r ti 21

x

178



Sisco tl is a bounded function forIv H

1121 we obtain the inequality for Iv H 21

For Ir H L l it holds that 1971 4
l th ti 14 fhrs combining both regions

1 11 I ly
proving the case 1 1

Consider Lou second derivatives Applying the case 4 1
to Tru fu gives

19 nl i I ki
The RH involves expressions of the form I Tru with I C L
From the connotation relations a term of the type Tru canbe written a

I T h T En t I u

T I n t Tu

for some translation T and up to numericalfactors in the second tern
Applying the case 6 1 t In gives
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IT Enl E 4 I ul f 4 1h1
1 t I n t I t k't i Iv ti 142 42

and we also have

1 Tul
Ihle I 1h42I th ti't f t I r ti

Using the foregoing we obtain the inequality for 6 2 we continue

thisway to estimate a Lti derivative we unite Dht u T Dhu

apply the h case and use the commutation relations Those

co mutation relation always give a term of the form TL I for
which we can apply the ke case to get an extra te n
Ith H2 2

giving the result I

prep Let h Il 1 I be an integer There exists a constant
C 0 depending o n and k such that for any It a with
t Z 21 1 and any smooth n IR 7112

I act x I f C t Hult 111
L h

pit Let R ta and apply the local Sobolev inequality

to obtain 180



Eh
i l

From the previous lemma

DhulT X f
i 1414 11 121 1

L t I r ti 2 Lik i

s that

k
Ildlait x I f d Ri J

1
Init 2 II dal x 1h t121 ii o

Brio
Fou IH I ta we have

I th ti et Ir ti't I R
L

since the least I th th can be is when r 1 1 4 so that

11 t t 2 Ia Thu

le
lait.nl f G n if ult.nl da

i o

E Ci t T Hult 111 D
L h 181



Prof Let h LL t 2 be an integer There exists a constant
C 0 depending on h and h such that for all 1 so ER and
any smooth ni N 7112 it holds

1 act x l G Litt Hult 111
L h

proof For IH ta the second lean of this seat.io give
I
2 2lhlt.tl fCi1Xl Hull 110am

TEETH 9C Iti

4 1
2 zc Cit

y ii I c
I

G t II htt 111
d he

For t 21 we can replace E by att is

the above inequality and t T by Y ttt in the inequality
of the previous proposition which has valid fo IH s ta

182



For f l l if 1 1 f ly we can apply Sobolev's inequality on

Belo Finally for T L I al 1 1 12 so that2

1 1 1at a 1H I l tt't since ttf e tafo
f _1 1

a
I

y
t t apply again the

l I ir i l second lemur of this section1 i i i
1 i i i so that
i 1 i i 4

i 1414 11 E C 1 1
d
11h111 1 I 1 1 1 1 1 1 I 2 k

I
2Ci Itt 11h11

L k l

finishing the proof a

So far we proved several inequalities valid

fo a arbitrary u We will now use a solution of the
ware equation to obtain the main result

proof of the decay estimate By the commutation
relations between K and I we have that for any
collection Fili CL
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J I F eh

satisfies Do 0 if Dh O Using conservation of
energy for it gives the result I
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T iafaPDEanL
remarks on tools for their study

Consider the linear PDE

amYoun t HIU t cu f in r

for n ult H where the coefficients afu bp c and the source

fern are gives friction of Ct x We can assume that thecoefficier
afr are symmetric i e am art If not we can define
IM am tap and write the PDE with TN

The PDE is called editio if it has the form
aijdidju t b din t c n i f

and there exists a constant 1 o such that

aijexies g I 1151

for all x E A and all 5 E N Vote that in
his case there is no differentiation with respect to T so
we can assume all function to depend o.ly on X
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The PDE is called p li if it has the form
7th a 9,9 u t b din t ch f

and there exists a constant l 0 such that

aijlt.ir 5i5j 1,1512

for all tix E A and all 5 EM

The PDE is called if it has the form
Jiu aijq.cl h t Tha t ch f

and there exists a constant 1 0 such that
aijct.xjg.es I 11512

fo all it x1 E r and all 3 E hi

The Poisson heat and ware equations are examples

of elliptic parabolic and hyperbolic PDEs respectively In
fact the condition a j esSj s 11511 implies that given
a point to it is possible to choose X coordinate such
1has in a small neighborhood of X we have
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ai j e Si's

Therefore elliptic parabolic and hyperbolic equations can be view
in a neighborhood of Xo as approximated by the Poisson heat
and wave equation respectively As we discus below we can

think of elliptic parabolic and hyperbolic equation a

generalization of the Poisson heart and ware equation

Pete that those definition depend on the domain
I i e a certain PDE might be say elliptic in a
domain r but not in another domain n on not elliptic
in r but elliptic in a subdomain r ch

we have not given the most general definition but they
will suffice for our discussion Sonic generalization are trivial
E y if in a parabolic PDE we had a 7th instead of 7th and
a f O we can simply divide by d

There exists a fairly general theory of ellipticparabolic and hyperbolic
equation note that here we are

talking about linear
equations it is possible to define187



non linear version of these equation but then much less is
known Compare to ODES The important point to keep
in mind is that in general solution to elliptic parabolic
audhypevb.li tiobchaeeymhihsoti to
thcp.is eatandwacgatioss with f o when

comparing with properties of homogeneous equations Because
ofthis we sometimes call the Poisson beat and wave equations

the ons

elliptic equations boundary value problems Dirichlet
or Neumann problems mean value properties and maximum
principle

parabolic equations Cauchy problems initial boundary
value problems infinity speed of propagation and smoothing
properties decay as I t

hyperbolic Cauchy problems initial boundary
value problems domain of dependence influence and finite
propagation speed decay as 11 t'T

We will not study these linear equations in detail
here But let us remark that the strategy to study
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then follows a pattern similar to what we used to study
the model equations

I without yet having proved existence assume that
a solution exists and derive some properties that a would
solution must satisfy ey D Alembert formula or the maxinu
principle This stes often goes by the name of a prion
estimates see below

I hi the knowledge fnon I about properties that
solution must have to actually construct solutions

I Study properties of solutions This is is some sense

similar to I as we could imagine studying properties that
solution must have if they exist without actually proving
existence The distinction here is one of depth in I we

want only as much information as needed to guide us towar
a proof of existence whereas here we want to understand
as much as possible about solutions
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On the other hand one of the main difference between

the model equations and gene d linear equations of one of the
three types is that for the former step I lead us
to explicit formula for what solution should look like
In general this is not possible and instead in step I we
devise the next best thing which are primates
These are estimates that are valid for any solution of the
equation if solution exist or any solution under certain
assumptions

e.g compactly supported data They are called
estimate insteadof say identities or formula because typically
they are inequalities satisfied by solutions if they exist

C era fly speaking such a prior estimate provide us
with enough information about solution in order to guide us
through an actual proof of existence Examplesof a priori
estimate ane

the maximum principle
conservation of energy 190



In these cases we only used the fact that u was a solution
i e we did use the PDE but didnot use any formulaforsolutions In fact those results would remain true as

conditional statements even if solution turned out not to
exist
A priori estimates also play a large role in step

III Hove again the goal is to obtain information about solution
ere if explicit formulas are not available An example was
our decay estimate for the wave equation we derived it
without

using explicit formulas for solutions In fact we

could have proved it without knowing that solution exist

Finally we remark that step I I and I also
revile a roadmap to the study of nonlinear PDEs

We finish this section discussing the concept of
well posedness of a PDE This concept was introduced by
Hadamard A problem PDE Cauchy problem boundary valueproble
etc is said to be well posed if

L Existence The problem has a solution
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2 Uniqueness The problem admits no more than one solution
continuous dependence on thedata Small charges in the

equation on it data e.g initialdata boundary values etc produce onlysmall change is the solution

When talking about well pooches relative to local solutions
e.g solutions defined only for a short time we use the term
tops
In practice those concepts need to be made more precisein order to lead to cell defined problem leg existence refers to

classical
generalized or some other type of solution How does one

quantify small changes Nonetheless these basic three concepts
are at the core of PDE theory
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Themetaracteristic
We are going to study the Cauchy problem for a

first o do quasilinear PDE in two variables one spatial
dimension i e

att x h 7th t blt.nu 9xutclt x u 0 in loins R

Uco.tl hey
A

we will employ the so called of tios which
roughly consists in transforming the PDE into a system of ODES Let
us remark that this meth.li very general and can be
applied to study equations of the form

F Du n x I 0 in r

u b on f E 9h

but the simple situation considered hero will already capture the
main ideas of the method

We begin noticing that the PDE can be written as

a b c 0th 0 411 0

Consider the graph of h More precisely consider the parametric

surface g Ct x C In t.x.ult.nl E R A normal to the graph
193



at it x ult n can be written as

9g XO g Let
un

e ith ein te L fu 9 4,11

Hence

0 La S c 7thOyu 1 La b c Iff X9 8
This mean that a b c is tangent to the graphof u
Thus curves that have Ca b a a tangent vectors will
lie on the graph of u provided they start on the graph
we will use thisfact to construct a family of curve that
gives raise to a surface which the will be showed to be the
graph of u

For each x in tie x Eh we consider the system

of ODES

ddt altitt Xi 4,441

1 bt tht Xin nai

c th Hel unit

or th Xcel nie with initial condition at t o givenby194



t o e O X o Xo Uco h Xo

The solution to this system is a curve tin HH wat in the

t X n space i.e IR parametrized by t whose tangent vector

is a b c This curve starts at co to hcx which is the

initial condition for our PDE at t o X x Because the point is
the graph of u at t o xn ro is lo ro hero since 419 1 44

the curve starts on the graphof u It will Hon remain on the
graph of a because a b 4 is tangent to the graph as
observed earlier

If we consider a different point to then we have
a different curve Thus it is appropriate to write the system of
ODES and the solution curve as a system in the variable 2

parametrized by x

ELI al Elt x XL 4 1 hi 421

ice e Htt 44 Xi 44 414 ft
in It Ll CCTLEal Xi 4 1 ult al

t lo L O Xlo al e x UCO at 4cL
where is abbreviation for i e

195



The basic idea to consider this system of
equation is that if we write

a act Ul tire N H 44 612,4

then the chain rule gives

n fltlt.tn Xlt al ULT alL UIT a Ot ul ti 44 Xlt ai t.lt Ida

t 0 41 tl 421 Heidi X T al

b ft 4 1 XI'T LI ult Dl

On the other hand

ult al c ttt l Xt 44 ul4211

Therefore we obtain that

a 9th t boy n t c 0

Moreover we also have

4 o X UI cco.at Xl h X

we can also understand the system H in geometrical
terms by considering the graph of u 196



The graph of n is obtained by by taking the union of all
tlt.at HT xs ult ai for different values of tail a

alt10,211,710,47 u lo k bltlo.de Xloi41 40,411 4110,41 no 41,499.1
n

alt 10,11 xlo 27 u10,41 bltlo.es Xloi41 hlo all
4110 21 Xlo 21,4101g

grnmu.fr it hi

11441 1441,4 41
yi i

i
if

altlt.tl Xlt a uteri c I t l

4th ii Ht i uh i

if
I

Cl HI Xlt a I l li i
ult a Heidi xl4411 H441 xcu.gl

Ct L

att Lt a x It g ul 441 bltlt.es XlTi91 htt all 4th q Xlt 4,44g

Def The ODE system Ht is called the characteristic
Iten a system of characteristicequations for the PDE HS Its solution
1 It al Xi 4 1 ult ai are called characteristics or simplycharacteristics

The curve Elisa xce.at are called thcprog.co eLchavaote zce

unprojectacteristic we often abuse language and call CHILI xcr.nl
the characteristiosovolaracteristiccui
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EI Let us solve

9th t 9 4 2

who it it

In this case a be L c 2 so the characteristic
system reads

in LilyLl L I x IT L L I i Ct x 2

The first equation give tlt.at t t FIL where f is as

whnow function of L Using flo 21 0 we find Flats 0 text

I 1 gives XCT.LI it Gul where C is an unknown function of
Using 71941 we find Ccat in Finally n 2 fire

UCT at 2T t HCL and Glo al L gives 417,21 22 t 22
Hence

1L 4 1 XLT xi hit x T Ita 2T t L

provide a parametric representation for the graph of u To obtain
u explicitly as a function of Lt xl we need to invent tct.at Ntia
expressing I T tix and a att x We find a t a X E x t

Plugging into hit.at we find

ult xi 2ft x ti
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EX Solve

3ft 1 I Jeu t 9 4 2

M O XI I 1 x

21we have a Jct il b L c 2 andI

I 31 t l X I n L

fl o L O X lo al x ul o I L ta

we find
Lt t il It FiaIT

3 t 1 3

Since 1cos _0 a f I Feel L Next we find
X It x a 22 t Ltd

The I t il t 1 a x i x t i e th

ult x 21 It l t 1 t L t x t il I

f 1 3
t x t 2
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Remarh The above two examples highlight the
following aspects of the method characteristics

I To obtain a ult x u need to invert the
relation title x and X xlt.at Under which conditions is

this map invertible

I Observe that the solution found in the second example
is not differentiable at t l since Guthrie 1
Hence this solution is not defined for all time and we have
obtained only a location this is related to the fact that
the coefficient of 9th in the PDE degenerates i.e becomes

zero at C L Alternarely a point of view more in sync with
the method of characteristics is the following

II Since we construct actin out of a solution to
the characteristic system such a solution is defined only as long
as tht a and Xlt al ane defined However even though the PDE
in the second example is linear the characteristic system is a
nonlinear system of ODE thus the characteristic equation can
be nonlinear even if the PDE is linear We know from200



ODE theory that nonlinear ODE in general admit only local
solutions Therefore we expect that the method of characteristic
in general will produce only local solutions

We now investigate the insensibility of the map
Kia H ft 40 H c ai Write OIL44 fit as xct.at For
each kid if the Jacobian of f is noszeno at Cma then the
map OI is invertible in a neighborhood of Ctia Compute

Jacobian of E J wtf

We consider the Jacobian J J lait for 2 0 for two reasons
First a seen we expect solutions to exist only locally thus
in general only for small values of T If we can show that
floral to this by continuity

assuming that we are dealing
with sufficiently regular functions we all also have Ju.at to
fo small 7 guaranteeing the invisibility of at least in
a neighborhood of the initial surface t o's recall that
tho01 0 Second in general we donot have much information201



about with exception ofcourse of particular example where
we can compute Hr a and Xlt a explicitly However as we

will now see at r o we can relate J with the initial
data

From the characteristic system we have

Tia al th al H421 412,4in

so that plugging 1 0

ft Osa a flax Ho al h lo a

al o x hi 1

where we used that fLo e O XI 0,21 4 no a bled Since

the function a and h are given we know what ftzco.at is

Similarly we find
It co a b o d 4kt

We also have that

I fact factions o and

I fat f 1 1
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where we used that tio.at so and xlo.at a and that

for a C function of two variable flu z we have

fz.fi t't fzfluo.tl
W w

Therefore

aio.a.hn
7194 del lb f 499ha

Hence Jio 4 10 whenever 91944cal O tote thatthis
condition depend both on the coefficient a of the PDE and theinitial data

Def The condition Jlosa o is called thetraility
edition when the transvensality condition hold we say that the
Cauchy problem H inartistic

Remark The transversalTy condition in ou case involve
only alo a 4cm because of the simplifying choices we made at
the beginning i e to consider flo a so no a ex and the data

given along t ol Recall that we mentioned that the

method of characteristic is applicable to move general
203



situations and in these cases the transversality condition

will be more involved

Theo Consider the Cauchy problem

al t x h Ith t bl t X h 7 4 t cc tix n 0 is 0,4 112

uco x Lex

Assume that h is smooth and that a 5 and c are smooth

functions of their arguments in a neighborhood of the initial
curve O X hey IR Let X E R and suppose thatXER
there exists a d o sad that the transversality condition hold
for all in the interne X 28 x t 251 Then there exists
a E 0 such that the above Cauchy problem admits a unique
solution defined for Ct x C C c c x x d x ti In partial
if the transversality condition hold for every ER the the
Cauchy problem admits a unique solution defined in a

neighborhoodt o x R If the transversality condition failsfor everypoint on an interval A DIEM then the Cauchy problem haeither no solution on infinitely many solutions

Let's make some remarks before giving the proof204



then Note that the solution is guaranteed to exist in
a neighborhood that is smaller in the X direction than when

the transoersality condition holds

t solution
exists here

1 f
it i

to 28 i to it r ritzo
e I I i t

I

transversalty condition holds

Reina The intuition behind the theorem is the following
We want to find ult x by constructing the graphof u out
of the curves CIT al XLTal uit x Such curves start on the
portion of the graph of h corresponding to the initial data i.e
co a him We want to use the characteristic system to propagate
the information on the initial cure to inside the graph of u
We do this by following the integral curves El421 Xlt I ult al
This requires the tangent rector to these curves to be

transversal to co a him If they are not Hes the205



integral curve 1 IT 1 Xlt al ULT d cannot leave o X 4cm

and more to the inside of the graph

graph of h

J qtrmsrersdftle.at
XL44,4171211

u a

s i i r TX
futsal 71 1,4 um all i i i t i ki i l

l l I not i

i i i i ii i i
transversal

y
i i l l
l i t t

I i i i
i i i i 1

i i i i i
w I s

k i d x
i Caioo projectionofCabc0,1 a totheCtx plane

L f

The vector 910,44411 bloodhim cio a has will be
transversal to 0 a 4cal if the vectors aco 4441 bio4h41
and 0,11 are linearly independent 1 see above picture
But this means precisely that

910 a half
4 Is 91 10

which is the transversality condition
206



proofs Because the coefficient are smooth
function of

its arguments the existence and uniqueness theoremfor ODESguarantees
that for each point p on the initial curve to a hear

there exists a
unique characteristic curve starting at p The

union of these characteristic curves i.e image of the nap
OI a 1 7 th al xct.at ultras

forms a parametric surface

If the transacrsality condition holds then the tangentvector
QE and SI are linearly independent on the initial surface
since 72 10 I a co x bus bio2,4cal close has and
I Il 0,4 10,2 h ca The existence and

uniqueness theorem fODE also implies that IT is a smooth function of a a La
Therefore by continuity 2,45 and I I will remain lineal
independent

for hi sufficiently small implying that E is
a smooth non degenerate i.e two dimensional parametric surface
For each 4 we have an integral curve nets finer XL421 ult ai
defined for ITI E c where c 0 can depend on e i e
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E E'CLI Invoking again the existence and uniqueness theorem

for ODES we have that e varies continuously with a Thus

if the transversality condition holds for a E x 20 x tart
and we consider the smaller interval x r roti we

conclude that there exists a e o such that stat E

for all x E x s roti
a

a
tar

chat

Notice that we can choose E such that for e DEC e c x
ro S Kot d the map t.at t ft 44 XL 421 is invertible

Next let us verify that the surface we constructed
is indeed the graph of a function that solves the PDE
Set

Tilt x h Ttt x att xs

for It t G C a C e c x x s x toll
208



The chain rule gires

9th tix Ozu Ect ri act.rs fIft9ahltctix1 alt.ti off
9 Ict x one ultlt.tl t.tt t dialect x Utah Ff

Thu act 9 It t.xitblt.xidxult.rs

dance a actin tblt.tl

deal 44 al t.tl ftp.tbltitlfd
But

bltcr.at xc421 b tix

1 92 9 Latin fi It t 97 acting tutors
w

al th al xlt.at al t tj

0 95 9144 11 Offt t altixlff.tblt.HRu

hence

altixlq.net xstbCt Hqult.tl fhlT.a1
CCH421 Xlt H 412,21 C E X Ttt X

showing the claim 209



Now let us prove uniqueness Say we have a smooth solution

ol tix In the region of interest we can write t to 42
and X xc L.at Here Itt 44 xl c.at are the characteristic
curve we have alredy constructed above they solve the characteristi
system with att x n b It x ul and clt.x.nl and not alt.x.io
etc Put

412 a Ultra Htt 421 Xl4211

Because both u and 0 take the same initial data we have
41gal 0

Differentiating with respect to re

Qc 4144 9,4142 9 official H4211ft 7 011 144,71441

c CE a 412,4 al tt 42 Xlt a ult a qv to 44 He I
bl 1 IT 1 Xlt 1 hit 1 of flesh Xlt a

where we used the characteristic equation to replace in t anti
Since u Y t v we have

4 2,2 c 42 ol 42 t 417,2 act a uh 44 t Yc421 f012,21
blt a Ulaid t 411,21 7 0172
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when we abbreviated OCT I i r that H 441 9th421
dfoltlt.at xcz.nl etc The above equation is for each x an

ODE for 4 with initial condition 4194 0 Since all function
on the RHS am smooth this ODE admit a unique solution Since
it is a solution to the PDE

a fo t bi v t c 0

we see that 71 E al o is a solution to the ODE By
the ODE

uniqueness we obtain 4 0

Assume now that the thansversality conditionfail o an

interval CAB as is the statementof Hc theorem Then the
characteristic C tu ai He lie on the X axis since Cais is
parallel to 0,11 see above discussion The vector

a co a 4cal BLo L hail Clo a 4cal 0 bloodhim eco L hCt
x E Ans is either tangent to the curve co a 4cal o it is
not If it is not then there can be no solution Foo if a solution
exists we saw that ca s ol is taught to thegraph of thesolution
n particular it has to be Tangut to 10,44cal for a E Aib211



If V is tangent to Cosa4cm consider a line a 2 where

x E CA B Let Itt.no be a smooth function on the fine
t x such that If 0 to h Lo Because co bio Shui
is transversal to the line Ga we can further choose T
such that the transversality condition bolts on It do in a
neighborhood of co no We can thus solve the Cauty problem

for our PDE with dategiven on Ct a and the rules of f and
reversed Since V is tangent to 10,41411 the characteristic

curve starting on 0 do Ilo aol Lo x Laos is 10 4h41
Thus we obtain a solution to the PDE that takes the firedata on It ol x AB Clearly this solution is not unique inview of the manyarbitrary choices we made to construct itu n

µ
t.do.hlt.to

i ii

i 1
i l do 7
i x
i
Erol LTLt 212



Further remarks on the method of characteristics

The method of characteristics can sometimes be used to study
higher order equations As a example consider the car equatio

Ute t Uy O

Uto Xl I U.lt

Utl9x1 U CXl

Set it ut and w e un Then

of Utt hxx x x Wx

wt Nxt Atx ht x Tx

Thus we can reduce the study of the war equation to the
study of the first outer system of PDEs

c p.ci i ones o

Lo X Milt
40 xp n'ocxi

The method of characteristics can be generalized to certain system
of first order PDEs when we do so the characteristic curve we

find for the above system are precisely the characteristic

of the wave equation as previously defined
213



Arguing similarly to the above example it is possible
to show that anyPDEcanbewrittenasasystenoffin
orderefuati This seen to suggest that any PDE can be
treated with the method of characteristics But although we
can generalize the method certain systems of finst order PDEs not
every first order system can be treated by the method Thus the
main application of the method of characteristic is to scalar
first order equations

Burgerslequation
We will now use the method of characteristics to study

the Cauchy problem for Buyers equation
Ith t uOxh 0 in cont x M

ulo.tl hex

As a warm up let us begin studying the f hoeing linear
equation

7th t C9 4 0 is o a R

X X Lex

where c is a constant known as transportation
The characteristic system reads
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I L I C in 0

which leads using the initial conditions to
ft4 1 2 XII I Ct ta 412,212 hca

Solving for 12,4 in terms of 4 x we find
ult il hcxlt.nl ht x ct

This solution has a simple interpretation consider a line
at constant ey X ct x Then forany Ctx along this

line we have

Ult x ht x att box

Since the characteristics satisfy of a the line at xo
is a characteristic with a to Therefore we conclude
that u is constant along the characteristics i e along the
lines x of constant withconstant valve determined by the initial
condition In particular the derivative of u in the direction
of a vector tangent to X ol x must be zero Considering the
vector 1,4 which is tangent to x ct x we have

0 4 o Vu L o 9thOyu 9th t of h
because u is constant in the 11,4 direction

showing in another
way that a satisfies the equation Students

should consider this simple example in mindfor comparison whenwe consider
Burgers equation next 215



For Buyers equation the characteristic system real

I L I u u 0

The first and third equations fire using the initial conditions
f It at T UCT at hca

Using u into the second equation and the initial condition
Ho a L we find

KIT at Tha t x

Inventing the above relations we find
T L L X thkct.is

But ult x 4cal t.in so a x Tutt x We
conclude that n is given in implicit form by

ult x h X tutti
Compare with the solution to the transport equation where
we had any instead of ua in the PDE

Consider a curve on the plane determined by the
set of It.rs such that

x tultix constant
e y let r be the curve determined by
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X tact x to

Then for that along r we have

ult ri htXo

so h is constant along this curve Thus along th we

can also write x f ult x to as

ther to

Thus we have that h is constant along the curve r
given by

It thcx.it to

On the other hand from the characteristic system we know

hat that the characteristic curves are
given by

Lt that ta

Comparing with the parametrization of P above we

conclude that Vy is a characteristic Litt x x I
and therefore ult.tl tantagtheohaaoteiscs
We will not explore an important consequence of this
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t.ch
rftiefo3yesegetio

We saw that both for the transport and Burgers equations

the solution is constant along the characteristics which is both
cases are straight linesThemain difference is that in the case of
the transport equation all characteristic anu parallel i e they
all have the same slope whereas in the case of Dunguens
equation different different characteristics can have different
slopes since the slopes depend on heal In particular distinct
characteristics

might intersect for solution of Buyers equation
what happen who characteristic intersect Let

us consider the following situation Consider two characteristics
P and V starting at co x 1 and co xn respectively and

suppose they intersect at Ctx x

tn

1
i

r i pl 2
i
i

i

l l 7
x tx x 218



we know that ult r box along P and that
all in hard along rn At ftp xp we must thenhave

Cx htt xp hers
But h is a gin function In particular h can be such

that hcx.it box which would contradict the above

equality This suggest that in general u cannot be defined
at Ctx I i.e that something bad has to happen at
the intersection of two characteristics

Intuiterely we expect that a derivativeof u
must go to t.sn at f I in the PDE jargon we

say that the solution bl at lt x or form
a sho e on shed for short We expect that
this is the case because u in trying to take two
different values at Ctx 1 so it needs to do a

finite jump to do so we assume throughout that
h is c so n is c as long as it is defined

219



Let us now see that shock in fact can

happen for solutions of buyers equation Recall that the
solution can be written in implicit fo mas

ult x htt tult.nl
Differentiating

7 4 It x h't x tnlt.nl L 17 44 11

Solving this relation for 9in gives
4 x tultixi7 414 1
I t th't x t ult n

The solution htt x is given by its constant valve along
a characteristic through 4 x Along such a characteristic we

have x fact I x for some constant value x see the
previous discussion Thus

0 414 1 h

I t th't Xo

Therefore we see that 10 414 11 as f Is
nice
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We call t fi a blow up time

Because we are considering only f 0 a blowup time
will exist whenever 411 1 20 for some In particular

iii.it i Inthis has nothing to do with
h being non differentiable at some point since h is a
C function throughout On the other hand 9 4 does not
blow up if b x 20 for every but notice thatinitial
data of this type are exceptional

We have not showed that the above blow up is due to
he intersection of the characteristics The relation between intersection
f the characteristics and blowup is somewhatdelicate and willnot be
noestigated in detail here We will show however no intersection

ofhe characteristics is
necessary for absence of blowup

Assume that we have a smooth solution u defined

for tato and assume that no characteristics intersect up to
time te to Assume

further
that the map

from
It o to t to

stained by following each If o though a characteristic up to t t221



defines a diffeomorphism from f o onto f to

We will show that u is then a smooth solution

in a neighborhood of t to in particular including
values t to Being a smooth solution a cannot

blow up is this neighborhood
Since the solution is defined for t t the form

f solutions we found implies that there is one and only by
to non intersection hypothesis characteristic through any tix
E tho the fact that solutions in fact have the

form we found follow from the uniqueness we have established
consider a point to and fix a 870 By assumption
no characteristic intersect along f to x 5 rots

It follows that characteristics cannot intersect in some

neighborhood of to to non intersecting is an open condition

For the characteristics in these
neighborhood n is defined byits constant value along the characteristics This gives theclaim since to is arbitrary
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Scalar conservation laws in one dimension

Det A quasilear PDE for a function u ult x Cta E
r En that can be written as

Itu t dy Fini O
where F M 7112 is a C map is called a scalar
conservation in one spatial dimension

EI Burgers equation can be written as

th t 9 hat o

so it is a conservation law with Foul Lud

Police that a conservation law can be written as

7th t F'cut9 4 0

so they indeed correspond to quasilineau equations

Rajah Conservation laws can be generalized to higherdimensions and to systems of PDEs which we will study later
gut the 11 case will already capture manyof the mainconcepts

223



Is ou discussion of the moth of characteristic
we saw that in general we expect that solutions to quasilinearequations will exist only for small times Buyers equationfurtherillustrate that solution can blowup in finite time It is naturalto ask whether it is possible to define the concept of solutionis a broader sense so that solution to quasilinear equations
can admit solution in this broader sense that exist for alltimes on at leastfor time longer than the blow up time
For conservation laws the answeau is yes

Def A c function y o a x R in with compact
support is called a fast food Let u be a bounded

function such that guitar Lindt and flult.in dxLt are

n n
welldefinedfor every bounded domain n c N Let h be
a function such that fuhcx da and fallouttax are well
defined for every bounded domain ricin We say that u
a weat solution to the Cauchy problem

I u t 9 1Foul O

U lo X hi

if
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1 Judge Foul're dat t Jha eco xidx o

for every test function 9

Note that we do not require u to be
define where is o lx IR It only needs to be
defined at enough points so that the integral

In drat Guidedt are defined Similarly for h
For student who took measure theory we are saying
that u and h are defined almost everywhere And as
u is bounded we are

saying u E co lx R

Weak solutions are also called generalized solutions

Items rs onsinthsessuofdistributions.WeI
the tern classical solution when we want to emphasize that
a function Fasolution is the usual sense We sometime

refer simply to solution when the context makes it cleaifwe.at
utweahottioureitcassicalsiabooo
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The idea of weak solution is the following Suppose
that u is a classical solution

II u t 9 1 Foust 0 in oooo x in
410 X1 hits

Multiply the equation by 4 when he is a test function
and integrate over to Ix IRI

to

J J e 9 ut IL Fini dx dt 0

The integral is well defined because he has compact support
Integratingby parts a usingagain that 9 has compact support

J then the Fut htt

h
m

f ult od 0

Since e is an arbitrary test function this show that
n is not only a classical solution but also a weak
solution So every classical solution is also a weak solution

Moreover it will be a Hw to show that if a weak
226



solution is C and defined everywhere then it is in fact
a classical solution The concept of weaker solutio however
is more

general than that of a classical solution Note
that in the definition of weak solution the function u

does not even need to be differentiable

EI Consider Burgers equations with data

uxn.fi x Ii
O X L

Vote that h is C but not C The characteristics

of Burgers equation are the line P H t then tx
rt

1

Pro to Lo

Po Rr V Pro to I
ocx.ci

I l 7
0 I X
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For X F O L h is smooth so we can

apply the method of characteristics for the curves

starting at x I o I and conclude that his

constant along these characteristics Since the
characteristics on the left and nigh of VHt joint
together at VLH fo t c 1 which is a conquer
of the continuity of h we see that n is also defined

along to Itt for 1 LI Similarly for P Ct
tote that the characteristics intersect at

1,1 so we know that something bad has to happen
there Writing u explicitly we obtain Hw

many c

O X Z L T L L

Notice that indeed the solution becomes
singular at

11,11 details discussen in a Hw
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Let us now define a weak solution
for T2L

Since the characteristics are defined fo t I we

can simply continue u by its constant value along
the characteristics More precisely looking at the
picture above we see that we can take h L on

the left and n o on the right This is defi.cl
except when the characteristic meet along the red
line is the picture which starts at 4.4 Let

Ps t e t p t t l p which is a line
passing

through 4,4 where o p L l is a parameter

Set

Ulf
t X L ft ti p t z

O X pl ti p t 21

Thus n is defined everywhere except along V Hi
depicted in ucl in the picture
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Let us now test if u is a weak

solution We focus on t 21 and note that away
from P n is a classicalsolution Let y have support
on A where an tf 13 4 and rnp.to
This

f feeu the Ellett

Vt t Vx f yds

where v lot Vx is the unit normal along p

pointing to the right and we used that u L for
X C ft ti p and n o for X ft ti p t 21 Is is

the element of integration along r

Sisu hits Ct ft t 1 p we have that ve plpati
Vx Hip Thus we get a woah solution if p 42230



Ran tuition
we begin with a more precise definition of shoots

Def Let r a b M be a C function and consider the C
we ICH n tix x htt Let ur urlt.tl and hesnice
be C functions define1 for X ZWH and X Epits respectively
The function u def.net by

act
e for c pit

urlt.tl for X roll
is called a shooter on stool The curve I is called
a shock curve although sometime we also refer to I as the shock

R Note that the definition of a stool is independent
of a conservation law PDE but we are mostly interested in shock
that an weak solutions Sometime we emphasize this by usingthe
term shooh s.lu

ion.Reh The above definition can be generalitat E g we
can consider multiple shock curves
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We now ash the following natural question gives a
conservation law under which conditions is a shock a weak
solution The answer is given in the next thenext theorem

cnn.IE
ahie ttutoniotconditiof Let u be a shock withshool
u is a weal solution to the conservation law

Ofu t OxCFLus D

if and only if
as u suctix is a classical solutionfor x pot

1h The IhineHugoniotcondition defined by

Flu.lt rats Fluelt roti I p'tt haltPatil melt roti
holds on f

Prof Let y be a test function and I a bounded domain

containing the supportof 4 Define the following sets

h is a n e x t20

re an Ctx x rats

Ar an t.rs x roti
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Then

J teen t 9 9 Flu dtdx teen t 9 9 Flu dtdx

1.9 at 9 41 14 Ltd t

qty
at 9 41 14 letter

Using the fact that 4 has support within r and that a
c in Ie integration by parts produce

e

tEnt9xEFcniJLtdxi Jyl9netOxford 4Lx
ne

t f 4luevett Fineve ds J y nedirI
seen It o

where ve vet vet is the unit outer no mad to see along
I f s ve poits to the right see picture below and
t.si the element of integration along I 1 see picture
below
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rt e

I

Similarly

Client 9 9 Fini LlLx y turtoxifimill 4 Ix
r

v

t f 414ft t Flu.int dtdx Jeu dx

I run t ol

when Y Curt VI is the unit outa normal to 1 along

f s ur points to the left so picture about

Since ICH Ct Mts a tangent vector to 1 is

given by 11 tilts who Iz A normal ocoton Y Itt M fo
1 n'Itil satisfies

µ t t Wit N 0 so it tilt t
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Then INI cµtj2tµT IN't 1tcjct Thus thevector

E triYII I trill
j 2

is normal to 1 and has unit length Not that NYµ t I

µ point to the left if 1 u
1 and to the right if t L Th

ve an un

therefore we obtain

J then the Flu dtdx
1,419hetoxlthebltttx

1ua.unian 1 I
dst

f y f ne r t Fluel
El un r t Fln 4

It

Y
thetoxlthebltttx

LYH.nu tf mill 4 Ix 235



Iii t.ni.in

ds9 e un t t fcurl Fine
I t p 2

Suppose that the Rashi's Hugoniot condition hold The

The first two integrals on the RHS above vanish since he and

ur an classical solution s Ne and Ir respectively and

the integral along I vanishes because b give

FLuv Flue V lur ul
Thus

a ta

f f Cte n t 0 4 Fini Il Lx
O w

t f Ely uto x d x 0

how we used that

Iii Iii 236



Since 4 is arbitrary this shows that u is a weak solution

Reciprocally if u is a weak solution this

1,419.4tox hell 4 Ix 1.419urthlfluvill Ltt

dsne un t t fcurl Fine
fI t p't

f tent 0 4 Fini Il dx t ft Ein ulex dx

0

hold for every test function E Thus we must have that
he and ur are classical solutions in re and I respectively
and that Hurt Fine V ar nel must holdalong I

a

EI It will be a Hw to show that the weak solution
to Buyers equation constructed in a previous example satisfies
the Rankin Hugoniot conditions
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We denote

UI I ne un jump in h across T

FLY Fl hel Flu jump is F across T
r j

Tha lb in the Theonen reads

Flat z Cull

Althorp Hc Rankine Hyosiot condition are a andLBJ
we often refers simply to lb calling it the Rankine
Hugoniot condition

Remark A previously mentioned the definition of shootscan be generalized In particular the definition can be
extended to allow multiple shock curves and the Rankine
Hugoniot condition can also be generalized to this situation
we will often make use of those facts below
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Systems of conservation laws in one dimension

We will now generalite the studyof conservation
laws to systems

Def A system of conservation laws in Ld is a system

f PDEs for a u u u that can bewritten as

7th t 9 Flat 0 in r E R
where F M in is a c function

EI The compressible Euler elevations in fluid dynamic
given by g g 9 fo 0

It fo t 9 150 t p o

ii S to't e t 9 f to't e t
Pg o

Here s is the density of the fluid o Hc velocity p th pressure
and e the internal energy P is a known

functionof e and fS v and e ane the unknowns which are functions of T and X
It will be a Hw to show that the Euler system is a system

of conservation fans
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Re The definition of weal solutions shoots and
the theorem on the Raskin Hugoniot condition generalize to
systems of conservation laws It will be a Hw to do th
generalizations

Using the chain rule we can write
7 1 Flu Aln 9 4

where Atul is a Tx t matrix depending on a Thus Sy tonsof conservation laws can be written

if u t Atul7 4 0

we turn our attention to these types of systems

Def The system

7th t Aln d h 0

for u In u l where A Aln is a Nx µ
matrix depending on u is astr.iolyhyperbytcm
if thematrix Atul admits µ distinct real eigenvalue
ti dich which we orderas

X u L 1Aln L L dµl4
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we denote by l lion and r real left andrighteigenvectors of A i e

A ul Vin lily vial LlnlAlu tullius

we say that a system of conservation laws is
strictly hyperbolic if the corresponding system
7th t Almora 0 is strictly hyperbolic

4 Observe that the matrix Acn is

simply the Jacobian matrix of F I e if
Flu F Cui FYul i F'cu nM F cu un

o o
i

Ain ii o

Pok that A always admit µ linearly independent
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left and right eigenvector by the assumption on the eigenvalues
we will denote by lili and fri sets of lineal
independent eigenvectors

teh we stress that th ti's lit and ri's
depend on u since A does

Hr We will be discussing properties of solutionto systems of conservation laws although we will not present anexistence theory for such systems But it is possible to develop tools
et generalization

of the method of characteristics t phar that
such systems in general admit classical solutions

Simple

Eef Let
7th t 9 1 Flat to

be a strictly hyperbolic system of conservation laws A C pk
in R E R2 is a solution u of the form

n Ul Ylt.rs
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where Y I a b E N and U ca b Rt an c

functions Similarly we can define Ch simple waves

A simple war ha values on a curve the imageof N
thus it can be thought as an intermediate case between constant
solution values at a point and femoral solution value on
a surface

Consider ult x ULyet plugging into the equation

if u t Almora U1419.4 t Alula U'CX 0 4

Suppose that Uk4 is an eigenvector of A14141

A1417114441 114141 6441
Then

9 at Alatau 44419.4 t 114141 U 14144
71.4 t Ichiki 7 714441

u will be a solution if 9.4 11414117 4 0

This argument provides us with the following method to look
simple war solution

L Find the eigenvalue I in and right
eigenvector rich of A n is l t 243



2 Find Uft that solves the system of ODE

Ul T ri Utrii

for some i E I N

3 For an i C l µ for which stop 2 was carried out
solve the scalar conservation law

94 t HUH 0 4 0i

Then all in Ui 7141 is a simple wave solution

The advantage of this method is that we solve a system
of conservation laws by solving first a system of ODE star 2
and thus a single equation conservation law stops

DIF The solution ult x Uil414 1 described above is
called a i simple wave i refers to the order 1 L c µ ofthe
eigenvalues

EI Cosider

I n t Achi9 4 0t

when AIn is given by
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u2 0
Atul L o wi

so the system reads

7th t 429 u 0

gyu t n Qu 0

Assume that u4o x7 n'co xl so u cu fo shout time
The eigenvalue are I u L he h with eigenvector
1,01 and lo l respectively A L simple

gives
U T 11,01

So he is constant and a 2 simple ware has h constant
More details in this

example will begiven as a HW
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Rarefactions

Def A rarefaction is a solution to the
system

7th t Alu 7 h 0

with the following property

Ca There exist decar and constant veoton
he ur C In such that n ne for feet and

u ur for XI art

b There exists a Ct function Ui Cee ar Rt
such that Utah ne Ulam ur and

not H Ul't
for det Ct cart

A rarefaction wave is a particular case of a

simple ware with

41Gt f
n i t f det
xlt ret L x cart
Ln art E X
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Kotc through that in general a rarefaction cave might

fail to be C across the line Let and art

although it is a co function in particular solutions here

might mean weak solutions

The picture below illustrates the behavior of
rarefaction waves

Let f constant
rt

uitixn
ULE.tl

Lnthltxl
ueult xs ur

For any point on the line x af de Le Ldu we have

utter 41 Ula this er is constant along line through

the origin sisu it is also constant along ti f with a line or

Idr
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EI consider Dungers equation with data

box
i tho

I t 30
We have seen that the characteristics of Buyers equation
are tix It hint ta a ER Therefore the
characteristics are Lt a for Lao and f tta

for a O

at
tix
x Lo

t ttt
d o

The method of characteristic give that u
is constant along the characteristics and in fact
we got a classical solution is the region X Lo248



or t t si.cc h is in fact constant in those
regions

ult ti O for X h O and ult xt L for X t
However the method does not give any informatios for
O Lx Ct which is the region that is not reached by
any of the characteristics se picture above If
we define

hit
c o

o L X Lt

L X t

then we can verify that u satisfies the Rankine Hugoniot
conditions and therefore it is a weak solution to the problem
Youcover h is a rarefaction wave

It seen that there is a great deal of arbitrariness
04 how we obtained a weak solution in the above example
This is indeed the case We will return to this point
later on

249



Let u now ash when car a rarefaction war

be a i simple wave in which case we refer to it as
a factiyoc For this we need

9 Y t ti 14.14110 4 0

For ret L x cart we have Xlt al I I so

It t ti 4.141 f 0

thus I Uf411 It YH.tl Moreover
since 414 1 axe for Exel we must have

1 he Le Similarly I u I L We coulda

that hi Uk e Is this case we have

ti CU 41 L

Using the chain rule and recalling that Ulla e r UCH fon i simple wave we have

ti U 4 Vi Ufa L

This is therefore a necessary condition for the existence250



of a rarefaction wave that is a i simple wave This
motivate the following definition

Def The eigenvalue lily is said to be

genuinely if
vi u VI ul 0

In this case r is said to be normality if
ith 01141 L

Thus having genuinely nonlinear eigenvalues is a

necessary condition for the existence of i rarefaction wavesThe next thonon say that it is also sufficient

tho Consider a strictly hyperbolic system of conservationlaws

7th t Tx Hui 20

and suppose that for some i the eigenvalue Lich is genuinelynonlinear Then there exists a i rarefaction wave solution tothe system
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P f Let me C MY be constant and define
he cliche

ct U be a solution to the ODE

U 171 ri Ufa
Uf del Ue

et x ne be such that Ufa is defined and set

Ur Ucavi
We can assume that rich is normalized Then

I Uft U 121 Pti Ufa ri Ufos Ot CU oil L

This implies that I Nini r t constant Because

Uthe we ar l bCue de the constant is zero a L

Hus k UH I 2 Definei

Ult
e i t et

Uf'T det c x art
Wr t 2 art

Consider the region Let c x cart Since U satisfies
U let Vi Ufa Ui verifies step 2 of our three step252



recipe for the construction of simple wave solutions Moreover

since tf Nila E we have with 414 12 If
It Y t k U 14119 4 I I t f I 0

y
so we have verified step 3 of the recipe as well Thus
U is a solution for detox cart For the

detailx art U is constant so it is trivially a
solution Finally along x net and x art the
limits from both sides

agree i e n is continuous Thus
the jump in a art is flu vanish and the Rankine
Hugoniot conditions are satisfied

a
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Riemanulsproblem

The Riemann consists of the following
find a solution to the system of conservation laws

7th t ly Fini O in love x IR

with initial data

410 y e
he t L O

ur X 0

µwhere he u E IR au constant vectors

We saw above how to control solutions that are
rarefaction waves Since such solutions

satisfy ulo.tl me
for X L O and Ho xi au for o they are natural
canditate for solution to the Rieman problem But it is
important to notice that our previous theorem does not
automatically

give a solution to Riemann's problem because

n the latter he and ur are given whereas in our construction

of rarefaction waves are aero free to choose ne but not ur
Indeed recall that ur was determined by choosin du254



and setting ur Upart Therefore in the can of the
Riemann problem we need that ur is in the image of
Ui This motivates the following definition

Def For a given strictly hyperbolic systemof corseratiolaws let U be as in our discussion
of i rarefaction waves

Consider the curve Milt in IT Given Z E IR
we denote the curve Mitt by Ri to if it
passes through to and call it the ittraref.at
curve We set

Ritz EE Rica tilt ditto

Ric to I Z E Risto dict L d 7

so that Ritz Ri Zo U to UR.tl tot
Theo Consider the Riemann problem and suppose that forsome i the eigenvalue di is genuinely nonlinear and that

u E Ritluel Then there exists a weak solution to the
Riemann problem This solution is a i rarefaction wave
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proof The proof is essentially cortisol is the
proof of the previous theorem We just need to verify
that the additional assumption ur C Riche gives us
what we cant

Recall that we had set de 4Lue where he
was arbitrary is the previous proof but here it is gives
by the initial condition and soloed

U t VilUitm1

Michel he

We now claim that if Z E R Chel tha
t Nila for some x ee note tht by definition
2 fire Set a tizi and solve the ODE fou U
with initial conditions Nice IZ ODE uniqueness
guarantees that the solution starting at ne passes

through t and d re since Z E R che Thus
there exists a one such that ur U car The
rest of the proof is a in the previous tha en

a
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Riemannian

Dsf A C function R rein 7112 is called

an i a t for the strictly hyperbolic system
di U t Aln 7 4 0 in r

if 0Rich rich D 2 Er

Thus Ri is constant along the integral curves of ri
Let us make the following remark which we will

need further below we have vi lj 0 for Ifj To see it
l Aril hi lj ri
Il ti tjllj.ir o lj ri o

l A ri tjlj'ri since lift for i j
In particular OR is parallel to lj j.fi for 2 2systems It follows that Riemann invariant alwayexist for 2 2 systems To see this consider the
system
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II h t ACut9 4 0

Letting r e Cri k be the matrix whose column au

Hc eigenvector re re we have

v Ar L
so A r L f r and we can write

9 n t r l f r 9 4 0

or yet

Ir 4n t L o f r In o

In components with the matrix convention C l colin

jijq.nl t t.ilryijq.us so no sum over it
Writing the integral curve or ri ai f tilts who c d ti
we bar that

ffuilt Nti a quilt Nti t tidy hilt tits
so that we can unite the equation as 258



r j j end 0

Now we look for a function 45th not that

IT htt jdgyhj dq.TL no sun over i

for some R notice that the this Ri will be as i Rieman
invariant since ftp.i OfR t 1,9 12 0 no sun over i

i e Ri is constant along the characteristics he write the
desired

equality in differential for

Tf Cu Lr j du j DR no sum over it

This means that I is an integrating factor for
r

j duj From ODE theory we know such an integrating

factor always exist this is the point where we are explicitly

using that the system is 2 2

Remark For Nxt systems µ 73 Riemann invariant
do not always exist
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Riemann invariant are particularly useful for 2 2 systems

if u t 7 4 1141,441 0 is lo 1 112

9th t 0 1 f21ha4 IO ie 10,01 112

u lo X 411 1
449 1 lilyor in compact form

If u t 9 Fini Io is to 1 12
no X hix

h ul ul F L F F2 h th h

For a given 2 2 system will Rieman
invariants let us assume that the map

I 421,1221 1121121,24 12421,2211
is a diffeomorphism Set

off it htt xs

for hlt.tl a solution to the above system Thos 0 10102

satisfies
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If o t 121019 0 so

9 v t 1 lol 7 o 0

where Ani is the eigenvalue di expressed in terms
of it i e

A it ol lil lol

The equation for r follow f on the

following computation
for it j we have

fol t th lo 9 01 Oto t 1jiu 9 01

0Rich 7th t Yj th DR u d h

Oth t Xjcu Oyu Oni la

9 1 Flu t l
j la

9 u Pri th

C D F cu t 1gurl I d u Prius
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where DF is the Jacobian matrix of
F and I is the identity matrix We

can also write the above as

Onion Atu tijini I 4h

Since DR 0 along the integral curves of
ri Pri is parallel to lj th OR i

a left eigenvector with eigenvalue log and the
term in parenthesis vanishes

Observe that vi is constant along the integral
curve it t.lt where ftp.iztilultixitl Sisco

vi It til til i dtrict X ttt t Lifult WH 7 01f Htt
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the Assume that the system

9 u t 7 4 1141,441 0 is lo 1 112

9th t 0 1 f21ha4 IO ie 10,01 42

u lo X a 411 1
449 1 lily

is strictly hyperbolic and that the eigenvalue hii 1,2 are genuinely nonlinear Assume that h has
compact support Let R R R be Rieman
invariants for the system and assume that PR 0i 112 Sct v cu a above which is well dcf.husee below If either 9 b L O or 9 0 L 0 somewhere
in t o x IR the the system cannot have a smooth

lotion in that exist fo all 1 70

proff The assumption VR 0 implies
that 121174221,12421,74 define a system of coordinates
in 1172 via the level set of 12 Is particular
o u is well defined 263



Consider ti tilt 72 as a function of Rl n
i e Lil Z 22 I 2 CR R't 74121,1221 Then

it T.li 9th
912J Tzu Tpj

we also have that
9Ri
Tzu i Sj

Hana for i j Iz 2 f g Lt 24 is perpendicular to
Ritz But Price is perpendicular to rice thus
2 is parallel to ri i tj Thus a fri

for some f o Hence

91
g f Irish foliar

But Odi ri 0 by our assumption that the eigenvalue
are genuinely nonlinear so this assumption can

equivalentlybe stated a

Thi
Ij 0 i j 264



If n is a smooth solution to the system we

set
a dy v and b 9 02

Note that we have alady sheet that v cu v't solves

91 o t law 9 0 o

if o t f Cr 9 o 0

Differentiate the first equation with respect to to obtain
Of a t.la a t 9 9 0 0

9 pi 1

It a th ra t 9 a t 2 ab 0

Adding and subtracting 1,9 v2 lab to the v2 quatio
It o t 129 o da t b so

Solving you b a L plugging into the lta equation recall
that to I 01 i

9 a 1 tix at a t 912 9 o t tshirt 09122
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You fix x E M consider the curve l't x Hi
where

IX Itt dal ult t.itdt I

X Lol to

Then is constant along It x its since

lo it x it Tfs't tix t't t 1 Cult x Itis 9 0 It x its 0

Hence

Ct x its o lo Xo of
Next set

3Hi e
lot IT to't a'xoylc i.nu d

pit alt x Iti 9 0 l t x Hit

We will transform the evolution equation for a that we derivedabove into an evolution equationfor 3 and p Sisco r is
constant along It x it we have that as a functionof o

I 71I
ta t 912L

depends only on U2 along Hi cure Therefore setting
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risi III Hindu
we have

f Post I 91
I y 912

and thus

31ft e
lot IT t t a'v 1 ii x us d

f te r 104 44411 de
e

pl v't t tilt I I040,410 I
e

pl r't t t 4it p l 040 too
e

Compute

I v't t t Iti p v40 too
Ctl e ftp.lrlodlt.t.itin

dt

31ft 1 It x Itil lilt tilth
12 t 0122

341 3 f v titch
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If Itt tact t.it 1

f III a 9 o't i Io'd lit.net

d It x Itil altiniti 5 It't t't

Hence since Pitt alt x Cti and using

didI p Eg Hdt 912 Dt

Thu not that 3111 to

43 est e 3

r't t't't't FIT.tl
012
9121

provided
p 0 Since Pitt alt X its 7 5 Ct x Its and

v is constant along It x a it if 9 0 0 somewhere initially
Hon there exists a region consisting of characteristic starting
on a.is crudonIt olxlRsuol that p fo
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Integrating

1314pct't 3101pcos t f
0 Cole t.ws da

IVte that 3co L Solving fo pitt

pitt I
H fo t f Colt t.ir 1112

I

3htt L t pool Colt t.mil d2

Changing r by ri if needed ce can assume that
0

so recall that 9 is proportional to 04 ri o

i i From the equation for o uc sea integrating
along the characteristic

we have that remains bounded

thus does 3 Therefore the only way p 0 01 could existforall time is if pool is always So A similar calculation
with o finishes the proof
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them Notice that the theorem doesnot quit reveal
the mechanism of blowup i.e it says that some X derivative has
to become infinite bot doesnot quite say why Fo Buyers cfuatios
we saw that the mechanism is the intersection of the characteristics

t.gs tions
Let u return to the example of solution to the

Riemann problem for Buyers equation with data

box
O 0

I t do

Recall that we found that

hit
c o

o L X Ct

L X t

was a weak solution However one can rouify that

Utt x e

f
O t C ti

L X th
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is also a weak solution This illustrates an important

fact about systems of conservation laws ingeneraliued
solutionsanenotusig

Entropysolutions

The non
uniqueness of weak solutions is possibly causedbecause our definition of weak solution is so general that it

possibly includes some non physical solutions Is there a way

of restricting our definition of weak solutions so that we obtain
a unique physical solution The answer is yes

Def Consider a scalar conservation law

7th Tx Flat 20

A weak solution is called an chorysolution if
F ne r F'Lar

along any shock curve when we recall that r p
The inequality is known as theentrorycodition 271



them Entropy solution can also be defined for systems of
conservation laws

The idea of this definition is thefollowing As we haveseen we can have the formation of shock due to the intersection ofcharacteristics i e we encounter discontinuities in the solutiondue to the crossing of characteristics when we wore forward
in time However we can hope that if we start at some
point and move backwards in time along c characteristics
we donot cross any other This is illustrated in thefollowingexample we saw of shoolformation for Buyers equations

nt
shoot

27

L

I l 7
o r
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For 7th t 4LFca 7th t Florio u o the

characteristic arc t f Chea f ta where him 419 1

The solution is constant along the characteristics The
desired situation will happen if when the characteristic
meet the one on the left is faster than the one on the
right i e

F LLC et f Chiari

or since U is constant along the characteristics and

the spect of the shool curve shall be as intermediate

value

F'I nel b r F'inv

One of the landmark results in system of conservationlaw is that under some very general assumptions entropy solutions
are
unique and exist for all time
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Finals
We finish this course with the following important

observation We developed some of the basic elements of PDE
theory but we barely scratched the surface of the topic of
PDEs Because this era an introductory course we exploit at
length technique that rely on explicit formulas and on ODE
arguments This should not give readers the wrong impression

that these techniques are appropriate for the study of more
advanced topic i PDE Going deeper into the topic

refuia
developing new tools often connected to functional analysisand
geometry that are very different of the one we employed

in this course
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