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About these notes

These notes have been typeset almost verbatim from my handwritten class notes. The latter
have been written for my own use in class and are not intended as a primary source for the course.
Thus, the presentation that follows is rough and schematic at some points. Nevertheless, students
might find useful to have direct access to my class notes. We warn the reader that these notes
have not (yet) been carefully checked for typos, mistakes, etc. Please do let me know if you find
inconsistencies, wrong signs, missing factors, or other errors. In particular, if you are confident that
your calculation is correct but it does not match what is given here, it is likely that there is a typo
in the notes.

Abbreviations used throughout

The following abbreviations are used in the text and/or in class:

• DE = differential equation(s).
• ODE = ordinary differential equation(s).
• PDE = partial differential equation(s).
• IVP = initial value problem.
• IC = initial conditions.
• iff = if and only if.
• EX = example.
• Def = definition.
• Theo = theorem.
• Prop = proposition.
• LHS = left hand side.
• RHS = right hand side.
• ⇒ means “implies,” e.g., A ⇒ B reads “A implies B.”
• □ = indicates the end of a proof.
• We write f = f(x) to mean “f is a function of x” and similarly, e.g., z = z(t) for “z is a
function of t,” etc.
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1. Introduction

1.1. What is a differential equation? We are all familiar with algebraic equations, e.g.,

x2 + 2x+ 3 = 0

In this case the unknown is the variable x and solution to this equation is a number that satisfies
it. In this case x = 1 and x = −3 are solutions because

12 + 2 · 1− 3 = 0 and (−3)2 + 2 · (−3)− 3 = 0,

where x = 2 is not a solution since

22 + 2 · 2− 3 ̸= 0.

We can consider similar situations where the unknown is a function

xf(x)− 2 + 3x2 = 0.

Solving for f(x) gives

f(x) =
2− 3x2

x
(x ̸= 0).

More generally, we can have an equation for an unknown function f where derivatives of f also
appear, e.g.

df

dx
− 3 cosx = 0.

Here, we want to find a function f(x) whose derivative equals 3 cosx. We know from calculus
how to find such a function:

df

dx
− 3 cosx = 0 ⇒

∫
df

dx
dx = 3

∫
cosx dx

⇒ f(x) = 3 sinx+ C, where C is a constant of integration.

An equation relating an unknown function and one or more

of its derivatives is called a differential equation (DE).

Example 1.1. These are DE:

dy

dx
+ y2x = 0 variable: x, function y = y(x),

dx

dt
+ e−t2 = 0 variable: t, function x = x(t),

These are not DE:

x2 − 4 = 0,∫
et

2
y(t) dt = log t− 4,∫

(y(x))2 dx =
dy

dx
+ 5x,

(The second equation is called an integral equation and the third one an integral-differential
equation.)
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1.2. Why do we study DE? Let’s investigate the following example. Consider a spring that has
length 1 m when it is not subject to any force. One end of the spring is attached to a wall and the
other end to a body of mass 2 kg, as in the figure below:

1 m

20 cm
x

Suppose you pull the body horizontally, streching the spring 2 cm, and then release it. The
body is going to oscillate back and forth. What is its position after 10 seconds? (Disregard friction
between the body and the floor. Consider that the spring has constant k = 50 N/m.)

From Hook’s law we know that the force acting on the body due to the spring is F = −kx, where
x is the displacement with respect to the equilibrium position, which we identify with x = 0.

Since −kx is the only force acting on the body, it equals ma, where m is the block’s mass and a
its acceleration:

ma = −kx ⇒ a = −25x (since m = 2 kg and k = 50 N/m).

The position x is a function of time, x = x(t), we want to know x(10) (position at t = 10s).
Since the acceleration is the second time derivative of the position,

a =
d2x

dt2
, thus

d2x

dt2
+ 25x = 0

This is a DE for the unknown function x. We’ll learn later on how to find x. For now, we can
verify that x(t) = 0.2 cos(5t) is the desired solution to the above DE since:

d2

dt2
(0.2 cos(5t)) + 25 · 0.2 cos(5t)) = −0.2 · 25 · cos(5t) + 0.2 · 25 · cos(5t)

= 0.

The factor 0.2 stems from the fact that at time zero the position of the block is 20 cm = 0.2 m,
so that x(0) = 0.2 cos(5 · 0) = 0.2. We can now calculate

x(10) = 0.2 cos(5 · 10) ≈ 0.19 m.

1.3. Some terminology and notation. We’ll use d
dt ,

d
dx ,

′ etc. to denote derivative. Hence
particular names given to variables and functions can change, and the same equation might be
written in different forms. E.g.

x′′ − 5x′ = ex and
d2y

dt2
− 5

dy

dt
= ey both represent the same DE.

Definition 1.2. The order of a DE is the order of the highest derivative that it contains.
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For example, y′′′ + xy2 = 0 is a DE of 3rd order.
A solution to a DE is a function that satisfies the equation. E.g., the function y = 2x3 is a

solution of the DE. y′− 6x2 = 0, but y = x2 is not. Notice that even though it might be difficult to
find a solution of a DE, it is easy to verify whether or not a given function is a solution: simply
plug it into the DE and see if equality is satisfied.

Definition 1.3. A DE of order n is said to be linear if it has the form:

an(t)
dnx(t)

dtn
+ an−1(t)

dn−1x(t)

dtn−1
+ · · ·+ a1(t)

dx

dt
+ a0(t)x(t) = g(t),

where an(t), . . . , a0(t), g(t) are given functions and an(t) ̸= 0. Otherwise, the equation is called non-
linear. Observe that x = x(t) is the unknown. In the linear case, the functions an(t), . . . , a0(t)
are called the coefficients of the equation.

Example 1.4. d2y
dt2

+ et dydt − cos ty = 0 and x′′′ − x′ = log t are linear, while (y′)2 = yey and

ey
′′
+ xy = 0 are non-linear.

Remark 1.5. Because an(t) ̸= 0 in the definition of a linear DE, we can always divide the equation
by an(t). Thus, without loss of generality we can say that a linear DE has the form

dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(x) = g(t),

where we omitted the t dependence in x for simplicity. The distinction linear vs. non-linear DE is
extremely important. Make sure you fully understand it.

It’s important to notice that the unknown function of a DE can depend on more than one
variable. For example, if T is a function that describes the temperature inside a room, then T is
a function of space and time, so it depends on the three spatial coordinates x, y, and z and on
the time t. Therefore, a DE governing the behavior of T might involve derivatives with respect to
x, y, z, and t, and in this case we would seek to use partial derivatives, i.e., ∂T

∂x ,
∂T
∂y ,

∂T
∂z ,

∂T
∂t etc.

Such types of DE are called partial differential equations (PDEs), while D.E. involving only
one variable are called ordinary differential equations (ODEs).

Example 1.6. ∂2T
∂x2 + ∂2T

∂y2
+ ∂2T

∂z2
= ∂T

∂t is a PDE for T , while d2y
dx2 + y = 0 is an ODE for y.

In this course we deal only with ODEs, so the term DE will always mean ODE unless stated
otherwise.

2. Initial Value Problem

Consider the DE dy
dx = x3. We can find a solution by direct integration:∫

dy

dx
dx =

∫
x3dx ⇒ y =

x4

4
+ C where C is a constant of integration.

So, instead of a unique solution to the DE, we have a family of solutions, i.e., a different solution
for each different choice of C. In particular, we have infinitely many solutions. Such a family of
solutions is called a general solution of the DE.

If we want to determine C, we need further information. For example, suppose we want, among
all solutions, a solution with the property y(0) = 5. Then, plugging x = 0 we have

y(0) =
04

4
+ C ⇒ wC = 5

.
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So y = x4

4 + 5 is the desired solution. In this case we are not solving only the DE dy
dx = x3 but

rather the problem: {
dy
dx = x3,

y(0) = 5.

Such a problem is called as initial value problem (IVP). The extra condition(s) given in order
to determine the constant(s) appearing in the general solution is (are) called initial conditions
(IC) (in the above example, y(0) = 5 is the initial condition).

The terminology IVP and IC are used because usually the variable is time. In our first example
we investigated not only the DE x′′ + 25x = 0 but rather the IVP:

x′′ + 25x = 0, → DE

x(0) = 0.2,

x′(0) = 0.

}
initial conditions

(the intial condition x′(0) = 0 was implicit in the statement of the problem in that we pulled the
string and released it, so its velocity v = dx

dt at time zero was zero.)
As we are going to see in detail later on, to solve an IVP we need as many ICs as the order of

the equation. To have an idea of why this is the case, consider the following simple example:

y′′ = e2x

Since
∫ d2y

dx2dx = dy
dx +constant, we have

∫
y′′dx =

∫
e2xdx ⇒ y′ = e2x

2 +C, where C is a constant.

Integrating again yields y = e2x

4 + Cx + D, where D is another constant. Thus, we have two
arbitrary constants. To determine them we need two conditions. For example, we could have

y(0) = 2 and y′(0) = 3. Then y(0) = 1
4 + 0 +D = 2 ⇒ D = 7

4 . Next, compute y′(x) = e2x

2 + C,

so y′(0) = 1
2 + C = 3 ⇒ C = 5

2 . Thus y(x) =
e2x

4 + 5
2x+ 7

4 is a solution to the IVP:
y′′ = e2x,

y(0) = 2,

y′(0) = 3.

Notation 2.1. An arbitrary DE of order n for the unknown function x = x(t) will be denoted

F (t, x(t), x′(t), . . . , x(n−1)(t), x(n)(t)) = 0.

Definition 2.2. By an initial value problem (IVP) for a DE of order n

F (t, x(t), x′(t), . . . , x(n−1)(t), x(n)(t)) = 0,

we mean the following problem. Find a solution x = x(t) to the DE defined on an interval

(a, b) containing the point t0 such that x(t0) = X0, x
′(t0) = X1, . . . , x

(n−1)(t0) = Xn−1 where
X0, X1, . . . , Xn−1 are given numbers.

Consider now y′ = 2x−ey

xey+1 . We can verify that the function y satisfying the relation xey + y = x2

is a solution to the DE. However, we cannot solve this relation explicitly for y. In this case we say
we have an implicit solution to the DE.

2.1. General and particular solutions. Consider the DE dy
dx = f(x), where f is a known function

of x. We can solve this by direct integration: y(x) =
∫
f(x)dx + C, where C is an undetermined

constant of integration. When a solution to a DE contains such undetermined constants we call
it a general solution. When all undermined constants have been found using IC we call it a
particular solution. A general solution thus represents a family of solutions.
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Example 2.3. dy
dx = 2x ⇒ y = x2 + C

Below we graph some of these solutions for different values of C:

2

1

0

−1

c = 2

c = 1

c = 0

c = −1
x

If we want y(0) = 0, then we are selecting one solution in the family of solutions.

Remark 2.4. Notice that a general solution might not contain all solutions to a DE. For example,
consider

dy

dx
= y2.

If y ̸= 0, then dy
dy2

= dx ⇒ −1
y = x+ C ⇒ y = −1

x+C .

This is a general solution to the DE. But the function y = 0 (i.e. y(x) = 0 for all x) is also a
solution to the DE, one which is not included in the formula y = −1

x+C . When a general solution
includes all solutions then we call it the general solution.

Notation 2.5. We will use the letter C to denote arbitrary constants in general solutions. Some-
times we use the same letter C to note a different arbitrary constant. E.g. consider the DE
3y′ = e3x, then

3

∫
dy

dx
dx =

∫
e3xdx ⇒ 3y =

e3x

3
+ C ⇒ y =

e3x

9
+

C

3
.

Since C is arbitrary so is C
3 . We can call it another constant D = C

3 . However, it is cumbersome

to keep track of all the relabels of constants, so we denote C
3 by C again as write y = e3x

9 + C.

2.2. Existence and uniqueness theorem for first order equations.

Theorem 2.6. Suppose that f(x, y) and ∂f(x,y)
∂y are continuous on a rectangle R ⊆ R2 containing

the point (a, b). Then, the IVP {
y′ = f(x, y),

y(a) = b,

has a unique solution defined on some interval I that contains a.

This theorem allows us to say when an IVP admits a unique solution, even though finding a
formula for the solution might be very hard.

Example 2.7. Consider the problem:{
y′ = x2esin[(x−y)2],

y(0) = 1.
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Here f(x, y) = x2esin[(x−y)2]. This function is continuous because it is the composition of continuous
functions. Compute

∂f

∂y
= x2esin[(x−y)2] cos[(x− y)2] · (−2)(x− y)

which is again a continuous function. Hence, the IVP has a unique solution defined in a neighbor-
hood of x = 0. Note that it will be very hard to find a formula for such solution.

Example 2.8. Consider the problem: {
y′ =

√
x− y,

y(2) = 2.

In this case ∂f
∂y = −1

2
√
x−y

, which is not continuous (in fact, not even defined) at (2, 2). Therefore,

the theorem cannot be applied and we cannot guarantee that a unique solution exists.

In the previous example we are not saying that a solution does not exist, only that we cannot
use the theorem.

Remark 2.9. It is important to verify not only that ∂f
∂y exist but also that it is continuous. Recall

that it is possible for a function to be differentiable but for its derivative not to be continuous. For

example, the function f(x) =

{
x2 sin( 1x) , x ̸= 0

0 , x = 0
is differentiable but its derivative at x = 0 is

not continuous.

3. Separable equations of first order

A first order DE dy
dx = F (x, y) is called separable if F (x, y) = g(x)h(y), or equivalently, F (x, y) =

g(x)
f(y) . In this case, we can find a solution by direct integration:

dy

dx

g(x)

f(y)
⇒

∫
f(y)dy =

∫
g(x)dx

.

Example 3.1. dy
dx = −6xy ===⇒

y ̸=0

dy
y = −6x. Integrating:

ln |y| = −3x2 + C ⇒ |y| = eCe−3x2 ⇒ y = ±eCe−3x2
= Ae−3x2

where ± eC = A.

When we divided by y, we had to assume y ̸= 0. We see y = 0 is also a solution to the DE.

However, the solution y = 0 is included in the family Ae−3x2
as it corresponds to A = 0.

Many times when we solve separable equations we have to divide by a function h of y, h(y). This
excludes the values where h vanishes. These must be analyzed separately.

Example 3.2. dy
dx = y2

If y ̸= 0, then dy
y2

= dx ⇒ −1
y = x+ C ⇒ y = −1

x+C .

This is a general solution to the DE. But the function y = 0 (i.e., y(x) = 0 for all x) is also
a solution to the DE, one which is not included in the formula y = −1

x+C . Therefore the general

solution is y = −1
x+C , y = 0.
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4. Linear first order equations

Consider the DE

e−x dy

dx
− e−xy = x3 (linear, first order)

Noting that e−x dy
dx − e−xy = d

dx(e
−xy) we have:

d

dx
(e−xy) = x3 ⇒

∫
d

dx
(e−xy)dx =

∫
x3dx ⇒ e−xy =

x4

4
+ C ⇒ y =

x4

4
ex + Cex.

Consider now dy
dx + y = cosx. In this case it is not true that dy

dx + y = d
dx(. . . ). But if we multiply

the equation by ex we have:

ex
dy

dx
+ exy︸ ︷︷ ︸

d
dx

(exy)

= ex cosx ⇒
∫

d

dx
(exy)dx =

∫
ex cosxdx

Therefore,

exy =
1

2
ex(cosx+ sinx) + C or y =

1

2
(cosx+ sinx) + Ce−x.

The idea for solving linear first order DE will be similar to the above example: try to multiply
the equation by a suitable function so that the terms in x, y can be written as the derivative of a
product.

A first order linear DE can always be written as

dy

dx
+ P (x)y = Q(x), where P and Q are known functions.

Multiply by µ(x), where µ(x) is a function to be determined.

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)Q(x)

We want the LHS to be the derivative of a product:

µ(x)
dy

dx︸ ︷︷ ︸+µ(x)P (x)y =
d

dx
(µ(x)y)

=
dµ

dx
y + µ(x)

dy

dx︸ ︷︷ ︸
⇒ µ(x)P (x)y =

dµ

dx
y

Thus, dµ
dx = µP (x). This is a separable equation:

dµ

µ
= P (x)dx ⇒

∫
dµ

µ
=

∫
P (x)dx ⇒ ln |µ| =

∫
P (x)dx+ C ⇒ |µ| = eCe

∫
P (x)dx

removing the absolute value:

µ(x) = ±eCe
∫
P (x)dx.

We found a family of functions µ that allow us to write µ dy
dx +µPy as the derivative of a product.

But we just need one such function, so we can take C = 0 and take the + sign. Thus,

d

dx
(µ(x)y) = µ(x)Q(x), where µ(x) = e

∫
P (x)dx.

Integrating:∫
d

dx
(µ(x)y)dx =

∫
µ(x)Q(x)dx , so we get µ(x)y(x) =

∫
µ(x)Q(x)dx+ C
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Dividing by µ(x) (note that it never vanishes) and using its explicit form:

y(x) = e−
∫
P (x)dx(

∫
e
∫
P (x)dxQ(x)dx+ C)

This is an explicit formula for the general solution of dy
dx + P (x)y = Q(x).

Remark 4.1. Note that the above formula is for the equation y′+P (x)y = Q(x), i.e., the coefficient
of y′ must be 1. If we have a(x)y′ + b(x)y = c(x), we must first divide by a(x) to use the formula.
Students should not only memorize the above formula for y(x), but also know how to derive it.

Example 4.2. dy
dx − y = 11

8 e
−x/3, y(0) = 1.

In this case P (x) = −1, Q(x) = 11
8 e

−x/3. Then

µ(x) = e
∫
P (x)dx = e−x,

∫
e
∫
P (x)dxQ(x) =

∫
11

8
e−xe−

x
3 dx =

−33

32
e

−4x
3 .

Therefore,

y(x) = e−(−x)(
−33

32
e

−4x
3 + C) = ex(

−33

32
e

−4x
3 + C).

Plugging y(0) = 1 we find C = −65
32 , so y(x) = 65

32e
x − 33

32e
−x
3 .

A legitimate question is whether our formula for y always works. This is answered by the
following theorem:

Theorem 4.3 (existence and uniqueness of solutions for 1st order linear DE). Assume that P (x)
and Q(x) are continuous on an interval (a, b) that contains the point x0. Then, for any y0, the IVP{

y′ + P (x)y = Q(x)

y(x0) = y0

has a unique solution defined on (a, b). Moreover, the solution can be written as

y(x) = e−
∫
P (x)dx(

∫
e
∫
P (x)Q(x)dx + C)

for a suitable constant C.

Proof. Since P (x) and Q(x) are continuous, the integrals
∫
P (x)dx and

∫
e
∫
P (x)dxQ(x)dx are well-

defined and define differentiable functions on (a, b). Set y(x) = e−
∫
P (x)dx(

∫
e
∫
P (x)dxQ(x)dx)+C),

where C is a constant. Then y is differentiable. Compute:

y′ = (e−
∫
P (x)dx)′(

∫
e
∫
P (x)dxQ(x)dx+ C) + e−

∫
P (x)dx(

∫
e
∫
P (x)dx + C)′

= −e−
∫
P (x)dx(

∫
P (x)dx)′(

∫
eP (x)dxQ(x)dx+ C) + e−

∫
P (x)dx(

∫
e
∫
P (x)dxQ(x)dx)′

= −P (x) e−
∫
P (x)dx(

∫
e
∫
P (x)dxQ(x)dx+ C)︸ ︷︷ ︸
= y

+ e−
∫
P (x)dxe

∫
P (x)dx︸ ︷︷ ︸

= 1

Q(x),

where we used the product rule in the first line, the chain rule in the second line, and the funda-
mental theorem of calculus in the third line.

Thus, y′ + P (x)y = Q(x) and y satisfies the DE. Because e−
∫
P (x)dx never vanishes, we can

always solve for C adn determine it so that y(x0) = y0. □
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5. Exact equations

Let us introduce this topic with the following example. Consider the DE:

(4y + 3x2 − 3xy2)
dy

dx
= y3 − 6xy

write it as

(6xy − y3)dx+ (4y + 3x2 − 3xy2)dy = 0

set M(x, y) = 6xy − y3, N(x, y) = 4y + 3x2 − 3xy2, so that the DE becomes:

M(x, y)dx+N(x, y)dy = 0

Now let us ask: is the LHS the differential of a function? In other words, does there exist a F (x, y)
such that dF = Mdx + Ndy? If the answer is yes, then the DE becomes dF = 0, which implies
that F is constant. In this case the general solution of the DE will be simply F (x, y) = C.

Recall from calculus that dF = Mdx + Ndy iff ∂M
∂y = ∂N

∂x (we’ll state that this more precisely

below). We check:

∂M
∂y = ∂

∂y (6xy − y3) = 6x− 3y2

∂N
∂x = ∂

∂x(4y + 3x2 − 3xy2) = 6x− 3y2

}
⇒ ∂M

∂y
=

∂N

∂x

Therefore, there exists a function F = F (x, y) such that ∂F
∂x = M and ∂F

∂y = N .

Let’s proceed to find F .

∂F

∂x
= M = 6xy − y3

.
Integrating with respect to x gives

F (x, y) =

∫
(6xy − y3)dx = 3x2y − xy3 + g(y).

After performing the integration, we added a function g(y). This is because we must add a
constant of integration. But here we are integrating a function of x and y with respect to x so
that anything that depends on y only is treated as a constant from the point of view of

∫
· · · dx.

Therefore, the “constant” of integration can in principle be a function of y.
To find g(y) we use that ∂F

∂y = N .

Taking ∂
∂y of the expression we found for F and setting the result equal to N :

∂

∂y
F =

∂

∂y
(3x2y − xy3 + g(y)) = 3x2 − 3xy2 + g′(y) = N = 4y + 3x2 − 3xy2

⇒ x2 − 3xy2 + g′(y) = 4y + 3x2 − 3xy2 ⇒ g′(y) = 4y

This is an equation for g(y) that can be solved by direct integration. Notice now all the x’s
cancelled and the equation for g(y) involves only y. This must be the case: by construction, g
is a function of y only. If we end up with an equation for g involving x, then there is a mistake
somewhere.

The equation for g is easily solved, giving g(y) = 2y2. We have not added a constant of integration
to g because the solution of the DE already contains an undetermined constant.

Summing up, we have F (x, y) = 3x2y − xy3 + 2y2 and the general solution to the DE is:

F (x, y) = C, or 3x2y − xy3 + 2y2 = C.
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Remark 5.1. Above, we found the solution 3x2y−xy3+2y2 = C, but we have not solved explictly
for y. In many cases, it is impossible to find an explicit expression for y. In these cases, i.e., when
the solution is given as F (x, y) = C, with no explicit expression for y, we say that we have an
implicit solution.

We will now streamline the ideas of the previous example.

Definition 5.2. A first order DE written in the form

M(x, y)dx+N(x, y)dy = 0

is called exact if there exists a function F = F (x, y) such that ∂F
∂x = M and ∂F

∂y = N .

Under appropriate hypotheses, we will show that a DE is exact iff ∂M
∂y = ∂N

∂x . Before doing so,

we will summarize the method.

5.1. Method for solving exact equations. .

1. Given y′ = f(x, y), write it as M(x, y)dx+N(x, y)dy = 0.

2. Test if ∂M
∂y = ∂N

∂x . If this is not the case, then the method cannot be applied. Otherwise,

proceed as follows:

3. If ∂M
∂y = ∂N

∂x , then define F by

F (x, y) =

∫
M(x, y)dx+ g(y)

where g is a function of y only that needs to be determined.

4. To determine g, take ∂
∂y of F found in step 3, and set it equal to N . This gives an equation

for y of the form:

g′(y) = expression in y containing no x

5. Integrate g′(y) to obtain g(y) and thus F (x, y).

6. The general solution is given by F (x, y) = C, where C is an arbitrary constant.

Remark 5.3. If the expression for g′(y) found in step 4 involves x, then there is a mistake, and
we must re-check the calculations.

Remark 5.4. In step 3, we can first integrate in y. I.e., if ∂M
∂y = ∂N

∂x , then
∂F
∂y = N . Integrating

with respect to y produces F (x, y) =
∫
N(x, y)dy + h(x), where h is a function of x only. To find

h, we differentiate F with respect to x and set the resulting expression equal to M . This will give
an equation for h′(x) involving no y (if it contains y, then there is a mistake). Integrating we find
h, and hence F .

In the next example, we use the idea of integrating in y first.

Example 5.5. Consider the problem:

y′ = tanx tan y

Write the equation as dy − tanx tan y dx = 0. Multiply by cosx cos y to obtain

− sinx sin y︸ ︷︷ ︸
=M(x,y)

dx+ cosx cos y︸ ︷︷ ︸
=N(x,y)

dy = 0
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Compute

∂M

∂y
= − sinx cos y,

∂N

∂y
= − sinx cos y, so

∂M

∂y
=

∂N

∂x
.

Then

∂F

∂y
= N ⇒ F (x, y) =

∫
N(x, y)dy + h(x) =

∫
cosx cos y dy + h(x) = cosx sin y + h(x).

Then,

∂F (x, y)

∂x
= − sinx sin y + h′(x) = M(x, y) = − sinx sin y

Therefore, h′(x) = 0. This means that h(x) is constant. Recalling that we do not include constants
of integration at this point, we can take h(x) = 0. Thus,

F (x, y) = cosx sin y = C or y = sin−1(
C

cosx
)

Remark 5.6. In the above example, if we consider the equation written as dy− tanx tan y dx = 0
and take N(x, y) = 1,M(x, y) = − tanx tan y, then we do not obtain ∂M

∂y = ∂N
∂x . Only after

multiplying the equation by cosx cos y the condition is satisfied. Thus, how we reorganize the
terms can matter.

The next theorem assures that the steps given for solving Mdx + Ndy = 0 always work if
∂M
∂y = ∂N

∂x (and suitable hypotheses are satisfied).

Theorem 5.7. Suppose the partial derivatives of M(x, y) and N(x, y) exist and are continuous
on a rectangle R ⊆ R2. Then M(x, y)dx + N(x, y)dy = 0 is exact iff the compatibility condition
∂M(x,y)

∂y = ∂N(x,y)
∂x holds for all (x, y) ∈ R.

Proof. Assume that the equation is exact, i.e. that there exists a F = F (x, y) such that dF =
Mdx +Ndy. Since dF = ∂F

∂x dx + ∂F
∂y dy, we have ∂F

∂x = M and ∂F
∂y = N . By assumption, the first

derivatives of M and N exist and are continuoius, hence the second partial derivatives of F exist

and are continuous. Under these circumstances, we have ∂2F
∂y∂x = ∂2F

∂x∂y . Thus,

∂2F

∂y∂x
=

∂

∂y

∂F

∂x
=

∂M

∂y
=

∂2F

∂x∂y
=

∂

∂x

∂F

∂y
=

∂N

∂x
, showing that

∂M

∂y
=

∂N

∂x
.

Reciprocally, assume the compatibility condition. Let (x0, y0) ∈ R. We claim that the expression

N(x, y)− ∂

∂y

∫ x

x0

M(t, y)dt

is a function of y only. For, compute

∂

∂x
(N(x, y)− ∂

∂y

∫ x

x0

M(t, y)dt) =
∂N(x, y)

∂x
− ∂

∂y

∂

∂x

∫ x

x0

M(t, y)dt =
∂N(x, y)

∂x
− ∂M(x, y)

∂y
= 0,

where we used the M and N have continuous partial derivatives and the fundamental theorem of
calculus. Thus, as the partial derivative with respect to x of N(x, y) − ∂

∂y

∫ x
x0

M(t, y)dt vanishes,

we conclude that it depends on y only.
Because of the claim, we can define g(y) as a solution to g′(y) = N(x, y)− ∂

∂y

∫ x
x0

M(t, y)dt.

We now define F (x, y) =
∫ x
x0

M(t, y)dt+g(y). A direct computation shows that dF = Mdx+Ndy.
□
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6. Tank problems (Compartimental Analysis)

We are interested in modeling situations as in the following example.

Example 6.1. A 400 gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine
containing 1 lb of salt per gallon enters the tank at a rate of 5 gal/s and the well-mixed brine flows
out at a rate 3 gal/s. How much salt will the tank contain when it is full?

400 gal

5 gal / s

3 gal / s

Denote by x(t) the amount of salt in the tank at time t. Note that x(0) = 50 lb. We need to
find a DE for x(t), solve it, and compute x(t∗), where t∗ is the time when the tank fills up.

To find the DE, let us first think of the process as discrete, i.e., imagine constructing a table
with the amount of salt at, say, every second.

t x(t)
0 x(0) = 50 lb
1 x(1)
2 x(2)
...

...
t x(t)
t + ∆t x(t+∆t)

If we denote by ∆t the time interval between two steps, then the amount of salt in the next step
is:

x(t+∆t) = x(t) + ∆x

where ∆x = change in the quantity of salt between time t and t+∆t. Observe that:

∆x = quantity of salt coming in during the interval ∆t

− quantity of salt going out during the interval ∆t

If brine flows out at 3 gal/s, and the concetration of the solution at time t is S(t) = mass
volume = x(t)

v(t) ,

where v(t) = volume at time t, we have that the amount of salt leaving the tank per second.

3 gal/s s(t)
lb

gal
=

3x(t)

v(t)

lb

s

Because the initial volume is 100 gal, 5 gal come in and 3 gal go out every second, we have

v(t) = 100 + 5t− 3t = 100 + 2t
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Therefore, the amount of salt leaving the tank per second is 3x(t)
100+2t

lb
s . This is not yet the amount

of salt going out during the interval ∆t, as the matter is measured in lb and not lb/s. We have:

quantity of salt going out during the interval ∆t =
3x(t)

100 + 2t

lb

s
·∆ts =

3x(t)

100 + 2t
∆t lb

Notie how keeping track of the units (lb/s, s, etc.) is useful to check that we have the right
quantities. Similarly,

quantity of salt coming in during the interval ∆t =
1 lb

gal
· 5 gal

s
∆ts = 5∆t gal

Thus, ∆x = 5∆t− 3x(t)
100+2t∆t and x(t+∆t) = x(t) + (5− 3x(t)

100+2t)∆t, giving

x(t+∆t)− x(t)

∆t
= 5− 3x(t)

100 + 2t

The process is not, in fact, discrete, so we need to take the limit ∆t → 0. When we do so,

lim
∆t→0

x(t+∆t)− x(t)

∆t
=

dx(t)

dt

and we obtain:
dx

dt
= 5− 3x

100 + 2t

we thus have that the process is modeled by the IVP:{
dx
dt +

3
100+2t x = 5

x(0) = 50

The DE is a linear first order equation with P (t) = 3
100+2t and Q(t) = 5. Compute:∫

3

100 + 2t
dt =

3

2
ln |100 + 2t| = ln |100 + 2t|

3
2

so we get

e
∫
P (t)dt = (100 + 2t)

3
2

Then ∫
e
∫
P (t)Q(t)dt = 5

∫
(100 + 2t)

3
2dt = (100 + 2t)

5
2

Therefore,

x(t) = e−
∫
P (t)dt(

∫
e
∫
P (t)dtQ(t)dt+ C) = (100 + 2t)−

3
2 ((100 + 2t)

5
2 + C)

using

x(0) = 50 = 100−
3
2 (100

5
2 + C) = 10−3(105 + C)

so

50 · 104 − 10−5 = C,C = 5 · 104 − 10 · 104 = −5 · 104.
We obtain

x(t) = (100 + 2t)
−3
2 ((100 + 2t)

5
2 − 5 · 104)

Recall that we want x(t) at the time when the tank is full. This happens when V (t) = 400, so
100 + 2t = 400, t = 150 s. Finally,

x(150) = 400−
3
2 (400

5
2 − 50 · 104) ≈ 393.7516.
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We note that there is a more direct way to construct the DE. We know that the change in x(t)
is dx

dt = in - out. Keeping track of the unit, it is easy to figure out the “in” and “out” quantities:

dx

dt
=

1lb

gal
· 5gal

s
− x(t)

V (t)

lb

gal
· 3gal

s
, V (t) = 100 + 2t

so that dx
dt = 5− 3x

100+2t , (
dx
dt is measured in lb

s ).

However, students should understand the construction with ∆x and ∆t. In more complex ap-
plications, it is hard to “read off” all quantities directly, and the construction with ∆x,∆t, etc. is
more appropriate.

7. The mass-spring oscillator

Suppose a block of mass m is attached to a spring and the other end of the spring is attachd to
a wall as indicated in the figure: If we pull the spring and release it, the block will move back and
forth.

We want to find a DE modeling the motion of the block.
We assume that the block moves only in the horizontal direction, we choose a coordinate system

with the x axis in the direction of the block’s motion, with x = 0 marking the position when the
block is at rest.

We denote by x = x(t) the position of the block at time t. The force on the block due to the
spring is given by Hook’s law, Fspring = −h · x, where h is a constant depending on the spring.

Another force acting on the block is caused by the friction between the block and the floor. The
force of friction is usually modelded as proportional to the velocity so we assume Ffriction = −pdx

dt ,
where p is a non-negative constant. Finally, we assume that the block is also subject to an external
force Fext(t) (a known function of t). Newton’s law gives:

ma = −hx− p
dx

dt
+ Fext(t),where a is the block’s acceleration.

Since, a = d2x
dt2

, we have:

m
d2x

dt2
+ p

dx

dt
+ hx = Fext(t)

This is a second order linear DE for x(t). An IVP for this DE must contain two IC. Physically,
they correspond to the initial position x(0) and initial velocity x′(0) of the block.

The above example illustrates an important physical situation where 2nd order linear equations
appear. There are many other physical scenarios invovling 2nd linear equations. We will next study
these equations in detail.

8. Homogeneous linear second order equations

Consider the DE

ax′′ + bx′ + cx = 0

where a, b, c are constants, a ̸= 0, and x = x(t) is the unknown.
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This equation is called homogeneous because there is no term without the unknown x. Oth-
erwise, we call the equation is non-homogeneous (or inhomogeneous).

For example, 2x′′ + x = 0 and x′′ − x′ + x = 0 are homogeneous, whereas 2x′′ + x = t2 and
x′′ − x′ + x = 10 are non-homogeneous. We will study homogeneous equations first.

Example 8.1. Consider x′′ + x′ − 2x = 0

Let us show that x(t) = eλt, λ = constant, is a solution for appropriate values of λ. Plugging in:

(eλt)′′ + (eλt)′ − 2eλt = 0

λ2eλ + λeλt − 2eλt = 0

Since eλt ̸= 0 for all t, we must have λ2 + λ− 2 = 0 or (λ− 1)(λ+ 2) = 0 ⇒ λ = 1 or λ = −2.

Therefore, et and e−2t are solutions to the DE. Indeed:

(et)′′ + (et)′ − 2et = et + et − 2et = 0

and

(e−2t)′′ + (e−2t)′ − 2e−2t = 4et − 2et − 2et = 0

We will see this simple idea of plugging eλt is the basis for solving ax′′ + bx′ + cx = 0

Consider again

a′′ + bx′ + cx = 0

Let us try to find a solution of the form x = eλt. Notice that at this point this is an “educated
guess”, i.e., we do not really know of eλt in fact solves the DE. Plugging in:

a(eλt)′′ + b(eλt)′ + ceλt = 0

(aλ2 + bλ+ c)eλt = 0

Since eλt ̸= 0 for all t, we conclude that

aλ2 + bλ+ c = 0

which is an equation for λ called characteristic equation (also called auxiliary equation).

The roots of the characteristic equation are

λ1 =
−b+

√
b2 − 4ac

2a
and λ2 =

−b−
√
b2 − 4ac

2a

By construction, eλ1t and eλ2t are solutions to the DE a′′+ bx′+ cx = 0. Are there other solutions?
How do we obtain the general solution? To answer these questions we need to develop the theory
of second order linear homogeneous equations further. We begin motivating the discussion with
the following example:

Example 8.2. Consider x′′ − 2x′ + x = 0.

The characteristic equation is λ2 − 2λ + 1 = (λ − 1)2 = 0 giving λ1 = λ2 = 1. Thus, x1 = et

solves the DE. We can verify that the fuction x2 = tet is also a solution:

(tet)′′ − 2(tet)′ + tet = (et + tet)′ − 2(et + tet) + tet
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= et + et︸ ︷︷ ︸ tet−2et︸︷︷︸−2tet + tet

= 0 as claimed.

The solution tet did not come solely from the characteristic equation. How do we know if such
“extra” solutions exist, and how do we find them? We will now investigate these questions.

Definition 8.3. Two functions x1(t) and x2(t) are said to be linearly independent on an interval
I if neither of them is a constant multiple of the other on all of I. Otherwise, x1(t) and x2(t) are
called linearly dependent.

Example 8.4. The functions sin t and cos t are linearly independent on (−π
2 , π2 ). Suppose that

sin t = c cos t for some constant c. Then tan t = c. But this would have to hold for all t ∈ (−π
2 , π2 ),

which would imply that tan t is constant on (−π
2 , π2 ).

Example 8.5. The functions sin 2t and 6 sin t cos t are linearly dependent on R, because

6 sin t cos t = 3 · 2 sin t cos t = 3 sin(2t),

where we used the trigonometric identity sin(α+ β) = sinα cosβ + sinβ cosα.

Given two functions x1(t) and x2(t), a linear combination of them is the function

x(t) = c1x1(t) + c2x2(t)

where c1 and c2 are constants. If x1(t) and x2(t) are solutions of the DE ax′′ + bx′ + cx = 0, so is
any linear combination of x1 and x2. To see this, plug in x(t) to find:

ax′′ + bx′ + cx = a(c1x1 + c2x2)
′′ + b(c1x1 + c2x2)

′ + c(c1x1 + c2x2)

= ac1x
′′
1 + ac2x

′′
2︸ ︷︷ ︸+ bc1x

′
1+ bc2x

′
2︸ ︷︷ ︸+ cc1x1+ cc2x2︸ ︷︷ ︸

= c1 (ax
′′
1 + bx′1 + cx1)︸ ︷︷ ︸

=0

+c2 (ax
′′
2 + bx′2 + cx2)︸ ︷︷ ︸

=0

= 0

showing that x(t) is a solution.

In particular, since we can take c2 = 0 above, we also conclude that a multiple of a solution is
also a solution.

Definition 8.6. Let x1(t) and x2(t) be two differentiable functions defined on an interval I. The
function:

W (x1, x2)(t) = x1(t)x
′
2(t)− x2(t)x

′
1(t)

is called the Wronskian of x1 and x2.

Theorem 8.7. For any real numbers a, b, c,X1, X2, t0, a ̸= 0, there eixsts a unique solution to the
IVP 

ax′′ + bx′ + cx = 0

x(t0) = X0

x′(t0) = X1

The solution is valid for all t ∈ (−∞,∞).

Remark 8.8. The theorem implies that if x and its derivative both vanish at some point t0 then
x(t) = 0 for all t.
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Lemma 8.9. Let x1(t) and x2(t) be two solutions to the DE ax′′ + bx′ + cx = 0 on (−∞,∞),
a ̸= 0, a, b, c constants. If W (x1, x2)(τ) = 0 holds at some τ ∈ (−∞,∞), then it vanishes identically
and x1 and x2 are linearly dependent.

Proof. If x1(τ) = 0 and x′1(τ) = 0, then x1(t) = 0 for all t and x1(t) = 0 · x2(t).
If x1(τ) ̸= 0, then z(t) = x2(τ)

x1(τ)
x1(t) solves the DE and z(τ) = x2(τ). Moreover,

z′(τ) =
x2(τ)

x1(τ)
x′1(τ) = x′2(τ) since W (x1, x2)(τ) = 0

Hence z2(t) = x2(t) by uniquness and x2(t) =
x2(τ)
x1(τ)

x1(t).

Finally if x1(τ) = 0 but x′1(τ) ̸= 0, then W (x1, x2)(τ) = 0 implies x2(τ) = 0. The function

z(t) =
x′
2(τ)

x′
1(τ)

x1(t) satisfies the DE and z′(τ) = x′2(τ). Since z(τ) = 0, we conclude by uniqueness

that z(t) = x2(t), finishing the proof. □

Theorem 8.10. If x1(t) and x2(t) are two linearly independent solutions to the DE ax′′+bx′+cx =
0 on (−∞,∞), a ̸= 0, a, b, c constants, then unique constants c1 and c2 can always be found such
that x(t) = c1x1(t) + c2x2(t) satisfies the IC x(t0) = X0, x

′(t0) = X1, for any X0, X1 ∈ R.

Proof. The function x(t) defined in the statement solves the DE. Consider:

x(t0) = c1x1(t0) + c2x2(t0) = X0

x′(t0) = c1x
′
1(t0) + c2x

′
2(t0) = X1

We solve the system for c1 and c2:

c1 =
X0x

′
2(t0)−X1x2(t0)

x1(t0)x′2(t0)− x′1(t0)x2(t0)
, c2 =

X1x1(t0)−X0x
′
1(t0)

x1(t0)x′2(t0)− x′1(t0)x2(t0)

provided the denominator in these expressions is not zero. By the previous lemma and our assump-
tion that x1(t) and x2(t) are linearly independent, this is the case. □

We will now derive some important consequences of the above results.

We first ask the following question: can any solution of ax′′+bx′+cx = 0 be written as c1x1+c2x2
for two linearly independent functions x1 and x2?

Let x be a solution to ax′′ + bx′ + cx = 0 and x1 and x2 be two linearly independent solutions.
Pick t0 ∈ R. By the previous theorem, we can find c1 and c2 such that c1x1(t0) + c2x2(t0) = x(t0)
and c1x

′
1(t0)+ c2x

′
2(t0) = x′(t0). By uniqueness of solutions to the corresponding IVP, we conclude

that x = c1x1 + c2x2. Thus,

Let x1 and x2 be two linearly independent solutions to ax′′ + bx′ + cx = 0, where a, b, c are
constants and a ̸= 0. Then any other solution x(t) can be written as

x = c1x1 + c2x2

where c1 and c2 are constants. In particular, the general solution can be written as c1x1 + c2x2.

We saw that we can use the Wronskian to determine that two solutions are linearly dependent if
their Wronskian vanishes. It follows that if two solutions are linearly independent, their Wronskian
is not zero. We can ask the converse: if the Wronskian is not zero, are the solutions linearly
independent?

The answer is yes, and is summarized in the following lemma.
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Lemma 8.11. Let x1(t) and x2(t) be two solutions to the DE ax′′ + bx′ + cx = 0 on (−∞,∞),
a ̸= 0, a, b, c constants. If W (x1, x2)(τ) ̸= 0 holds at some τ ∈ (−∞,∞), then it never vanishes
and x1 and x2 are linearly independent.

Consider now the characteristic equation aλ2+ bλ+ c = 0 and let λ1 and λ2 be its two solutions.
If λ1 and λ2 are real numbers and λ1 ̸= λ2, then eλ1 and eλ2 are solutions to the DE, as we have
seen.

We now claim that eλ1 and eλ2 are linearly independent. For this, we compute the Wronskian:

W (eλ1 , eλ2)(t) = eλ1(eλ2)′ − (eλ1)′eλ2

= λ2e
λ1teλ2t − λ1e

λ1teλ2t

= (λ1 − λ2)e
(λ1+λ2)t ̸= 0 since λ1 ̸= λ2 and e(λ1+λ2)t ̸= 0 for all t.

It follows that the general solution can be written as

x(t) = c1e
λ1t + c2e

λ2t

where c1 and c2 are arbitrary constants.

What if λ1 = λ2 = λ? In this case, we already know that eλt is a solution, we claim that teλt is
also a solution and that eλt and teλt are linearly independent.

To verify the first claim, we plug teλt into the equation:

a(teλt)′′ + (teλt)′ + cteλt = a(eλt + λteλt)′ + b(eλt + teλt) + cteλt

= (λeλt + λ2teλt + λeλt) + b(eλt + teλt) + cteλt

= t(aλ2 + λ+ c)eλt + (2aλ+ b)eλt = 0

The last equality holds because aλ2 + bλ+ c = 0 since λ is a root of the characteristic equation,
whereas 2aλ+ b = 0 because the root is repeated (so λ = −b

2a ).

To verify linear independence, we compute the Wronskian:

W (eλt, teλt)(t) = eλt(teλt)′ − (eλt)′teλt

= eλt(eλt + tλeλt)− λeλtteλt

= e2λt ̸= 0 for all t, hence the two solutions are linearly independent.

We conclude that the general solution can be written as:

x(t) = c1e
λt + c2te

λt

where c1 and c2 are arbitrary constants.

Remark 8.12. Students will probably wonder where teλt came from, i.e., how we know that we
had to multiply by t. This comes from developing the theory of DE further, and we will show where
it comes from when we study variation of parameters.

It remains to analyze what happens when the roots of the characteristic equation are complex,
i.e., when

λ =
−b±

√
b2 − 4ac

2a
with b2 − 4ac < 0.

In this case we can write λ1 = α+ iβ and λ2 = α− iβ, where α = −b
2a , β =

√
b2−4ac
2a and i is the

imaginary number i2 = 1. Note that α, β ∈ R.
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The calculations previously does remain valid here and we have that eλ1t = e(α+iβ)t and eλ2t =
e(α−iβ)t are solutions of the DE ax′′ + bx′ + cx = 0.

These solutions, however, are complex valued, and we would like to have real valued functions
as solutions. To do so, we are going to use Euler’s formula:

eiθ = cos θ + i sin θ, θ ∈ R
We’ll prove this formula below. But first let us use it to obtain the desired real solutions.

We have, from Euler’s formula:

eλ1t = e(α+iβ)t = eαt+iβt = eαteiβt = eαt(cos(βt) + i sin(βt))

eλ2t = e(α+iβ)t = eαt−iβt = eαte−iβt = eαt(cos(−βt) + i sin(−βt))

= eαt(cos(βt)− i sin(βt))

Lemma 8.13. Let z(t) = u(t) + iv(t) be a solution to the DE ax′′ + bx′ + cx = 0, where a, b, c ∈ R
and u(t) and v(t) are real valued. Then u(t) and v(t) are also solutions.

Proof. We have:

0 = az′′ + bz′ + cz = a(u+ iv)′′ + b(u+ iv)′ + c(u+ iv)

= a(u′′ + iv′′) + b(u′ + iv′) + c(u+ iv) = (au′′ + bu′ + cu) + i(av′′ + bv′ + cv)

Since a complex number vanishes iff its real and imaginary parts vanish, we have au′′+bu′+cu = 0
and av′′ + bv′ + cv = 0. □

The lemma implies that eαt cos(βt) and eαt sin(βt) are solutions of the DE. Now let us check
that they are linearly independent:

W (eαt cos(βt), eαt sin(βt))(t)

= eαt cos(βt)(eαt sin(βt))′ − (eαt cos(βt))′eαt sin(βt)

= eαt cos(βt)(eαt sin(βt) + βeαt cos(βt))− (αeαt cos(βt)− βeαt sin(βt))eαt sin(βt)

= (eαt)2(α cos(βt) sin(βt) + β cos2(βt)− α cos(βt) sin(βt) + β sin2(βt))

= β(eαt)2(cos2(βt) + sin2(βt)) = β(eαt)2

This expression is never zero because β ̸= 0 (if, β = 0, then λ1 and λ2 would not be complex
numbers, but we are analyzing the case where they are).

We conclude that the general solution can be written as

x(t) = c1e
αt cos(βt) + c2e

αt sin(βt)

where c1 and c2 are arbitrary constants.

8.1. Summary of solutions to ax′′ + bx′ + cx = 0.

Consider ax′′+bx′+cx = 0, a, b, c ∈ R, a ̸= 0. Let λ1 and λ2 be the two roots of the characteristic
equatoin

aλ2 + bλ+ c = 0

• If λ1 ̸= λ2 are real, then the general solution is

x(t) = c1e
λ1t + c2e

λ2t

• If λ1 = λ2 = λ, then the general solution is

x(t) = c1e
λt + c2te

λt
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• If λ1 and λ2 are complex, then we can write λ1 = α + iβ, λ2 = α − iβ, α, β,∈ R, and the
general solution is

x(t) = c1e
αt cos(βt) + c2e

αt sin(βt)

Above, c1 and c2 are arbitrary constants.

8.2. Proof of Euler’s formula.

Recall from calculus that ex =
∑∞

n=0
xn

n! . Thus

eiθ =
∞∑
n=0

(iθ)n

n!

We separate the sum into even and odd n’s:

eiθ =

∞∑
n=0, n even

(iθ)

n!
+

∞∑
n=0, n odd

(iθ)n

n!

=
∞∑
k=0

(iθ)2k

(2k)!
+

∞∑
k=0

(iθ)2k+1

(2k + 1)!

Notice that i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, i7 = −i, i8 = 1, so this pattern
repeats every four powers. Then:

∞∑
k=0

(iθ)2k

(2k)!
+

∞∑
k=0

(iθ)2k+1

(k + 1)!
= (

i0θ0

0!
+

i2θ2

2!
+

i4θ4

4!
+

i6θ6

6!
+ ...) + (

i1θ1

1!
+

i3θ3

3!
+

i5θ5

5!
+

i7θ7

7!
+ ...)

= (
θ0

0!
− θ2

2!
+

θ4

4!
− θ6

6!
+ ...) + (i

θ1

1!
− i

θ3

3!
+ i

θ5

5!
− i

θ7

7!
+ ...)

=

∞∑
k=0

(−1)k
θ2k

(2k)!
+ i

∞∑
k=0

(−1)k
(iθ)2k+1

(2k + 1)!

Recalling from calculus that cos θ =
∑∞

k=0(−1)k θ2k

(2k)! and sin θ =
∑∞

k=0(−1)k θ2k+1

(2k+1)! , we have the

result.

9. Linear second order non-homogeneous equation

Consider the equation

ax′′ + bx′ + cx = f(t)

where a, b, c are constants, a ̸= 0, and f(t) is a given function called the non-homogeneous or
inhomogeneous term. Let us first proceed by examples.

Example 9.1. Find a solution to x′′ + 3x′ + 4x = 3t + 2. The given function f(t) = 3t + 2 is
a polynomial of degree one. We expect that x(t) will be a polynomial as well (we wouldn’t get a
polynomial by differentiating, say, an exponential). Thus we seek a solution of from x(t) = At+B,
where A and B are constants to be determined. Note that we are trying x(t) a polynomial of degree
one because f(t) is a polynomial of degree one. Plugging in:

(At+B)′′ + 3(At+B)′ + 4(At+B) = 3t+ 2

0 + 3A+ 4At+ 4B = 3t+ 2

4At+ (3A+ 4B) = 3t+ 2
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Two polynomials are equal iff the corresponding coefficients of the same powers are equal. So we
must have 4A = 3 and 3A+ 4B = 2, so that

A =
3

4
, 4B = 2− 3A = 2− 3 · 3

4
=

−1

4
⇒ B =

−1

16

Therefore, x(t) = 3
4 t−

1
16 is a solution.

Example 9.2. Find a solution to x′′ − 4x = 2e3t.

Here the inhomogeneous term f(t) = 2e3t is an exponential. Thus we expect x(t) to be an
exponential too (we wouldn’t get an exponential differentiating, say, a trigonometric function).
Put:

x(t) = Aet,where A is to be found

Plugging in:

(Ae3t)′′ − 4Ae3t = 2e3t

9Ae3t − 4Ae3t = 2e3t ⇒ 5Ae3t = 2e3t ⇒ A =
2

5

Hence x(t) = 2
5e

3t is a solution.

Example 9.3. Find a solution to 3x′′ + x′ − 2x = 2 cos t.

Here f(t) == 2 cos t, so we might try x(t) = A cos t. However, when we plug this in we will
obtain some sin t term, and there is no sin t on the RHS to compare with. We see, thus, we should
try x(t) = A cos t+B sin t. Then,

3(A cos t+B sin t)′′ + (A cos t+B sin t)′ − 2(A cos t+B sin t) = 2 cos t

3(−A cos t−B sin t) + (−A sin t+B cos t)− 2(A cos t+B sin t) = 2 cos t

(−5A+B) cos t+ (−A− 5B) sin t = 2 cos t

Thus, for the equality to hold, we must have

−5A+B = 2 and −A− 5B = 0.

This is a system of two equations for the two unknowns A and B. Solving it we find A = −5
13 , B =

1
13 . Thus x(t) =

−5
13 cos t+ 1

13 sin t is a solution.

Unfortunately, things will not always be this simple, as the next example illustrates.

Example 9.4. Find a solution to x′′ − 4x = 2e2t.

We try x(t) = Ae2t. Plugging in:

(Ae2t)′′ − 4Ae2t = 2e2t

4Ae2t −Ae2t = 2e2t

0 = 2e2t ???

We see that our method did not work in this case. The problem is that e2t is a solution to the
equation x′′ − 4x = 0 (the characteristic equation is λ2 − 4 = 0, λ = ±2), and so is any multiple of
e2t. Therefore, if the inhomogeneous term happens to be a function that solves the same equation
when f(t) = 0, then the LHS will always give zero when we plug in, and this idea will not work.
We see that to solve ax′′ + bx′ + cx = f(t) we also need to understnad ax′′ + bx′ + cx = 0.
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Definition 9.5. Given ax′′+bx′+cx = f(t), the equation ax′′+bx′+cx = 0 is called the associated
homogeneous equation. The general solution to the associated homogeneous equation will be
denoted xh. Observe that if z solves ax′′ + bx′ + cx = f , so does the funnction x = xh + z because

a(xh + z)′′ + b(xh + z)′ + c(xh + z) = ax′′h + bx′h + cxh︸ ︷︷ ︸
=0

+ az′′ + bz′ + cz︸ ︷︷ ︸
=f

= f

It follows that there are two “types” of solution to ax′′+bx′+cx = f : those containing arbitrary
constants (because xh contains arbitrary constants) and those without arbitrary constants, such as
the solutions we found in the previous examples).

Definition 9.6. A solution to ax′′ + bx′ + cx = f that does not contain arbitrary constants is
called a particular solution. Particular solutions will be denoted by xp.

Example 9.7. Let’s go back to x′′ − 4x = 2e2t and try to find a particular solution. We saw that
if we put xp(t) = Ae2t then it will not work. Let us see that x(t) = Ate2t works:

(Ate2t)′′ −Ate2t = A(2te2t + e2t)′ − 4Ate2t

= A(4te2t + 2e2t + 2e2t)− 4Ae2tt = 4Ae2t = 2e2t

So we conclude that A = 1
2 and xp(t) =

1
2e

2t.

The idea of multiplying by t can be understood as follows.

We want to satisfy ax′′+bx′+cx = f and we expect xp to be of similar type as f (since derivatives
of polynomials give polynomials, of exponentials give exponentials, etc.) But if f is or contains a
term that solves the associated homogeneous equation, this cannot work because it will give a zero
on the LHS. How can we find xp containing f in such a way that after we plug it into the equation,
a term with f remains on the LHS?

The answer is the product rule, since it produces extra terms containing f . Put xp(t) = v(t)f̃(t),

where f̃ has the same form of f but contains constants to be determined as in the examples (so

f̃(t) = Aekt if f(t) is a multiple of ekt and so on), and v is an undetermine function. Then:

x′p = v′f̃ + vf̃, x′′p = v′′f̃ + 2v′f̃ ′ + vf̃ ′′.

Then

ax′′p + bx′ + cxp = a(v′′f̃ + 2v′f̃ ′ + vf̃ ′′) + b(v′f̃ + vf̃ ′) + cvf̃

= f̃(av′′ + bv′) + 2av′f̃ ′ + v(af̃ ′′ + bf̃ ′ + cf̃).

Because f̃ contains xh, the term af̃ ′′ + bf̃ ′ + cf̃ will produce zeros. For simplicity, let us assume
we are treating the case when f̃ is proportional to xh. Then af̃ ′′ + bf̃ ′ + cf̃ = 0. Next, recall
that f̃ is like f , and we are treating functions that “repeat themselves” after differentiation, like
exponentials, polynomials, and sine or cosine (this method will not work for functions that do not

repeat themselves in this way). Thus, for the sake of reasoning, we can replace f̃ ′ by f̃ in the term

2aṽ′f̃ ′. Thus,

ax′′p + bx′p + cxp = f̃(av′′ + bv′ + 2av′).

We want this to be equal to f so: f̃(av′′ + bv′ + 2av′) = f . If the term in parenthesis is a

constnat, then we have (constant) · f̃ = f , and we can solve for the undetermined constants in f̃ .

The simplest way to accomplish this is to put v(t) = t so av′′+bv′+2av′ = b+2a and xp(t) = tf̃(t).
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The method outlines above is called the method of undetermined coefficients, summarized
as follows: given ax′′+ bx′+ cx = f(t), a, b, c constants, and a ̸= 0, we seek for a particular solution
xp(t) of the form below (m ≥ 0 is an integer, bm, . . . , b0, am, . . . , a0, a, b, r and h are constants):

f(t) xp(t)

bmtm + bm−1t
m−1 + · · ·+ b1t+ b0 ts(Bmtm +Bm−1t

m−1 + · · ·+B1t+B0)

a cos(kt) + b sin(kt) ts(A cos(kt) +B sin(kt))

ert(a cos(kt) + b sin(kt)) tsert(A cos(kt) +B sin(kt))

ert(bmtm + bm−1t
m−1 + · · ·+ b1t+ b0) tsert(Bmtm +Bm−1t

m−1 + · · ·+B1t+B0)

(bmtm + bm−1t
m−1 + · · ·+ b0) cos(kt) ts(Bmtm +Bm−1t

m−1 + · · ·+B0) cos(kt)
+(amtm + am−1t

m−1 + · · ·+ a0) sin(kt) +ts(Amtm +Am−1t
m−1 + · · ·+A0) sin(kt)

ert(bmtm + bm−1t
m−1 + · · ·+ b0) cos(kt) tsert(Bmtm +Bm−1t

m−1 + · · ·+B0) cos(kt)
+ert(amtm + am−1t

m−1 + · · ·+ a0) sin(kt) +tsert(Amtm +Am−1t
m−1 + · · ·+A0) sin(kt)

where s is the smallest non-negative integer such that no term in xp duplicates a term in xh.

Example 9.8. Find the form of xp for

x′′ + 6x′ + 13x = e−3t cos(2t)

The characteristic equation is λ2 + 6λ+ 13 = 0 ⇒ λ = −3± 2i. Thus

xh(t) = c1e
−3t cos(2t) + c2e

−3t sin(2t)

We see that we cannot try xp(t) = Ae−3t cos(2t) +Be−3t sin(2t) the first term duplicates a term in
xh. We thus multiply by t:

xp(t) = t(Ae−3t cos(2t) +Be−3t sin(2t)).

Example 9.9. Find the form of xp for

x′′ − 2x′ + x = et

We have λ2 − 2λ + 1 = (λ − 1)2 = 0 ⇒ λ = 1 (repeated). Then xh(t) = c1e
t + c2te

t. If we put
xp(t) = Aet, this duplicates the first term in xh. Multiplying by t gives xp(t) = Atet, but this
duplicates the second term in xh, so we multiply by t again:

xp(t) = At2et.

The next theorem is known as the superposition principle:

Theorem 9.10. If x1 is a solution to ax′′+bx′+cx = f1 and x2 is a solution to ax′′+bx′+cx = f2,
then the function x = c1x1 + c2x2 is a solution to the DE ax′′ + bx′ + cx = c1f1 + c2f2, where c1
and c2 are constants.

Proof. Plugging in:

ax′′ + bx′ + cx = a(c1x1 + c2x2)
′′ + b(c1x1 + c2x2)

′ + c(c1x1 + c2x2)

= ax′′1 + bx′1 + cx1︸ ︷︷ ︸
= c1f1

+ ax′′2 + bx′2 + cx2︸ ︷︷ ︸
= c2f2

= c1f1 + c2f2.

□
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It follows that if the inhomogeneous term is of the form f = f1 + f2, where the method of
undetermined coefficients can be applied to f1 and f2, then we can find xp by determining xp1 and
xp2 , the particular solutions for the equation with inhomogeneous terms f1 and f2, respectively,
and setting xp = xp1 + xp2 .

Theorem 9.11. Consider ax′′ + bx′ + cx = f , where a, b, c are constants and a ̸= 0. Suppose that
xp is a particular solution to the DE in an interval I containing t0, and let X0 and X1 be two
given numbers. Then there exists a unique solution in I to the DE satisfying the initial condition
x(t0) = X0 and x(t0) = X1.

Proof. By the superposition principle, x = xh + xp solves the DE. Recall that xh = c1x1 + c2x2,
where x1 and x2 are linearly independent solutions to the associated homogeneous equation and c1
and c2 are constants. Then we need to solve

x(t0) = c1x1(t0) + c2x2(t0) + xp(t0) = X0

x′(t0) = c1x
′
1(t0) + c2x

′
2(t0) + x′p(t0) = X1

for c1 and c2. We find

c1 =
(X0 − x′p(t0))x

′
2(t0)− (X1 − x′p(t0)x2(t0)

x1(t0)x′2(t0)− x′1(t0)x2(t0)

c2 =
(X1 − x′p(t0))x1(t0)− (X0 − x′p(t0)x1(t0)

x1(t0)x′2(t0)− x′1(t0)x2(t0)

The denominator in these expressions are non-zero because x1 and x2 are linearly independent
(so their Wronskian is not zero).

To check uniqueness, suppose z is another solution to the IVP. But w = c1x1 + c2x2 + xp − z.
Then, plugging in, we see that w solves aw′′ + bw′ + cw = 0 with w(t0) = 0, w′(t0) = 0. But we
have seen that this IVP, where the IC and the inhomogeneous term are all zero, admits only the
zero solution. Thus w = 0 and z = c1x1 + c2x2 + x. □

Definition 9.12. We call a solution x = xh + xp the general solution to ax′′ + bx′ + cx = f .

10. Linear second order non-homogeneous equations: the method of variation of
parameters

The method of undetermined coefficients will not work if the inhomogeneous term is not of the
form listed on the table that summarized the method. This is because the method of undetermined
coefficients is based on the property that derivatives of the inhomogeneous term repeat themselves.
The method we will present now, called variation of parameters, deals with more general inho-
mogeneous terms. (We will see later that this method applies when a, b, and c are not constants,
but we will take them constants for now.)

Consider ax′′ + bx′ + cx = f and let x1 and x2 be two linearly independent solutions to the
associated homogeneous equation. We will seek a solution of the form:

xp(t) = v1(t)x1(t) + v2(t)x2(t)

where v1 and v2 are functions to be determined. Compute:

x′p = v′1x1 + v′2x2 + v1x
′
1 + v2x

′
2

Next, we reason as follows. Since v1 and v2 are two functions to be determined, we expect to have
two equations. One equation has to come from ax′′ + bx′ + cx = f , since we want xp to be a
solution. What about the second equation? Because we will plug xp into ax′′ + bx′ + cx = f , we
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will obtain another DE involving v1 and v2 that is at least as complicated as the equation we are
trying to solve, unless we impose some condition that simplifies it. We therefore require:

v′1x1 + v′2x2 = 0

which gives our second equation. Thus x′p becomes:

x′p = v1x
′
1 + v2x

′
2

Continuing, x′′p = v′1x
′
1 + v′2x

′
2 + v1x

′′
1 + v2x

′′
2. Then

ax′′p + bx′p + cxp = a(v′1x
′
1 + v′2x

′
2 + v1x

′′
1 + v2x

′′
2) + b(v1x

′
1 + v2x

′
2) + c(v1x1 + c2x2)

= v1(ax
′′
1 + bx′1 + cx1)︸ ︷︷ ︸

=0

+ v2(ax
′′
2 + bx′2 + cx2)︸ ︷︷ ︸

=0

+a(v′1x
′
1 + v2x

′
2)

= a(v′1x
′
1 + v′2x

′
2) = f

Therefore, we have two equations:

x1v
′
1 + x2v

′
2 = 0

x′1v
′
1 + x′2v

′
2 =

f

a

This is an algebraic system for v′1 and v′2. Solving it, we find:

v′1 =
−fx2

a(x1x′2 − x′1x2)
, v′2 =

fx1
a(x1x′2 − x′1x2)

The denominators in these expressions are not zero because x1 and x2 are linearly independent.
Integrating:

v1(t) =
−1

a

∫
f(t)x2(t)

W (x1, x2)(t)
dt, v2(t) =

1

a

∫
f(t)x1(t)

W (x1, x2)(t)
dt.

We do not add constants to these integrals because xp does not contain arbitrary constants. Thus,
recalling that xp = v1x1 + v2x2, we find:

xp(t) = −x1(t)

a

∫
f(t)x2(t)

W (x1, x2)(t)
dt+

x2(t)

a

∫
f(t)x1(t)

W (x1, x2)(t)
dt

Example 10.1. Find xp for x′′ + 4x = tan t.

Note that we cannot apply the method of undetermined coefficients here. To find xp, we first
solve the associated homogeneous equation. The characteristic equation is λ2 + 4 = 0, λ = ±2i.
Thus x1(t) = cos(2t) and x2(t) = sin(2t) are two linearly independent solutions. The Wronskian is

W (cos 2t, sin 2t)(t) = cos(2t)(sin(2t))′ − (cos(2t))′ sin(2t)

= 2 cos2(2t) + 2 sin2(2t) = 2

Then,

xp(t) = − cos(2t)

∫
tan t sin(2t)

2
dt︸ ︷︷ ︸

= t
2
− 1

4
sin(2t)

+sin(2t)

∫
tan t cos(2t)

2
dt︸ ︷︷ ︸

= − 1
4
cos(2t) + 1

2
ln | cos t|

xp(t) =
1

2
(
1

2
sin(2t)− t) cos(2t) +

1

2
(ln | cos t| − 1

2
cos(2t)) sin(2t).
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Example 10.2. Find xp for x′′ − 2x′ + x = et

t .

Note that we cannot use the method of undetermined coefficients here.
The characteristic equation is λ2−2λ+1 = 0, λ = 1 (repeated). Then x1(t) = et and x2(t) = tet

are two linearly independent solutions to the associated homogeneous equation.

W (et, tet) = et(tet)′ − (et)′tet = et(et + tet)− etet = e2t∫
f(t)x2(t)

W (x1, x2)(t)
dt =

∫
et

t

tet

e2t
dt = t∫

f(t)x2(t)

W (x1, x2)(t)
dt =

∫
et

t

tet

e2t
dt =

∫
dt

t
= ln |t|

Since the f(t) is not defined for t = 0, we need to work with t > 0 or t < 0. We consider t > 0 so
that ln |t| = ln t. Then:

xp(t) = −tet + tet ln t.

Remark 10.3. We make no restriction on the form of f(t). In particular, the method of variation
of parameters can also be applied to equations where f(t) has a form appropriate for the use of
undetermined coefficients.

Remark 10.4. Inspecting the derivation of the formula for xp using the method of variation of
parameters, we notice that we need not to assume a, b, and c to be constants. If they are not, the
only difference is that in the expression for xp, the term 1

a has to be inside the integral.

11. Second order linear equations with variable coefficients

So far, we studied ax′′ + bx′ + cx = f under the assumption that a, b, c are constants. Now
we will study a2(t)x

′′(t) + a1(t)x
′(t) + a0(t)x(t) = f(t), i.e., the coefficients can be functions of

t. We will assume that a2(t) ̸= 0 so that, dividing by a2(t) and relabeling the coefficients and
the inhomogeneous term, we can write the equation as x′′(t) + p(t)x′(t) + q(t)x(t) = g(t). To be
consistent with our previous notation, we will call the inhomogeneous term f(t) in this case as well.
Thus, the equation we will study is

x′′ + p(t)x′ + q(t)x = f(t)

Theorem 11.1. Let p(t), q(t) and f(t) be continuous functions on the interval (a, b) and t0 ∈ (a, b).
Given any numbers X0 and X1, there exists a unique solution x(t) defined on (a, b) satisfying:

x′′ + p(t)x′ + q(t)x = f(t)

x(t0) = X0

x′(t0) = X1

Example 11.2. Consider (t2 − 4)x′′ + x′ + x = 1
t+1 , x(1) = 0, x′(1) = 1. What is the maximal

interval (a, b) where the previous theorem guarantees the existence of a unique solution?
After dividing by t2− 4, we have p(t) = q(t) = 1

t2−4
, which are continuous except at t = ±2, and

f(t) = 1
(t2−4)(t+1)

, which is continuous except for t = ±2, t±−1. Since t0 = 1, the largest interval

containing this point is (a, b) = (−1, 2).

-2 -1 2t0 = 1 t

As in the constant coefficients case, we will call the equation x′′ + p(t)x+ q(t)x = 0 the associ-
ated homogeneous equation. It can be showed that this equation admits two linearly indepen-
dent solutions x1 and x2 (if p and q are continuous). Then, xh = c1x1 + c2x2, where c1 and c2 are
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arbitrary constants, is also a solution, called the general solution to the DE x′′+p(t)x+q(t)x = 0.

A solution to x′′ + p(t)x+ q(t)x = f(t) that does not contain arbitrary constants will be called
a particular solution, denoted xp.

As in the constant coefficients case, any solution to the DE can be written as x = xh + xp
(provided that p(t) and q(t) are continuous).

Many of the theorems for equations with constant coefficients generalize to the case studies here,
with the important difference that now statements will in general not hold on (−∞,∞) but on an
interval (a, b) where p(t) and q(t) are continuous.

Lemma 11.3. Let p(t) and q(t) be continuous functions on an interval I. Let x1(t) and x2(t) be
two solutions of x′′+p(t)x+q(t)x = 0 on I. If the Wronskian W (x1, x2)(t) = x1(t)x

′
2(t)−x′1(t)x2(t)

is zero at some point on I, then it vanishes identically and x1 and x2 are linearly dependent. If
W (x1, x2)(t) is non-zero at some point on I, then it is never zero and the solutions are linearly
independent on I.

Theorem 11.4. Let p(t), q(t) and f(t) be continuous functions on an interval I and x1(t) and
x2(t) be two linearly independent solutions to x′′+ p(t)x+ q(t)x = 0 on I. Let xp(t) be a particular
solution to x′′ + p(t)x′ + q(t)x = f(t). Then given t0 ∈ I and two real numbers X0, X1, there exist
unique constants c1 and c2 such that x = c1x1 + c2x2 + xp satisfies x′′ + p(t)x′ + q(t)x = f(t) with
initial conditions x(t0) = X0 and x′(t0) = X1.

The superposition principle also holds for equation with variable coefficients.

If we go back to the method of variation of parameters and look at how the formula for xp was
derived, we will see that nowhere have we used that the coefficients had to be constants. In other
words, variation of parameters applied here as well, i.e., if x1 and x2 are two linearly independent
solutions of the associated homogeneous equation, then a particular solution is given by

xp(t) = −x1(t)

∫
f(t)x2(t)

W (x1, x2)(t)
dt+ x2(t)

∫
f(t)x1(t)

W (x1, x2)(t)
dt.

The formula for xp involves x1 and x2. In the constant coefficients case we have a method for
finding x1 and x2. Here, this might be difficult. However, the next theorem shows that if we know
x1, then we can always determine x2:

Theorem 11.5. Let x1(t) be a solution to x′′+ p(t)x′+ q(t)x = 0 on an interval I, where p(t) and
q(t) are continuous functions. Assume that x1 is not identically y zero. Then

x2(t) = x1(t)

∫
e−

∫
p(t)dt

(x1(t))2
dt

is a second, linearly independent solution.

Proof. We look for a solution of the form x2(t) = v(t)x1(t). Plugging in:

x′′2 + p(t)x′2 + q(t)x2 = (vx′′1 + 2v′x′1 + v′′x1) + p(t)(vx′1 + v′x1) + q(t)vx1

= v (x′′1 + p(t)x′ + q(t)x)︸ ︷︷ ︸
=0

+x1v
′′ + (2x′1 + p(t)x1)v

′ = 0

Set v′ = w. Then the equation becomes:

x1w
′ + (2x′1 + p(t)x1)w = 0
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which is a separable equation for w. We find

dw

w
= −2x′1

x1
= −p(t)

Integrating: ln |w| − 2 ln |x1| −
∫
p(t)dt. Then:

w =
e−

∫
p(t)dt

x21
.

When we removed the absolute value from w we picked the + sign (this sufficies since if w is a
solution so is −w). Integrating again we find v(t), giving the desired formula.

By construction, x2(t) is a solution. Let’s check that it is linearly independent.

W (x1, x2)(t) = x1x
′
2 − x′1x2 = x1(vx1)

′ − x′1(vx1)

= x1(x1v
′ + x′1v)− x′1vx1 = x21v

′ = x21
e−

∫
p(t)dt

x21
= e−

∫
p(t)dt ̸= 0.

□

Example 11.6. Knowing that cos t is a solution to

sin tx′′ − 2 cos tx′ − sin tx = 0, 0 < t < π,

find a second linearly independent solution. Here, p(t) = −2 cos t
sin t = −2 cot t

x2(t) = cos t

∫
1

cos2 t
e2

∫
cot t dtdt,where

∫
cot t dt = ln | sin t| = ln(sin t), 0 < t < π

= cos t

∫
sin2 t

cos2 t
dt = cos t(tan t− t)

Remark 11.7. The formulas we derived above (variation of parameters and second linearly inde-
pendent solution) assume the equation to be written as x′′+p(t)x′+q(t)x = f(t), i.e., the coefficient
of x′′ is one. If this is not the case, we have to divide by the coefficient of x′′ before applying the
formulas, as in the previous examples.

Remark 11.8. Recall that in the constant coefficient case, where λ1 = λ2 = λ, a second linearly
independent solution was teλt. We can use the previous theorem to give an alternative justification
of this formula.

12. Cauchy-Euler equation

The equation

at2x′′ + btx′ + cx = f(t)

where a, b, c are constants and a ̸= 0, is called Cauchy-Euler equation (aka equidimensional equa-
tion).

We will consider the homogeneous Cauchy-Euler equation

at2x′′ + btx′ + x = 0, t > 0

Because the coefficients involve power of t, it makes sense to look for a solution x(t) = tλ, λ a
constant. Then:

at2λ(λ− 1)tλ−2 + btλtλ−1 + ctλ = 0, or (t ̸= 0)
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aλ2 + (b− a)λ+ c = 0

which is called the characteristic equation for the Cauchy-Euler equation. If λ is a root of the
characteristic equation, by construction tλ is a solution. Denote the roots of the characteristic
equation by λ1 and λ2.

We need to distinguish the following cases:
Case 1. λ1 ̸= λ2, λ1, λ2 are real numbers. Then tλ1 and tλ2 are two linearly independent solutions.

We already know that they are solutions. To verify linear independence:

W (tλ1 , tλ2)(t) = tλ1(tλ2)′ − (tλ1)′tλ2 = (λ2 − λ1)t
λ1+λ2−1 ̸= 0, for t ̸= 0

Case 2. λ1 = λ2 = λ. Then tλ and tλ ln t are two linearly independent solutions.

We obtain tλ ln t by applying our method to find a second linearly independent solution.

x2(t) = tλ
∫

e−
∫
p(t)dt

(tλ)2
dt = tλ

∫
e−

b
a

∫
dt
t

t2λ
dt

= tλ
∫

t−
b
a

t2λ
dt = tλ

∫
t−

b
a
−2λdt

In the case λ1 − λ2 = λ, the (repeated) roots are given by λ = −(b−a)
2a , so − b

a − 2λ = −1. Thus

x2(t) = tλ
∫

t−1dt = tλ
∫

t−1dt = tλ ln t.

Case 3. λ1, λ2 complex, so that λ1 = α + iβ and λ2 = α − iβ, α, β ∈ R. Then tα cos(β ln t) and
tα sin(β ln t) are two linearly independent solutions. We write

tλ1 = tα+iβ = tαtiβ = tα(eln t)iβ = tαeiβ ln t

Euler’s formula gives tλ1 = tα cos(β ln t) + i tα sin(β ln t). In the constant coefficients case we
showed that if z(t) = u(t) + iv(t) is a solution, u, v real, so are u(t) and v(t). The same proof
works here, as we conclude that tα cos(β ln t) and tα sin(β ln t) are solution. We check that they are
linearly independent:

W (tα cos(β ln t), tα sin(β ln t)) = tα cos(β ln t)(tα sin(β ln t))′ − (tα cos(β ln t))′(tα sin(β ln t))

= tα cos(β ln t)(αtα−1 sin(β ln t) + tα
β

t
cos(β ln t))− (αtα−1 cos(β ln t)− tα

β

t
sin(β ln t))

tα sin(β ln t) = t2α−1β(cos2(β ln t) + sin2(β ln t)) = βt2α−1 ̸= 0, since t > 0 and β ̸= 0

(because otherwise the roots could not be complex).

Remark 12.1. Above, we solved the Cauchy-Euler equation for t > 0. If we want to solve it for
t < 0, we proceed as follows. Set τ = −t, so that τ > 0. Then

x(t) = x(−τ), x′ =
dx

dt
=

dx

tτ

dτ

dt
= −dx

dt
, and

x′′ =
d2x

dt
=

d

dτ
(
dx

dt
)
dτ

dt
=

d2x

dτ2
, and the equation becomes

at2x′′ + btx′ + cx = (−τ)2
d2x

dτ2
+ b(−τ)(−dx

dτ
) + cx = 0, i.e., aτ2

d2x

dτ2
+ bτ

dx

dτ
+ cx = 0, τ > 0
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Now we can apply the above algorithm to find the solutions as functions of τ , and then replace
τ = −t to obtain the result.

13. Interconnected tanks

Let us study the following situation. Two tanks containing 24 l of brine are connected by two
pipes. Free water flows into tank A at a rate of 6 l/min, and fluid is drained out of tank B at the
same rate. 8 l/min of fluid are prumped into tank B from tank A through one pipe and 2 l/min
from tank B into tank A. Initially tank A contains 1 kg and tank B 4 kg of salt. Find the amount
of salt in both tanks as a function of time.

6 l/min

8 l/min

2 l/min

6 l/min
24 l 24 l

1 kg at t = 0 4 kg at t = 0

Denote the amount of salt in tanks A and B by x(t) and y(t), respectively. We have

dx

dt
= in - out,

dy

dt
= in - out

dx

dt
= 6

l

min
· 0kg

l
+ 2

l

min
· y

24

kg

l
− 8

l

min
· x

24

kg

l
dy

dt
= 8

l

min
· x

24

kg

l
− 2

l

min
· y

24

kg

l
− 6

l

min
· y

24

kg

l
Thus

x′ = −1

3
x+

1

12
y

y′ =
1

3
x− 1

3
y

This is a system of DE, i.e., we have two DE for two unknown functions. The second equation
gives x = 3y′ + y. Plugging this into the first equation:

(3y′ + y)′ = −1

3
(3y′ + y) +

1

12
y, 3y′′ + y′ = −y′ − 1

3
y +

1

12
y, or 3y′′ + 2y′ +

1

4
y = 0.

This is a second order linear equation with constant coefficients. The characteristic equation is
3λ2 + 2λ+ 1

4 = 0, so

λ = (−2±
√
4− 4 · 3 · 1

4
)/6, λ1 =

−1

6
, λ2 =

−1

2
.

Then, y = c1e
− 1

2
t + c2e

− 1
6
t. We can now plug this into x = 3y′ + y to find

x = 3(c1e
− 1

2
t + c2e

− 1
6
t)′ + c1e

− 1
2
t + c2e

− 1
6
t,

= −3

2
c1e

− 1
2
t − 1

2
c2e

− 1
6
t + c1e

− 1
2
t + c2e

− 1
6
t

so, x = −1

2
c1e

− 1
2
t +

1

2
c2e

− 1
6
t
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To find c1 and c2, we use the IC:

x(0) = −1

2
c1 +

1

2
c2 = 1, y(0) = c1 + c2 = 4. This gives, c1 = 1 and c2 = 3.

Hence, x(t) = −1

2
e−

1
2
t +

3

2
e−

1
6
t, y(t) = e−

1
2
t + 3e−

1
6
t

Many important problems involve systems of DE. We will develop a systematic method for
studying systems.

14. The method of elimination for systems

We will now study systems of DE, i.e., when we have more than one equation and more than
one unknown.

We can think of the derivative x′ = dx
dt as the operator d

dt acting on x. Let us denote the operator
d
dt by D. Similarly, d2x

dt2
can be thought as D acting on dx

dt = Dx, so d2x
dt2

= D(Dx) = D2x. We call

D,D2, etc., differential operators to emphasize that they involve derivatives.

We note that we can factor expressions in D in a similar way as we do for numerical expressions.

Example 14.1. Show that D2 +D − 2 is the same as (D + 2)(D − 1).

For any twice differentiable function x:

(D + 2)(D − 1)x = (D + 2)(Dx− x) = D2x−Dx+ 2Dx− 2x

= D2x+Dx− 2x = (D2 +D − 2)x

The same is not true, however, if the coefficients are not constant.

Example 14.2. Show that

(D + 4t)D ̸= D(D + 4t)x

We have:

(D + 4t)Dx = D2x+ 4tDx

D(D + 4t)x = D(Dx+ 4tx) = D2x+D(4tx) = D2x+ 4x+ 4tDx

and D2x+ 4tDx ̸= D2x+ 4x+ 4tDx

Example 14.3. Show that

(D + 2)(D − t) ̸= D2 + (2− t)D − 2t

We have:

(D + 2)(D − t)x = (D + 2)(Dx− tx) = D2x−D(tx) + 2Dx− 2tx

= D2x− tDx− x+ 2Dx− 2tx = D2x+ (2− t)Dx− (2 + t)x

= (D2 + (2− t)D − (2 + t))x

̸= (D2 + (2− t)D − 2t)x

The method we will present now is for systems with constant coefficients. Consider a 2×2 system
of DE with constant coefficients of the form:{

a1x
′ + a2x+ a3y

′ + a4y = f1(t)

a5x
′ + a6x+ a7y

′ + a8y = f2(t)
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We can write it as {
(a1D + a2)x+ (a3D + a4)y = f1

(a5D + a6)x+ (a7D + a8)y = f2

Denote L1 = a1D + a2, L2 = a3D + a4, L3 = a5D + a6, L4 = a7D + a8.

Note that L1, . . . , L4 are differential operators and that they commute, i.e. LiLj = LjLi, i, j =
1, 2, 3, 4 (this would not be true if the coefficients were not constant). Thus{

L1x+ L2y = f1

L3x+ L4y = f2

Applying L4 to the first equation and L2 to the second one, and using that the operators commute:{
L1L4x+ L2L4y = L4f1

L2L3x+ L2L4y = L2f2

Subtracting, gives

L1L4x− L2L3x = L4f1 − L2f2

Similarly, applying L3 to the first equation, L1 to the second, and subtracting,

L1L4y − L2L3y = L1f2 − L3f1

Let g1 = L4f1 − L2f2 and g2 = L1f2 − L3f1 (g1 and g2 are known functions). Then{
(L1L4 − L2L3)x = g1

(L1L4 − L2L3)y = g2

We obtain two separate equations for x and y only. These are differential equations with con-
stant coefficients that can be solved with methods previously learned. Moreover, the associated
homogeneous equation is the same for x and y.

Example 14.4. Solve

x′ − 3x+ 4y = 1

y′ − 4x+ 7y = 10t

Write {
(D − 3)x+ 4y = 1, L1 = D − 3, L2 = 4

−4x+ (D + 7)y = 10t, L3 = −4, L4 = D + 7

Then L1L4 − L2L3 = (D − 3)(D + 7)− 4 · (−4) = D2 + 4D − 5.

Characteristic equation: λ2 + 4λ− 5 = (λ− 1)(λ+ 5) = 0, λ1 = −5, λ2 = 1.

There are two possible ways we can proceed now:

Method 1. Solve x and y separately. First we solve (L1L4 − L2L3)y = g2

y1 = e−5t, y2 = et, g2 = L1f2 − L3f1 = (D − 3)(10t)− 4 · 1 = 10− 30t− 4 = 6− 30t.

We seek yp = At+B. Applying the method of undetermined coefficeints gives yp = 6t+2. Thus

y = c1e
−5t + c2e

t + 6t+ 2

Next, we find x solving (L1L4−L2L3)x = g1. We already know that x1 = e−5t, x2 = et (recall that
the associated homogeneous equation is the same). g1 = L4f1−L2f2 = (D+7)1−4 ·10t = 7−40t.
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We seek yp = At+B. Applying the method of undetermined coefficients gives xp = 8t+5. Thus

x = k1e
−5t + k2e

t + 8t+ 5

We are not done yet. We obtain four constants, c1, c2, k1 and k2. But we should have only
two arbitrary constants because the system we are trying to solve involves two equations of first
order (giving one arbitrary constant for each equation). Indeed, an initial condition for the system
will contain only two values, x(0) = X0 and y(0) = Y0, hence we only determine two arbitrary
constants. This means that there is a relation between k1, k2 and c1, c2.

To find the relation, we plug our solutions into the first equation of the system:

x′ − 3x+ 4y = 1

(k1e
−5t + k2e

t + 8t+ 5)′ − 3(k1e
−5t + k2e

t+8t+ 5) + 4(c1e
−5t + c2e

t + 6t+ 2) = 1

(−8k1 + 4c1)e
−5t + (−2k2 + 4c2)e

t + (8t+ 5)′ − 3(8t+ 5) + 4(6t+ 2)︸ ︷︷ ︸
=1

= 1

Thus

(−8k1 + 4c1)e
−5t + (−2k2 + 4c2)e

t = 0

Since e−5t and et are linearly independent, we must have −8k1+4c1 = 0 and −2k2+4c2 = 0, so
k1 =

1
2c1, k2 = 2c2. The general solution of the system is

x(t) =
1

2
c1e

−5t + 2c2e
t + 8t+ 5

y(t) = c1e
−5t + c2e

t + 6t+ 2

Method 2. Plug in one solution into one of the equations.

In this approach, we first find one of the unknowns as in the previous method. We have y =
c1e

−5t + c2e
t + 6t+ 2. We now plug this into the equation y′ − 4x+ 7y = 10t. We find

x =
−10

4
t+

y′

4
+

7y

4
=

−10

4
t+

1

4
(c1e

−5t + c2e
t + 6t+ 2)′ +

7

4
(c1e

−5t + c2e
t + 6t+ 2)

=
−5

2
t− 5

4
c1e

−5t +
c2
4
et +

6

4
+

7

4
c1e

−5t +
7

4
c2e

t +
21

2
t+

7

2

=
1

2
c1e

−5t + 2c2e
t + 8t+ 5

Remark 14.5. It may seem that the second method is simpler than the first one. This was the
case in the previous example because we could solve directly for x in y′ − 4x + 7y = 10t. But if
both equations involved x′, as it is the case in the general situation, then the resulting equation for
x (after plugging in y) will still be a differential equation.

Remark 14.6. We can use similar ideas to solve systesm with more unknowns and also with higher
order equations.

15. Direction fields

Consider the DE y′ = f(x, y). If f(x, y) is very complicated, it might be hard to find the function
y. We will develop a method for studying this equation that will allow us to get a good grasp of
how y looks like, even when we cannot write it explicitly.

Example 15.1. Consider the equation y′ = −y
x .
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We can solve this equation, but for the sake of illustrating the new method, let us imagine that
we do not know the solution. What the equation tells us is the value of the slope of the tangent to
the graph of y (i.e. y′) at each point x, y. We construct a table of values. With enough values, we
can plot the slope, on the xy-plane.

x y y′ = −y
x

1 0 0
1 1 -1
2 1 −1

2
1 2 -2
...

...
...

y

x
-1-2-3 1 2 3

-1

-2

1

2

We call such a picture a direction field for the equation y′ = f(x, y).
Using enough point, we can sketch solutions. The important thing to remember is that the

solutions have their graphs tangent to the line segments we plotted, and that they vary continuously.
For example, below we draw the solutions satisfying y(1) = 2 and y(1) = −2.

y

x
-1-2-3 1 2 3

-1

-2

1

2

16. Euler’s method

Consider a DE y′ = f(x, y). Depending on what f is, we may not be able to find a formula for
the general solution. In this case, we can use direction fields to obtain some qualitative information
on the behavior of solutions. Euler’s method is a way of finding approximate solutions that provide
further, quantitative information.

The idea of Euler’s method is that if we know the value of y = y(x) at x0, then y(x0+h) can be
approximated with the help of the derivative of y at x.
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y1

y(x0 + h)

y0 = y(x0)

x0 x0 + h

tangent line to y(x) at x0. Its slope is y′(x)

y1 ≈ y(x0 + h)

x

y

This idea requires knowing y′, which is our case we know because we have the DE y′ = f(x, y).
Thus,

y′(x0) = f(x0, y0) ≈
y(x0 + h)− y(x0)

h
⇒ y(x0 + h) ≈ y(x0) + hf(x0, y0)

We can now repeat the process. Starting from the point

x1 = x0 + h, y1 ≈ y(x0 + h) = y(x1), we find y2 ≈ y(x1 + h) = y(x0 + 2h)

y′(x1) = f(x1, y(x1)) ≈
y(x1 + h)− y(x2)

h
⇒ y(x1 + h) ≈ y(x1) + hf(x1, y(x1))

This formula is not good because we do not know y(x1). But we can use y1 ≈ y(x1) so

y(x1 + h) ≈ y1 + hf(x1, y1)

y1

y(x1)

y0 = y(x0)

x0 x1

y(x2)

y2

x2
x

y

We can continue the process and find y3, y4, etc., which will be approximate y(x3), y(x4), etc.,
where x3 = x0 + 3h, x4 = x0 + 4h, etc.

16.1. Summary of Euler’s method. Consider

{
y′ = f(x, y)

y(x0) = y0
Fix a small number h, called the step size, and set, inductively:

xm+1 = xm + h

ym+1 = ym + hf(xm, ym)

The points ym will be approximations for y(xm).
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Remark 16.1. Because we have to know the initial point (x0, y0), Euler’s method is better studied
to study IVP. However, we can use it to investigate the general solution upon varying y0.

Remark 16.2. Typically, the smaller the step szie h, the better the approximation.

Example 16.3. Consider y′ = x
√
y, y(1) = 4. We can solve this equation exactly. Let us compare

the values of the exact tolution with these of Euler’s method with h = 0.1.

m xm ym (Euler’s method) y(xm) (exact value)
0 0 4 4
1 1.1 4.2 4.21276
2 1.2 4.42543 4.45210
3 1.3 4.468878 4.71976
4 1.4 4.95904 5.01760
5 1.5 5.27081 5.34766

17. Numerical solutions of systems

A system of first order DE with h equations for k unknown functions x1(t), x2(t), . . . , xk(t) can
be written as

x′1(t) = f1(t, x1, . . . , xk)

x′2(t) = f2(t, x1, . . . , xk)

...

x′k(t) = fm(t, x1, . . . , xk)

When the system is written in this form, i.e., with the coefficients of all x′i, i = 1, 2, . . . , k, equal
to one, we say that the system is written in normal form.

Example 17.1. The system

{
x′ = 2x+ y

y′ = xy
is in normal form, while

{
y′x = cosx

y′ = x+ y
is not.

The IVP problem for a system as above has k IC:

x1(0) = X0,1, x2(0) = X0,2, . . . , xm(0) = Xk,0

The Euler method for systems is done in the same way as for a single equation. We set:

tm+1 = tm + h

x1,m+1 = x1,m + hf1(tm, x1,m, x2,m, . . . , xk,m)

x2,m+1 = x2,m + hf2(tm, x1,m, x2,m, . . . , xk,m)

...

xk,m+1 = xk,m + hfk(tm, x1,m, x2,m, . . . , xk,m)

where h is the step size. Notice that these formulas assume that the system is in normal form.

We can write the above formulas in a compact way upon introducting the vectors:

x(t) = (x1(t), x2(t), . . . , xk(t))

f(t, x) = (f1(t, x1, . . . , xk), f2(t, x1, . . . , xk), . . . , fk(t, x1, . . . , xk))

so that we have

tm+1 = tm + h and xm+1 = xm + hf(tm, xm).
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18. Higher order equations as systems

Besides the fact that systems of DE are common in applications, there is another reason to study
them: a DE of order k can always be written as a system of k DE of first order. The procedure is
as follows. Given

y(k)(t) = f(t, y, y′, y′′, . . . , y(k−1))

Set

x1(t) = y(t), x2(t) = y′(t), x3(t) = y′′(t), . . . , xk(t) = y(k−1)(t)

Then

x′1(t) = y′(t) = x2(t)

x′2(t) = y′′(t) = x3(t)

...

x′k−1(t) = y(k−1)(t) = xk(t)

x′h(t) = f(t, y, y′, . . . , y(k−1)) = f(t, x1, x2, . . . , x(k−1))

So we have the system

x′1 = x2

x′2 = x3

...

x′h = xk

x′h = f(t, x1, x2, . . . , xk−1)

Solving this system, we find x1, x2, . . . , xk, so in particular we find y because y = x1. If the DE for
y come with IC:

y(t0) = Y0, y
′(t0) = Y1, . . . , y

(k−1)(t0) = Yk−1,

then we have IC for the system:

x1(t0) = Y0, x2(t0) = Y1, . . . , xk(t0) = Yk−1

Since Euler’s method can be applied to systems, as a consequence it can be applied to equations
of order k as well.

19. The matrix form of linear systems

We are going to develop method for studying linear systems of first order DE, i.e., systems of DE
where each equation in the system is linear. A linear system of n first order DE for m unknowns
can be written as:

x′1 = a11(t)x1 + a12(t)x2 + · · ·+ a1m(t)xm + f1(t)

x′2 = a21(t)x1 + a22(t)x2 + · · ·+ a2m(t)xm + f2(t)

...

x′n = an1(t)x1 + an2(t)x2 + · · ·+ anm(t)xm + fn(t)

where aij(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m and f1(t), . . . , fn(t) are given functions. The system is
called homogeneous if f1 = · · · = fn = 0 and inhomogeneous otherwise.
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To deal with sytems, it is convenient to introduce the following concept.

Definition 19.1. A n × m (n by m) rectangular array of numbers is called a (m by n) matrix.
If m = n, we say that the matrix is square. A m by 1 matrix is called a column vector. If a
matrix A has entries aij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, we write A = [aij ].

Example 19.2.

[
1 2 3
4 5 6

]
is a 2 by 3 matrix,

[
1 2
3 4

]
is a 2× 2 square matrix, and

12
3

 is a 3× 1

matrix and a column vector.

Definition 19.3. An order m-tuple of numbers (u1, u2, . . . , um) is called a vector with m compo-
nents.

Definition 19.4. The dot product of two vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm),
denoted u · v defined as

u · v =
m∑
j=1

ujvj = u1v1 + u2v2 + · · ·+ umvm.

Remark 19.5. All the properties of vectors and of the dot product learned in calculus for 2 and
3 component vectors hold for m-component vectors.

Remark 19.6. The dot product is only defined between two vectors with the same number of
components. Note that the dot product of two vectors is a number, not a vector.

Remark 19.7. Given a vector u = (u1, u2, . . . , um), we can construct out of it the column vec-

tor


u1
u2
...

um

. Reciprocally, given the column vector


u1
u2
...

um

 we can construct out of it the vector

(u1, u2, . . . , um). Thus, we will not distinguish between column vectors and vectors, referring to
column vectors simply as vectors.

Definition 19.8. Let A be a n×m matrix, which we can write as

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm


We can think of each row of A as a m-component vector, so we write

A =


a1
a2
...
an


where ai = (ai1, ai2, . . . , aim), i = 1, 2, . . . , n. Let x be a m-component vector, x = (x1, x2, . . . , xm).
We define the product of A by x, written

Ax =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm



x1
x2
...

xm


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as the n-component vector given by

A =


a1 · x
a2 · x
...

an · x


Remark 19.9. Note that Ax is only defined if the number of vectors of A equals the number of
components of x.

Example 19.10. Find Ax if A =

[
1 −1 2
1 2 0

]
and x = (2, 1,−2).

In this case a1 = (1,−1, 2), a2 = (1, 2, 0) and

a1 · x = 1 · 2 + (−1) · 1 + 2 · (−2) = −3

a2 · x = 1 · 2 + 2 · 1 + 0 · (−2) = 4

so Ax =

[
−3
4

]
Consider the system

x′1 = a11(t)x1 + a12(t)x2 + · · ·+ a1m(t)xm + f1(t)

x′2 = a21(t)x1 + a22(t)x2 + · · ·+ a2m(t)xm + f2(t)

...

x′n = an1(t)x1 + an2(t)x2 + · · ·+ anm(t)xm + fn(t)

We can write it as [x]′n = Ax+ f , where

A = A(t) =


a11(t) a12(t) . . . a1m(t)
a21(t) a22(t) . . . a2m(t)

...
an1(t) an2(t) . . . anm(t)



is called the coefficient matrix, x =


x1
x2
...

xm

 , f =


f1
f2
...
fn

 and [x]′n =


x′1
x′2
...
x′n

. The system is said then

to be written in matrix form.

Remark 19.11. Above, we write [x]′n to emphasize this is the vector of the derivatives of the first

n components of x. This is generally different than x′, as the latter is x =


x1
x2
...

xm


′

=


x′1
x′2
...

x′m

.
In most cases, we will deal with systems where n = m, in which case [x]′n = x′ and we can then
write

x′ = Ax+ f

Example 19.12. write

{
x′ = 2x+ 6y + 6

y′ = 2tx+ y + et
in matrix form.[

x′

y′

]
=

[
2 t
2t 1

] [
x
y

]
+

[
6
et

]
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20. Linear algebra and algebraic equations

A set of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

is a linear system of m algebraic equations for n unknowns x1, x2, . . . , xn. These systems are studied
in linear algebra. Here, we briefly review how to solve such systems by Gauss-Jordan elimination.

Example 20.1. Solve


2x1 + 6x2 + 8x3 = 16

4x1 + 15x2 + 19x3 = 38

2x1 + 3x3 = 6

Denoting by Li the ith line of the system, we write ALi + BLj → Lj to indicate the operation

where the jth line is replaced by ALi +BLj .

{
−2L1 + L2 → L2

−L1 + L3 → L3
⇒


2x1 + 6x2 + 8x3 = 16

3x2 + 3x3 = 6

− 6x2 − 5x3 = −10{
2L2 + L3 → L3

−2L2 + 2L1 → L1
⇒


2x1 + 2x3 = 4

3x2 + 3x3 = 6

x3 = 2{
−2L3 + L1 → L1

−3L3 + L2 → L2
⇒


2x1 = 0

3x2 = 0

x3 = 2

, x1 = 0, x2 = 0, x3 = 2.

Example 20.2. Solve


2x1 + 4x2 + x3 = 8

2x1 + 4x2 = 6

−4x1 − 8x2 + x3 = −10

Arguing as above we find


2x1 + 4x2 = 6

− x3 = −2

0 = 0
We see that x2 is not determined, it is “free” so the system has infinitely many solutions, given by

x1 = −2x2 + 3

x3 = 2

x2 ∈ R

21. Matrices and vectors

The addition of matrices and multiplication by scalars is done entry-wise, i.e., if we denote
A = [aij ], B = [bij ], then A + B = [aij + bij ] and nA = [naij ] (assuming that A and B have the
same size).
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Example 21.1. [
2 1 0
1 0 1

]
+

[
1 1 0
1 1 0

]
=

[
3 2 0
2 1 1

]
3

[
2 1 0
1 0 1

]
=

[
6 3 0
3 0 3

]
With the above operations, and defining the zero matrix to be the matrix with all entries equal

to zero, we have that the set of m × n matrices forms a vector space. In particular, the defining
vector space properties (associativity, etc.) are satisfied.

If A is a m × n matrix, and B is a n × l matrix, the product AB is defined as the m × l
matrix whose jth column is given by Abj , where bj is the jth column of B. So, if A = [aij ], B =
[b1, b2, . . . , bl] = [bij ], then AB =

[
Ab1 Ab2 · · · Abl

]
, or AB = C with cij =

∑n
k=1 aikbkj .

If A is a m× n matrix, its transpose, denoted AT , is the n×m matrixd defined as

[aij ]
T
n×m = [aji]m×n

The inverse of a square matrix A, denoted A−1, is a matrix such that AA−1 = A−1A = I, where
I is the identity matrix, defined as the matrix with 1 in the diagonal entries and zero everywhere
else. If A−1 exists, we say that A is invertible.

A linear system:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be written matrix form as Ax = b, where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm


If n = m, and A is invertible, x is then given by x = A−1b.

By a row operation on a matrix, we mean any one of the following:
(a) Integrating two rows of the matrix.
(b) Multiplying a row of the matrix by a non-zero scalar.
(c) Adding a scalar multiple of one row of the matrix to another row(and replacing one of the

rows by the result).

If the n ×m matrix has an inverse A−1, the latter can be determined as follows: we write the

n× 2n matrix [A
... I], and perform now operations until we obtain [I

... B]. Then B = A−1.

If A =

[
a11 a12
a21 a22

]
, its determinant is defined as

detA = a11a22 − a12a21
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If A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, its determinant is defined as

detA = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
The determinant of a n × n matrix can be defined inductively, i.e., the determinant of 4 × 4

matrices is written in terms of determinants of 3 × 3 submatrices and so on. These are called
cofactor expansions (see Linear Algebra).

Theorem 21.2. Let A be a n× n matrix. The following statements are equivalent:
(a) A is singular (does not have an inverse).
(b) detA = 0.
(c) Ax = 0 has non-trivial solutions (x ̸= 0).
(d) The columns (rows) of A form a linearly dependent set.

We recall that we say that the vectors a1, a2, . . . , an are linearly dependent if it is possible to
find numbers c1, c2, . . . , cn, not all zero, such that c1a1 + · · ·+ cnan = 0.

Let A be a n × n matrix. If A is not singular, then the system Ax = b always has a unique
solution (given by x = A−1b). If A is singular, either Ax = b has no solution, or it has infinitely
many solutions. In the latter case, the solutions are given by x = xh + xp, where xp is a particular
solution satisfying Axp = b and xh are solutions of the homogeneous equation Axh = 0 (note that
there are infinitely many xh’s in this case).

21.1. Calculus of matrices. If the entires aij(t) of the matrix A are functions of t, then we say
that A = A(t) is a matrix function of t. We say that A(t) is continuous (differentiable) at t0 if
each aij(t) is continuous (differentiable) at t0. The derivative and integral of A(t) are defined as

d

dt
A(t) = A′(t) = [a′ij(t)],

∫ b

a
A(t)dt = [

∫ b

a
aij(t)dt]

It follows that:

d

dt
(CA) = CA, where C is a constant matrix,

d

dt
(A+B) =

dA

dt
+

dB

dt
,

d

dt
(AB) = A

dB

dt
+

dA

dt
B,

In the last formula, note that the order in which the matrices are written matters.

22. Linear systems in normal form

We say that a system of n first order linear DE for n unknown functions x1, x2, . . . , xn is in
normal form if it can be expressed as

x′(t) = A(t)x(t) + f(t)

where x(t) = (x1(t), x2(t), . . . , xn(t)), A(t) = [aij(t)] is the coefficient matrix, and f(t) =
(f1(t), f2(t), . . . , fn(t)) is the inhomogenous term. The system is said to have constant coeffi-
cients if the matrix A(t) is a constant matrix.

The initial value problem for the system x′ = Ax+ f , with initial condition x(t0) = x0, consists
in finding a solution x(t) defined in a neighborhood of t0 such that x(t0) = x0.
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Theorem 22.1. Let A(t) and f(t) be continuous on the interval I that contains t0, where A(t) is
n× n. Then, for any x0 there exists a unique solution x(t), defined on the whole interval I, to the
IVP x′ = Ax+ f, x(t0) = x0.

If we define L(x) = Lx = x′ − Ax, then the system can be written as Lx = f . We remark that
for any differentiable function, x(t) and y(t) and constants a and b, we have

L(ax+ by) = aLx+ bLy

This means that L defines a linear operator. In this case, L maps differentiable functions to
continuous functions and this mapping is linear. As a consequence, if x1, x2, . . . , xk are solution, of
the homogeneous system Lx = 0, then c1x1+c2x2+ · · ·+ckxk is also a solution, where c1, c2, . . . , ck
are arbitrary constants.

Definition 22.2. The vector functions x1, x2, . . . , xk are said to be linearly dependent on an
interval I if there exist constants c1, c2, . . . , ck, not all zero, such that

c1x1(t) + c2x2(t) + · · ·+ ckxk(t) = 0 for all t ∈ I.

Otherwise, they are said to be linearly independent.

Example 22.3. We can see that x1(t) = (sin(2t), cos t) and x2(t) = (sin t cos t, 12 cos t) are linearly
dependent on (−∞,∞) since (sin 2t, cos t) = (2 sin t cos t, cos t), so x1(t)− 2x2(t) = 0.

Example 22.4. We say that x1(t) = (et, 0, et), x2(t) = (et, et,−et), x3(t) = (et, 2et, et) are linearly
independent on (−∞,∞).

To see this, let c1, c2, c3 be constants such that

c1x1 + c2x2 + c3x3 = 0 for all t ∈ (−∞,∞)

Then this holds in particular for t = 0, so

c1

10
1

+ c2

 1
1
−1

+ c3

12
1

 = 0

Solving for c1, c2 and c3 we find c1 = c2 = c3 = 0, and we conclude that x1, x2, and x3 are linearly
independent on (−∞,∞). In fact, this shows that they are linearly independent on any interval
containing zero.

Example 22.5. x1(t) =

[
t
|t|

]
and x2(t) =

[
|t|
t

]
are linearly independent on (−∞,∞).

To see this, note that x1(t) = x2(t) for t > 0 and x1(t) = −x2(t) for t < 0. If c1x1(t)+c2x2(t) = 0,
then, for t > 0 we have c1 = −c2, and for t < 0 we have c1 = c2, hence c1 = c2 = 0, giving linear
independence.

Remark 22.6. Note that linear dependence/independence depends on the interval. E.g.,

[
t
|t|

]
and[

|t|
t

]
are linearly independent on (−∞,∞) but they are linearly dependent on (0,∞).

Definition 22.7. TheWronskian of n vector functions x1(t) = (x11(t), x21(t), . . . , xn1(t)), . . . , xn(t) =
(x1n(t), x2n(t), . . . , xnn(t)) is defined as the function:

W (x1, x2, . . . , xn)(t) = det


x11(t) x12(t) . . . x1n(t)
x21(t) x22(t) . . . x2n(t)

...
...

...
...

xn1(t) xn2(t) . . . xnn(t)


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Theorem 22.8. If W (x1, x2, . . . , xn)(t0) ̸= 0, then x1, x2, . . . , xn linearly independent on any in-
terval (a, b) containing t0.

Proof. Consider c1x1 + · · ·+ cnxn(t) = 0. If this holds for any t ∈ (a, b) then in particular it holds
for t = t0, so c1x1(t0)+ · · ·+ cnx(t0) = 0. If not all ci’s are zero, this means that the system Ac = 0
has a non-trivial solution c = (c1, c2, . . . , cn) ̸= 0, where

A =


x11(t0) x12(t0) . . . x1n(t0)
x21(t0) x22(t0) . . . x2n(t0)

...
...

...
...

xn1(t0) xn2(t0) . . . xnn(t0)


But then detA = 0 (by a previous theorem), contradicting the assumption. □

Theorem 22.9. Let A be a n× n continuous matrix function. If x1, x2, . . . , xn are linearly inde-
pendent solutions of x′ = Ax on an interval I, then their Wronskian never vanishes on I.

Proof. Suppose that W (x1, x2, . . . , xn)(t0) = 0 for some t0 ∈ I, then the vectors x1(t0), . . . , xn(t0)
are linearly dependent, so we can find c1, c2, . . . , cn such that c1x1(t0) + · · · + cnxn(t0) = 0. The
functions c1x1(t)+· · ·+cnxn(t) and z(t) = 0 are both solutions to the IVP x′ = Ax, x(t0) = 0, so by
uniqueness we have z(t) = c1x1(t)+ · · ·+ cnxn(t) = 0 for all t ∈ I, contrary to the assumption. □

Theorem 22.10. Let x1, x2, . . . , xn be solutions to x′ = Ax defined on an interval I. Then either
their Wronskian vanishes identically on I or it is never zero on I.

Definition 22.11. An expression of the form c1x1(t) + · · ·+ cnxn(t), where c1, c2, . . . , cn are con-
stants, is called a linear combination of x1, x2, . . . , xn.

Theorem 22.12. Let x1, x2, . . . , xn be n linearly independent solutions to x′ = Ax on an interval
I, where A is a n × n continuous matrix function. Then, any solution to x′ = Ax on I can be
written as a linear combination of x1, x2, . . . , xn.

Definition 22.13. A set of {x1, x2, . . . , xn} of n linearly independent solutions to x′ = Ax, (A
n× n) is called a fundamental solution set to x′ = Ax. The linear combination

x(t) = c1x1(t) + · · ·+ cnxn(t)

where c1, c2, . . . , cn are constants, is called the general solution to x′ = Ax. The matrix

X(t) = [x1(t) . . . xn(t)] =


x11(t) x12(t) . . . x1n(t)
x21(t) x22(t) . . . x2n(t)

...
...

...
...

xn1(t) xn2(t) . . . xnn(t)


is called the fundamental matrix of x′ = Ax.

Note that the general solution x can be written as x(t) = X(t)c, where c = (c1, c2, . . . , cn) is a
constant vector, and that W (x1, x2, . . . , xn)(t) = detX(t).

The superposition principle for linear systems says that if x1 and x2 are solutions to x′1 =
Ax1 + f1 and x′2 = Ax2 + f2, then c1x1 + c2x2 is a solution to x′ = Ax+ c1f1 + c2f2, where c1 and
c2 are constants.

Theorem 22.14. The fundamental matrix X(t) satisfies:

X ′(t) = A(t)X(t)
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Proof. We have

X ′(t) = [x′1(t) . . . x
′
n(t)]

Each xi(t), i = 1, 2, . . . , n satisfies x′i(t) = A(t)xi(t), so

X ′(t) = [A(t)x1(t) . . . A(t)xn(t)]

from the formula for multiplication of matrices we see that

[A(t)x1(t) . . . A(t)xn(t)] = A(t)[x1(t) . . . xn(t)] = A(t)X(t).

□

Definition 22.15. Given x′ = Ax+ f , we call x′ = Ax the associated homogeneous system. The
general solution of the associated homogenous system is denoted xh.

Theorem 22.16. If xp(t) is a particular solution to x′ = Ax + f on the interval I, where A is a
n×n continuous matrix function, and {x1(t), . . . , xn(t)} is a fundamental solution set to the system
x′ = Ax on I, then every solution to x′ = Ax+ f on I can be written as x(t) = xh(t) + xp(t).

23. Homogeneous linear systems with constant coefficients

Here we will study the system

x′ = Ax

where A is a n× n real (constant) matrix. We first recall some definitions from linear algebra.

Definition 23.1. Let A be a n × n matrix. The eigenvalues of A are those (real or complex)
numbers λ for which the equation (A−λI)u = 0 has at least one non-trivial (i.e., non-zero) solution
u, where I is the n× n identity matrix. Note that u is possibly a complex vector. Any non-trivial
u satisfying (A− λI)u = 0 is called an eigenvector (associated to the eigenvalue λ) of A.

For λ to be an eigenvalue of A, the equation (A− λI)u = 0 needs to admit non-trivial solutions,
so its determinant must vanish. The equation

det(A− λI) = 0

is called the characteristic equation of A. It is a polynomial of degree n and its roots are eigen-
values, so we find the eigenvalues by finding the roots of the characteristic determinant.

Returning to x′ = Ax, we try a solution of the form x(t) = eλtu, where λ and u have to be
determined. Plugging in:

(eλtu)′ = λeλtu = Aeλtu ⇒ (A− λI)u = 0

Thus, λ is an eigenvalue of A and u an eigenvector. Said differently, if λ is an eigenvalue of A
and u is a corresponding eigenvector, then x = eλtu solves x′ = Ax.

Theorem 23.2. Suppose the constant n × n matrix A has n linearly independent eigenvectors
u1, u2, . . . , un. Let λi be the eigenvalue corresponding to ui. Then {eλ1tu1, e

λ2tu2, . . . , e
λntun} is a

fundamental solution set for x′ = Ax on (−∞,∞). Thus, the general solution of x′ = Ax is

x = c1e
λ1tu1 + · · ·+ cne

λntun, where c1, c2, . . . , cnare arbitrary constants.

Proof. Set X(t) =
[
eλ1tu1 eλ2tu2 . . . eλntun

]
. Then

detX(t) = e(λ1+λ2+···+λn)t det
[
u1 u2 . . . un

]
which is never zero since u1, u2, . . . , un are linearly independent, hence the result by one of our
previous theorems. □
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We now recall some useful results from linear algebra. In what follows, A is a constant n × n
matrix.

• If λ1, λ2, . . . , λn are distinct eigenvalues of A, then the vectors u1, u2, . . . , un are linearly
independent, where ui is an eigenvector associated with λi.

• Any non-zero multiple of an eigenvector is also an eigenvector.

• If A is real and symmetric, i.e., all entries of A are real and AT = A, where AT is the
transpose of A, then A admits n linearly independent eigenvectors.

24. The case of complex eigenvalues

Consider x′ = Ax, where A is a n× n real (constant) matrix. We saw that if λ is an eigenvalue
and u an associated eigenvalue, then z = eλtu is a solution. We can write

z = e(α+iβ)t(a+ ib)

where α, β ∈ R and a and b are real vectors. The complex conjugate of λ, λ̄, is also an eigenvalue
and z̄ is a corresponding eigenvector, so we write

z̄ = e(α−iβ)t(a− ib)

Using Euler’s formula, we can write

z = eαt(cos(βt) + i sin(βt))(a+ ib)

= eαt(cos(βt)a− sin(βt)b) + ieαt(sin(βt)a+ cos(βt)b)

giving two linearly independent real solutions (note that the same conclusion holds if we use z̄).

Summarizing: if a real (constant) matrix A has complex conjugate eigenvalues α ± iβ with
corresponding eigenvectors a± ib, a, b real vectors, then two linearly independent real solutions are
given by

x1(t) = eαt cos(βt)a− eαt sin(βt)b, x2(t) = eαt sin(βt)a+ eαt cos(βt)b.

25. The method of undetermined coefficients for systems

We will now discuss methods for solving non-homogeneous systems of DE, starting with the
method of undetermined coefficients.

The method of undetermined coefficients for systems of DE is very similar to the case of a single
equation. We will illustrate the method with examples.

Example 25.1. Find the general solution of

x′ =

[
2 2
2 2

]
x+

[
−4 cos t
− sin t

]
First, we solve the associated homogeneous equation x′ =

[
2 2
2 2

]
x. The matrix A =

[
2 2
2 2

]
has

eigenvalues λ1 = 0 and λ2 = 4. Corresponding eigenvectors are u1 =

[
1
−1

]
and u2 =

[
1
1

]
. We

conclude that x1 = e0t
[
1
−1

]
=

[
1
−1

]
and x2 = e4t

[
1
1

]
are two linearly independent solutions of

x′ = Ax.
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We now seek for a particular solution xp. Mimicking what we have done for single equations,
we look for a solution of the form xp = cos t a+ sin t b, except that now a and b are vectors to be
determined rather than real valued constants, i.e., a, b ∈ R2. Compute

x′p = − sin t a+ cos t b

We want this to equal Axp +

[
−4 cos t
− sin t

]
, so

− sin t a+ cos t b = A(cos t a+ sin t b)+

[
−4 cos t
− sin t

]
︸ ︷︷ ︸
= cos t

[
−4
0

]
+ sin t

[
0
−1

]
which we write as

(Aa− b) cos t+ (Ab+ a) sin t = cos t

[
4
0

]
+ sin t

[
0
1

]
Setting the coefficients of cos t (and sin t) on both sides equal to each other gives:

Aa− b =

[
4
0

]
and Ab+ a =

[
0
1

]
Recalling the definition of A, we can write this explicitly as:[

2 2
2 2

] [
a1
a2

]
−
[
b1
b2

]
=

[
−4
0

]
⇒

{
2a1 + 2a2 − b1 = 4

2a1 + 2a2 − b2 = 0

[
2 2
2 2

] [
b1
b2

]
+

[
a1
a2

]
=

[
0
−1

]
⇒

{
a1 + 2b1 + 2b2 = 0

a2 + 2b1 + 2b2 = 1

where a =

[
a1
a2

]
, b =

[
b1
b2

]
. This is a system for the unkowns a1, a2, b1 and b2:

2a1 + 2a2 − b1 = 4

2a1 + 2a2 − b2 = 0

a1 + 2b1 + 2b2 = 0

a2 + 2b1 + 2b2 = 1

using Gauss-Jordan elimination, we find: a1 = 0, a2 = 1, b1 = −2, b2 = 2, i.e., a =

[
0
1

]
, b =

[
−2
2

]
.

Thus

xp = cos t

[
0
1

]
+ sin t

[
−2
2

]
and the general solution is

x = c1

[
1
−1

]
+ c2e

4t

[
1
1

]
+ cos t

[
0
1

]
+ sin t

[
−2
2

]
=

[
c1 + c2e

4t − 2 sin t
−c1 + c2e

4t + cos t+ 2 sin t

]
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Example 25.2. Give the form of the particular solution to

x′ =

[
−4 2
2 −1

]
x+

[
e4t

3e4t

]
(you do not need to find xp.)

First we solve the associated homogeneous equation:

x′ =

[
−4 2
2 −1

]
x ⇒ λ1 = 0, λ2 = −5 ⇒ u1 =

[
1
2

]
, u2 =

[
2
−1

]
⇒ x1 = e0t

[
1
2

]
=

[
1
2

]
, x2 = e−5t

[
2
−1

]
The non-homogeneous term does not repeat any term in the homogeneous solution, thus

xp = e4ta = e4t
[
a1
a2

]
Example 25.3. Find xp in the previous example.
We plug xp in:

(e4t
[
a1
a2

]
)′ =

[
−4 2
2 −1

] [
a1
a2

]
e4t +

[
e4t

3e4t

]
Canceling e4t we can rewrite this as:[

8
−2

]
a1 +

[
−2
5

]
a2 =

[
1
3

]
⇒

{
8a1 − 2a2 = 1

−2a1 + 5a2 = 3

Solving the system we find a1 =
11
36 and a2 =

13
18 . Then:

xp = e4t

11
36

13
18


Remark 25.4. A multiple of a particular solution is not, in general, a particular solution. Thus,
in the previous example we cannot multiply xp by, say, 36, to get rid of the fractions.

Example 25.5. Find xp for x′ = Ax+ f , with

A =

2 −2 3
0 3 2
0 −1 2

 , f(t) =

e−t

2
1


After some algebra, we find that the solution of the associated homogeneous system is

xh = c1e
2t

10
0

+ c2(e
5t
2 cos(

√
7t

2
)

11
−2
4

− e
5t
2 sin(

√
7t

2
)

−3
√
7

−2
√
7

0

)
+ c3(e

5t
2 sin(

√
7t

2
)

11
−2
4

+ e
5t
2 cos(

√
7t

2
)

−3
√
7

−2
√
7

0

)
Now, write

f(t) =

e−t

2
1

 = e−t

10
0

+

02
1

 = f1(t) + f2(t)
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By the superposition principle, we seek xp in the form xp = xp1 + xp2, where xp is a particular
solution associated with f1 and xp2 a particular solution associated with f2.

f1 is an exponential that does not repeat any term in xh, so we put xp1 = eta = et

a1a2
a3

.
f2 is a polynomial of degree zero (i.e., a constant vector) that does not repeat any term in xh,

so we put xp2 = b =

b1b2
b3

.
Plugging xp into the equation and proceeding as in the above examples, we find:

xp =


−1

3e
t + 11

16

−1
4

−5
8


Remark 25.6. By the superposition principle, we can first find xp1 upon plugging it into x′ =

Ax + f1. In this case, we will find xp1 = et

−1/3
0
0

. Similarly, we plug xp2 into x′ = Ax + f2,

finding xp2 =

11/16−1/4
−5/8


Example 25.7. Find xp for x′ =

[
−4 2
2 −1

]
x+

[
1
1

]
e−5t.

The associated homogeneous equation for this system was solved in an example above. We found:

xh = c1

[
1
2

]
+ c2 e−5t

[
2
−1

]

Because e−5t

[
2
−1

]
solves the associated homogeneous system, we suspect, based on our experience

with single equations, that xp = ae−5t will not work. Let’s verify that this is indeed the case.

Plugging in:

(

[
a1
a2

]
e−5t)′ =

[
−4 2
2 −1

] [
a1
a2

]
e−5t +

[
1
1

]
e−5t

which gives, after differentiating and canceling the exponential:

a1 + 2a2 = 1

2a1 + 4a2 = 1

Multiplying the first equation by −2 and adding to the second yields:

a1 + 2a1 = 1

0 = −1

which is of course inconsistent.
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Based on our experience with single equations we are tempted to try xp = te−5t

[
a1
a2

]
. However,

this will not work either. Indeed, plugging te−5t

[
a1
a2

]
into the equation gives:

x′p =

[
a1
a2

]
e−5t − 5t

[
a1
a2

]
e−5t = t

[
−4a1 + 2a2
2a1 − a2

]
e−5t +

[
1
1

]
e−5t.

Setting the terms with and without t on each side equal to each other gives two systems:[
a1
a2

]
=

[
1
1

]
and

[
−4a1 + 2a2
2a1 − a2

]
=

[
−5a1
−5a2

]
It is impossible to satisfy both systems at the same time: the first system gives a1 = a2 = 1,

which is not a solution of the second system (although each system, separately, is consistent).

The difference from the single equation caes is that for systems the terms in t do not necessarily
cancel out. This is because we know we have two constants a1 and a2 (or more if the vectors had
more components) leading to more conditions necessary for cancelation.

Let us show that

xp = te−5ta+ e−5tb = te−5t

[
a1
a2

]
+ e−5t

[
b1
b2

]
works.

Plugging in gives:

−5t

[
a1
a2

]
e−5t +

[
a1
a2

]
e−5t − 5

[
b1
b2

]
e−5t = t

[
−4a1 + 2a2
2a1 − a2

]
e−5t +

[
−4b1 + 2b2
2b1 − b2

]
e−5t.

Setting the terms with and without t on each side equal to each other:
a1 + 2a2 = 0

2a1 + 4a2 = 0

a1 − b1 − 2b2 = 1

a2 − 2b1 − 4b2 = 1

solving, we find a1 =
2
5 , a2 =

1
5 , b1 = −2b2 − 3

5 and b2 is a free variable. Thus:

xp =

 2
5

−1
5

 te−5t +

−2b2 − 3
5

b2

 e−5t.

Because we want the particular solution to contain no free variables, we set b2 = 0. Alternatively,
we can write [

−2b2 − 3
5

b2

]
e−5t = −b2

[
2
−1

]
e−5t +

[
−3

5
0

]
e−5t

and combine −b2

[
3
−1

]
e−5t with xh. Thus:

xp =

[
2
5
−1

5

]
te−5t +

[
−3

5
0

]
e−5t.
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25.1. Summary of the method of undetermined coefficients for systems.

Consider the system

x′(t) = Ax(t) + f(t)

where A is a n× n constant matrix and

f(t) = eαt cos(βt)Pm(t) + eαt sin(βt)Qm(t)

where α and β are real numbers and Pm(t) and Qm(t) are vector polynomials of degree m, i.e.,
Pm(t) = a0 + a1t + · · · + amtm, Qm(t) = b0 + b1t + · · · + bmtm, where a0, a1, . . . , am, b0, b1, . . . , bm
are n component vectors.

Under the above conditions, the form of the particular solution xp(t) is given as follows:

• If β = 0, then xp(t) = eαtRm+k(t), where Rm+k(t) is a vector polynomial of degree m+ k,
with k = 0 if α is not an eigenvalue of A, and k = multiplicity of α is an eigenvalue of A.

• If β ̸= 0, then xp(t) = eαt cos(βt)Rm+k(t)+eαt sin(βt)Sm+k(t), where Rm+k(t) and Sm+k(t)
are vector polynomials of degree m+ k, with k = 0 if α+ iβ is not an eigenvalue of A, and
k = multiplicity of α+ iβ if α+ iβ is an eigenvalue of A.

26. Variation of parameters for systems

Now we show how to generate the method of variation of parameters to systems of DE.

Consider x′(t) = A(t)x(t) + f(t).

Suppose that X(t) is a fundamental matrix for x′(t) = A(t)x(t).

Following what we did for single equations, we look for a particualr solution in the form xp(t) =
X(t)v(t), where the vector valued function v(t) is to be determined. Plugging in:

x′p = (Xv)′ = X ′v︸︷︷︸
=AX

+Xv′ = Axp + f = AXv + f

Canceling AXv on both sides: Xv = f . Thus v′ = X−1f .

Integrating we find v(t) =
∫
(X(t))−1f(t)dt, where we do not add a constant since we only need

to find a particular solution. Therefore, we have:

xp(t) = X(t)

∫
(X(t))−1f(t)dt

Next, consider the IVP

{
x′(t) = A(t)x(t) + f(t)

x(t0) = x0

From the previous formula and the fact that the general solution to the associated homogeneous
equation can be written as xh = Xc, where c = (c1, c2, . . . , cn), we have that the solution of the
IVP can be written as:

x(t) = X(t)c+X(t)

∫ t

t0

(X(t))−1f(s)ds
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where c is to be determined. Plugging t = t0 we find

x(t0) = X(t0)c+X(t)

∫ t

t0

(X(s))−1f(s)ds︸ ︷︷ ︸
=0

= x0 ⇒ c = (X(t0))
−1x0

Thus

x(t) = X(t)(X(t0))
−1x0 +X(t)

∫ t

t0

(X(s))−1f(s)ds

Example 26.1. Use variation of parameters to find xp for

x′ =
1

3

[
7 2
4 5

]
x−

[
5
8

]
et

Using the technique we learned for homogeneous systems, we find: We find:

X(t) =

[
−et e3t

2et e3t

]
, so (X(t))−1 =

1

3

[
−e−t −et

2e−3t e−3t

]
Then,

xp = X

∫
X−1f =

[
−et e3t

2et e3t

] ∫
1

3

[
−e−t −et

2e−3t e−3t

]
(−

[
5
8

]
)etdt

=

[
−et e3t

2et e3t

] ∫ [
−1

−6e−2t

]
dt

=

[
−et e3t

2et e3t

] [
−t

−3e−2t

]
=

[
(t+ 3)et

(3− 2t)et

]
Remark 26.2. Above we employed the following useful formula for the inverse of a 2× 2 matrix:[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
27. The matrix exponential function

If a ∈ R, the solution to x′ = ax is x(t) = Ceat. For a system x′ = Ax, where A is a constant
matrix, we would like to make a similar statement. The first step is to define eA when A is a
matrix.

Definition 27.1. If M is a n× n matrix, we define eM by

eM =

∞∑
k=0

Mk

k!
= I +M +

M2

2!
+

M3

3!
+ . . .

where M0 = I = n× n identity matrix.

To show that this definition makes sense, we need to show that the series converges. For this,
need some way of talking about the “length” or “size” of a matrix. We do this by defining a norm
on the space of n×n matrices (recall that the space of n×n matrices is a vector space, so it makes
sense to talk abour a norm).

Definition 27.2. For a n× n matrix M we define its norm , denoted ∥M∥, by

∥M∥ = sup
∥x∥=1

∥Mx∥
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Proposition 27.3. ∥M∥ is indeed a norm, i.e., it satisfies:

a) ∥M∥ ∈ R

b) ∥aM∥ = |a| ∥M∥, a ∈ R

c) ∥M∥ ≥ 0 and ∥M∥ = 0 iff M = 0

d) ∥M +N∥ ≤ ∥M∥+ ∥N∥

Moreover, ∥MN∥ ≤ ∥M∥∥N∥

We can now show that eM is well defined:

∥eM∥ = ∥
∞∑
k=0

Mk

k!
∥ ≤

∞∑
k=0

∥Mk∥
k!

≤
∞∑
k=0

∥M∥k

k!
= e∥M∥ < ∞,

where we used the above proposition (in particular in the step ∥Mk∥ ≤ ∥M∥k)

27.1. Some properties of the exponential matrix. If M and N are n×n matrices and t, s ∈ R,
then

a) eM0 = e0 = I

b) eM(t+s) = eMteMs

c) (eM )−1 = e−M

d) e(M+N)t = eMteNt if MN = NM

e) eIt = etI

For diagonal matrices, it is easy to compute the exponential. For example, let M =

[
2 0
0 3

]
.

Then M2 =

[
4 0
0 9

]
,M3 =

[
8 0
0 27

]
, etc. Then

eM =

∞∑
k=0

1

k!

[
2 0
0 3

]k
=

[∑∞
k=0

2k

k! 0

0
∑∞

k=0
3k

k!

]
=

[
e2 0
0 e3

]
Now we compute:

d

dt
eAt =

d

dt

∞∑
k=0

Aktk

k!
=

∞∑
k=0

kAktk−1

k!
= A

∞∑
k=1

Ak−1tk−1

(k − 1)!

= A

∞∑
k=0

Aktk

k!
= AeAt

Consequently, eAt is a solution of the matrix DE X ′ = AX. Because eAt is invertible, its columns
are linearly independent, thus eAt is a fundamental matrix for the system x′ = Ax, where A
is a n × n constant matrix. If X and Y are two fundamental matrices for x′ = Ax, there always
exists a constant matrix M such that Y = XM . In particular, eAt = X(t)(X(0))−1. If A has n
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linearly independent eigenvectors u1, u2, . . . , un, then

eAt =
[
eλ1tu1 eλ2tu2 . . . eλntun

] [
u1 u2 . . . un

]−1

27.2. Solving x′ = Ax when A does not have n linearly independent eigenvectors.

In what follows, A is a (constant) n× n matrix.

We saw that eλ1tu1, e
λ2tu2, . . . , e

λntun give n linearly independent solutions to x′ = Ax if
u1, u2, . . . , un are n linearly independent eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λn.
Now we will see how to use eAt to solve x′ = Ax when A does not have n linearly independent
eigenvectors.

Definition 27.4. A non-zero vector u satisfying

(A− λI)mu = 0

for some λ and some integer m is called a generalized eigenvector of the matrix A.

Remark 27.5. The number λ in the above definition must be an eigenvalue of A since (A−λI)m−1u
is an eigenvector associated to λ. Every eigenvector is a generalized eigenvector.

A matrix that does not have n linearly independent eigenvectors is called defective. A defective
matrix always has n linearly independent generalized eigenvectors. In fact, if λ is an eigenvalue of
multiplicity k, then there always exist k linearly independent generalized eigenvectors associated
with λ.

If u is a generalized eigenvector associated to λ, then

eAtu = eλIte(A−λI)tu

= eλt[Iu+ t(A− λI)u+ · · ·+ tm−1

(m− 1)!
(A− λI)m−1u+

tm

m!
(A− λI)mu︸ ︷︷ ︸

=0

+ . . .︸︷︷︸
=0

]

= eλt[u+ t(A− λI)u+ · · ·+ tm−1

(m− 1)!
(A− λI)m−1u]

(Note that we computed eAtu without knowning eAt.

On the other hand, eAtu is a solution to x′ = Ax. This is because eAt is a fundamental matrix,
thus the general solution is eAtc, where c = (c1, c2, . . . , cn) is an arbitrary non-zero vector. In
particular, we have a solution upon choosing c = u.

From the above we conclude the following: let u1, u2, . . . , un be n linearly independent generalized
eigenvectors (which always exist) corresponding to the eigenvalues λ1, λ2, . . . , λn (not necessarily
distinct). Then x1(t) = eAtu1, . . . , xn(t) = eAtun are n linearly independent solutions to x′ = Ax,
where each eAtui is computed as above (without the need to know eAt).

27.3. Summary for solving x′ = Ax.

1) Compute the characteristic polynomial p(λ) = det(A− λI).

2) Find the roots of p(λ) = 0. Let the distinct roots be λ1, λ2, . . . , λk, and let m1, . . . ,mk be
their multiplicaties.
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3) For each λi, i = 1, 2, . . . , k, find mi linearly independent generalized eigenvectors by solving
(A− λI)miu = 0.

4) Form n = m1 + · · ·+mk linearly independent solutions to x′ = Ax′ by computing

x(t) = eAtu = eλt[u+ t(A− λI)u+
t2

2!
(A− λI)2u+ . . . ]

for each generalized eigenvector u, corresponding to each eigenvalue λ, found in part 3. If λ has
multiplicity m, the series terminates after m terms.

Example 27.6. Find a general solution to x′ = Ax′, where A =

0 0 1
0 1 2
0 0 1


The eigenvalues of A are λ1 = 0 and λ2 = 1 with multiplicity two.

u1 =

10
0

 is an eigenvector associated with λ1 = 0, then

x1 = e0t

10
0

 =

10
0

 is a solution.

Let us compute the eigenvector for λ2 = 1:

A− λ2I =

0 0 1
0 1 2
0 0 1

 =

−1 0 1
0 0 2
0 0 0



Thus

−1 0 1
0 0 2
0 0 0

ab
c

 =

00
0

 gives a = c, b free, c = 0 ⇒ a = 0

Hence there is only one linearly independent eigenvector, u2 =

01
0

. Since λ2 has multiplicity 2,

a generalized eigenvector can be found by solving (A− λ2I)
2u = 0. Compute:

(A− λ2I)
2u =

−1 0 1
0 0 2
0 0 0

2

=

1 0 −1
0 0 0
0 0 0



solve

1 0 −1
0 0 0
0 0 0

ab
c

 =

00
0

 ⇒ a = c, b, c free, thus, u =

ab
c

 = c

10
1

 + b

01
0

. This gives us

two linearly independent generalized eigenvectors,

10
1

 and

01
0

. We already knew that the latter

is a generalized eigenvector since it is an eigenvector. We can thus take u3 =

10
1

.
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Now we compute

eAtu3 = eλ2t[u3 + t(A− λ2I)u3 +
t2

2!
(A− λ2I)

2u3︸ ︷︷ ︸
=0

+ . . .︸︷︷︸
=0

]

= et[

10
1

+ t

−1 0 1
0 0 2
0 0 0

10
1

]
= et[

10
1

+

 0
2t
0

] = et

 1
2t
1


The general solution is

x(t) = c1

10
0

+ c2e
t

01
0

+ c3e
t

 1
2t
1


where c1, c2 and c3 are arbitrary constants.

Remark 27.7. A common mistake is to forget to compute eAtu, and write the “solution” corre-

sponding to a generalized eigenvector u as eAtu. In the above example, it would be et

10
1

, which
is not a solution.

28. The phase plane

Consider the system

{
dx
dt = f(x, y, t)
dy
dt = f(x, y, t)

When f and g do not depend explicitly on t, the system is called autonomous. We will focus
on autonomous systems.

Notation 28.1. We will often denote time derivatives by a dot, i.e., dx
dt = ẋ.

Definition 28.2. Consider the autonomous system

{
ẋ = f(x, y)

ẏ = g(x, y)

Let (x(t), y(t)) be a solution defined on some interval I. A plot in the xy-plane of the parametrized
curve x = x(t), y = y(t), along with arrows indicating the direction of increasing t, is called a
trajectory of the system. In this context we call the xy-plane the phase plan and a representative
set of trajectories in this plane is called phase portrait of the system.

Example 28.3. The system ẋ = −2x, ẏ = −8y has solutions x(t) = c1e
−2t, y(t) = c2e

−8t, c1, c2
arbitrary constants. To draw the trajectories, we write

dy
dt
dx
dt

=
dy

dx
=

8y

2x
⇒ dy

y
= 4

dx

x
⇒ ln |y| = lnx4 + C ⇒ y = Cx4

The phase portrait is illustrated in the following figure:
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y

x

The arrows indicating the direction of time (increasing t) all point toward the origin becase
x(t) = c1e

−2t → 0 and y(t) = c2e
−8t → 0 as t → ∞.

To draw the phase portrait, it is useful to note that we can rewrite ẋ = f(x, y), ẏ = g(x, y), as
ẏ
ẋ =

dy
dt
dx
dt

= dy
dx = g(x,y)

f(x,y) , as in the previous example.

If (x(t), y(t)) is a solution to an autonomous system, so is the time-shifted pair (x(t+c), y(t+c))
for any constant c.

To see this, set X(t) = x(t+ c), Y (t) = y(t+ c) and note that

Ẋ(t) = ẋ(t+ c) = f(x(t+ c), y(t+ c)) = f(X(t), Y (t))

Ẏ (t) = ẏ(t+ c) = g(x(t+ c), y(t+ c)) = g(X(t), Y (t))

If (x0, y0) is a point such that f(x0, y0) = 0 = g(x0, y0), then the constant functions x(t) =
x0, y(t) = y0 are solutions. This is a solution that does not change over time, motivating the
following definition:

Definition 28.4. Consider the system ẋ = f(x, y), ẏ = g(x, y). A point (x0, y0) such that
f(x0, y0) = 0 = g(x0, y0) is called a critical point of the system and the solution x(t) = x0, y(t) =
y0 is called an equilibrium solution (or simply an equilibrium).

We are interested not only in determining the equilibrium/critical points of autonomous systems,
but also in studying their stability properties. For example, in the example above, (0, 0) is a critical
point with the property that all trajectories converge to it as t → ∞. Such a critical point is called
asymptotically stable.

Consider now ẋ = 2x, ẏ = 8y. The x(t) = c1e
2t and y(t) = c2e

8t. The trajectories can be found

by solving dy
dx = 4y

x , which again gives y = Cx4. The point (0, 0) is a critical point for this system,
but now the trajectories move way from (0, 0) as t → ∞, so the arrows are reversed as compared
to the previous example:
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y

x

In fact, no matter how close to the origin we start, the trajectories will move away from (0, 0)
as t increases. Such a critical point is called unstable.

Example 28.5. (ex 3, sec.5.4) Find the critical points of the system

ẋ = 4x− 3y − 1

ẏ = 5x− 3y − 2,

and sketch the phase portrait.

To find the critical points (x0, y0), we solve f(x0, y0) = 0 = g(x0, y0), i.e.,{
4x0 − 3y0 − 1 = 0

5x0 − 3y0 − 2 = 0
⇒ x0 = 1, y0 = 1

To draw the phase portrait, we sketch the direction field of the system:

y

x

1

1 x

1

1

y

From the sketch, we see that if we start very near the critical point, trajectories will move away
from it as the time passes (i.e., as t increases), with one exception: trajectories converge to the
critical point along the line y = 2x− 1. Such a critical point is unstable (because most trajectories
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flow away from the critical point) and is called a saddle point.

We will give the precise definitions of the critical points illustrated above, and others, later on.
For now, let us simply illustrate the types of critical points we will encounter with the following
pictures:

Node

(asymptotically stable)

spiral

(unstable)

saddle

(unstable)

center

(stable)

spiral

(asymptotically stable)
Node

(unstable)

When we draw phase portraits, it is useful to remember that dy
dx = g(x,y)

f(x,y) admits unique solutions

with initial conditions within a region R of the plane if g
f is continuously differentiable there.

Therefore, under these conditions, trajectories of the system cannot intersect.

The following theorem is useful to determine critical points:

Theorem 28.6. Let x(t), y(t) solve ẋ = f(x, y), ẏ = g(x, y), where f and g are continuous. If the
limits x0 = limt→∞ x(t) and y0 = limt→∞ y(t) exist (and are finite) then (x0, y0) is a critical point.

Example 28.7. (sec. 12.1) Consider the system

ẋ = x(a1 − b1x− c1y)

ẏ = y(a2 − b2x− c2y)

where a1, a2, b1, b2, c1, c2 are positive constants. This system models the dynamics of two compact-
ing species with populations x and y.

Let us find the critical points and analyze the system. The critical points are solutions to

x(a1 − b1x− c1y) = 0

y(a2 − b2y − c2x) = 0
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There are four possibilities:

x = 0, y = 0, or x = 0, a2 − b2y − c2x = 0,

or a1 − b1x− c1y = 0, y = 0 or a1 − b1x− c1y = 0, a2 − b2y − c2x = 0,

giving

(0, 0), (0,
a2
b2

), (
a1
b1

, 0), or (
a1b2 − a2c1
b1b2 − c1c2

,
a2b1 − a1c2
b1b2 − c1c2

)

This last critical point is well defined for b1b2 − c1c2 ̸= 0. It corresponds to the intersection of
a1 − b1x− c1y = 0 and a2 − b2y − c2x = 0. If b1b2 − c1c2 = 0, these lines do not intersect.

To analyze the dynamics, let us indicate the regions in the phase plane (i.e. the xy-plane) where
x and y increase/decrease, i.e., the region where ẋ, ẏ are positive/negative. Because x, y ≥ 0 (as
they represent populations), we consider only the first quadrant.

y

x

y

x

a1 − b1x− c1y > 0

x increases

x decreases

a1 − b1x− c1y < 0

y decreases

a2 − b2x− c2y < 0

y increases

a2 − b2x− c2y > 0

a1

c1

a1

b1

a2

b2

a2

c2

a1 − b1x− c1y = 0 a2 − b2x− c2y = 0

Consider first the case when a1−b1x−c1y = 0 and a2−b2y−c2x = 0 do not intersect and a2
b2

> a1
c1
.

This gives regions I, II and III as in the picture. The blue (red) horizontal (vertical) lines indicate
the directions that x(y) increases or decreases. The combined result of x, y increasing/decreasing
is indicated by the green triforks. The critical points are colored in pink.

y

x

a1

c1

a1

b1

a2

b2

a2

c2

I

II

III

For any initial condition in region III, trajectories will move toward the line a2 − b2y − c2x = 0

(red line) as indicated by the trifork .

These trajectories cannot cross the x-axis because this requires ẏ ̸= 0 on the x-axis, but ẏ = 0
when y = 0. Since y is decreasing in region III, we see that all trajectories in the region III will
eventually cross into region II. For initial conditions in region I, trajectories will move away from
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it (trifork ) eventually entering into region II. For initial conditions in region II, trajectories will

move up and to the left (trifork ).

These trajectories cannot cross into region I as this would contradict the analysis we did for
region I. They cannot cross into region III either, as this would require x to be increasing in region
II (which it is not) or y to increase across the line a2 − b2x − c2y = 0 (red line), which it cannot
because y decreases in region III. We conclude that for any trajectory starting at (x0, y0) with
x0 > 0, y0 > 0, it will converge to the critical point a2

b2
. Thus, the population x will die off and the

population y will approach the value a2
b2
.

The analysis for the case when lines a1 − b1x− c1y = 0 and a2 − b2y − c2x = 0 do not intersect
and a2

b2
< a1

c1
is similar. The picture below illustrates the situation.

The conclusion in this case is that solutions starting with x0, y0 will converge to (a1b1 , 0): the

population y will die off and the population x will approach a1
b1
.

a1

c1

a2

c2

a2

b2

a1

b1

Consider now the situation where the lines do intersect (so now there are four critical points),
and let us take a1

c1
> a2

b2
.

The triforks in the picture show that for any initial condition (x0, y0) with x0, y0 > 0, trajectories
will converge to

p = (
a1b2 − a2c1
b1b2 − c1c2

,
a2b1 − a1c2
b1b2 − c1c2

)

a2

b2

a1

b1

a1

c1

a2

c2
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This is an equilibrium where both species survive.

Finally, for a2
b2

> a1
c1

with the lines intersecting, it is possible to show that there exist a line

(called separatrix) dividing the plane into two regions A and B, such that trajectories starting in
A approach (0, a2b2 ) and trajectoires starting in B approach (a1b1 , 0)

a1

c1

a2

c2

a2

b2

a1

b1

A

B

29. Linear systems in the plane

Consider the autonomous system

ẋ = a11x+ a12y + b1

ẏ = a12x+ a22y + b2

where a11, a12, a21, a22 and b1, b2 are constants. Suppose that (x0, y0) is a critical point for the
system above. Setting x̃ = x− x0, ỹ = y − y0, we find

˙̃x = ẋ = a11x+ a12y + b1 = a11x̃+ a12ỹ + a11x0 + a12y0 + b1︸ ︷︷ ︸
=0 because (x0, y0) is a critical point

˙̃y = ẏ = a21x+ a22y + b2 = a12x̃+ a12ỹ + a12x0 + a22y0 + b2︸ ︷︷ ︸
=0 because (x0, y0) is a critical point

Thus, without loss of generality, we can assume that the system is written as

ẋ = ax+ by

ẏ = cx+ dy

a, b, c, d constants, in which case (0,0) is a critical point. We will henceforth assume that
ad− bc ̸= 0, which implies that (0, 0) is the only cirtical point.

The methods previously developed give that solutions x and y are of the form x(t) = Aeλt, y(t) =
Beλt, where u, v, λ are constants. Plugging in:{

(Aeλt)′ = aAeλt + bBeλt

(Beλt)′ = cAeλt + dBAλt
⇒

{
(λ− a)A− bB = 0

−cA+ (λ− d)B = 0

which is a system determining the eigenvalues λ and corresponding eigenvectors.

We are interested in questions of stability of the critical point (0,0). E.g., Do solutions that start
near (0, 0) remain close to (0, 0)? If they do, do they converge to (0, 0) as t → ∞? And if they
don’t, what happens when t → ∞? As we will see, answers to these questions depend on the nature
of the eigenvalues. We will consider separate cases.



Disconzi 65

Case 1: 0 < λ1 < λ2 (i.e., λ1, λ2 real, distinct, and positive)

In this case solutions are given by[
x
y

]
= c1

[
u1
u2

]
eλ1t + c2

[
v1
v2

]
eλ2t = c1ue

λ1t + c2ve
λ2t

where c1, c2 are constants and u = (u1, u2) and v = (v1, v2) are linearly independent eigenvectors
corresponding to λ1, λ2. (Note that such eigenvectors exist because λ1 ̸= λ2). Each choice of c1, c2
corresponds to a different initial condition.

Because λ1, λ2 > 0, we see that any trajectory not starting at (0, 0) will move away from the
origin, indicating that the critical point is unstable. We also see that for initial conditions such that
c2 = 0, trajectories remain on the line spanned by u, and for initial conditions such that c1 = 0,
trajectories remain on the line spanned by v. Furthermore, if c1 and c2 are both non-zero, then
trajectories tend to become parallel to v when t becomes large (λ2 > λ1).

Finally, to understand what happens near (0, 0) , we look at the limit t → −∞, because in this
limit trajectories will converge to (0, 0) (since, λ1, λ2 > 0). Because λ2 > λ1, the component of
trajectories in the direction of v vanishes faster than the component in the direction of u (except
when c1 = 0). Therefore, unless c1 = 0, trajectories become tangent to u at (0,0). The phase
portrait is illustrated below.

y

x

v
u

The critical point (0,0) is called an unstable improper node in this case. The lines spanned by u
and v are sometimes called the transformed axes.

Case 2: λ2 < λ1 < 0 (i.e., λ1, λ2 real, distinct, and negative)

The analysis in this case is like in case 1, but now trajectories converge to (0,0) as t → ∞. The
origin is an asymptotically stable improper node. The phase portrait is illustrated below.[

x
y

]
= c1ue

λ1t + c2ve
λ2t
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y

x

v
u

As before, each choice of c1, c2 corresponds to a different initial condition.

Case 3: λ1 < 0 < λ2 (i.e. λ1, λ2 real, distinct, opposite signs)

Solutions are given by

[
x
y

]
= c1ue

λ1t + c2ve
λ2t, where u, v are linearly independent eigenvectors

associated to λ1 and λ2 (which we know to exist because λ1 ̸= λ2) and c1, c2 are constants, each
choice of c1, c2 corresponding to a different initial condition. Trajectories stay on the line spanned
by v if c1 = 0 and on the line spanned by u if c2 = 0, and they move away from (0,0) along the
line spanned by v (because (λ2 > 0) and toward (0,0) along the line spanned by u (because λ1 < 0)).

Since eλ1t → 0 and eλ2t → ∞ as t → ∞ (since λ1 < 0 and λ2 > 0), trajectories tend to become
parallel to v for large times. Moreover, for any initial condition with c2 ̸= 0, trajectories will move
away from the origin. The critical point (0, 0) is an unstable critical point. The phase portrait is
illustrated below.

y

x

v

u

Case 4: λ1 = λ2 (i.e., λ1, λ2 real and equal)

Let us first consider λ1 = λ2 = λ > 0. If there exist two linearly independent eigenvectors u and
v, then we can write [

x
y

]
= c1ue

λt + c2ve
λt = (c1u+ c2v)e

λt
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.
We see that for each c1, c2, not both zero, trajectories move away from (0, 0) along the line

c1u+ c2v. The critical point is called an unstable proper node and the phase portrait is illustrated
below.

y

x

If a second linearly independent eigenvector does not exist, then solutions are written as[
x
y

]
= c1ue

λt + c2(v + t(A− λI)v)eλt

= (c1u+ c2v + c2t (A− λI)v)︸ ︷︷ ︸
=w

eλt

= ((c1u+ c2v) + c2tw)e
λt,

where v is a generalized eigenvector.

As t → ∞, all trajectories move away from (0, 0). They do so along the line spanned by u for
initial conditions such that c2 = 0. To understand the behavior of trajectories near (0, 0) we look at
the limit t → −∞. In this limit, the term c2twe

λt dominates the term (c1u+c2v)e
λt (for c2 ̸= 0), so

trajectories tend to become parallel to w for very negative t. But we know that w is an eigenvector
of A (since (A− λI)w = (A− λI)2v = 0) so it must be parallel to u. But at the same time, in the
limit t → −∞, trajectories converge to (0, 0). We conclude that trajectories must be tangent to
the line spanned by u at the origin.

Finally, considering the trajectories in the form y = y(x), we see that along each trajectory
there exists one, and only one, point x0 such that y0 = y′(x0) = 0 and y′′(x0) ̸= 0, thus tra-

jectories, always turn around at (x0, y0). Indeed, dy
dx = dy/dt

dx/dt so y′(x) = 0 iff dy
dt = 0. But

y(t) = (c1u1 + c2v2 + c2tw2)e
λt, thus ẏ(t) = λ(c1u1 + c2u2 + c2tw2 + c2w2)e

λt and we find one,
and only one, t0 such that ẏ(t0) = 0. We also see that y′(t) changes sign at t0, so it increases
(decreases) before (after) t0, preventing y′′(x0) = 0.

The phase portrait is illustrated below. The critical point is an unstable improper node.

The case λ1 = λ2 = λ < 0 is analyzed in the same fashion and gives an asymptotically stable
proper/improper node (it corresponds essentially to inverting the arrows in the case λ > 0).
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Remark 29.1. Above, we used w2 ̸= 0 when we solved for t0 to find ẏ(t0) = 0. If w2 = 0, then we
consider x = x(y) and find x′(y0) = 0 instead, thus computing ẋ(t0) = 0 (w1 ̸= 0 in this case since
w ̸= 0).

Case 5: λ = α± iβ, α ̸= 0, β ̸= 0

In this case [
x
y

]
= c1e

αt(cos(βt)a− sin(βt)b) + c2e
αt(sin(βt)a+ cos(βt)b)

where a±ib are eigenvectors corresponding to α±iβ. Let us write the system in polar coordinates:

r2 = x2 + y2 = [c1e
αt(cos(βt)a1 − sin(βt)b1) + c2e

αt(sin(βt)a1 + cos(βt)b1)]
2

+ [c1e
αt(cos(βt)a2 − sin(βt)b2) + c2e

αt(sin(βt)a2 + cos(βt)b2)]
2

= e2αt[. . . ]

where a = (a1, a2), b = (b1, b2) and the term [. . . ] is a positive function of t (unless c1 = c2 = 0).

We see that r → ∞ or 0 depending on whether α > 0 or α < 0. The periodic character of the
solution also tells us that the term [. . . ] causes x and y t ooscillate between a positive and negative
value. The critical point (0, 0) is an unstable spiral for α > 0 and an asymptotically stable spiral
for α < 0.

y

x

y

x
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Case 6: λ = ±iβ, β ̸= 0

The analysis in this case is similar to case 5, but now r remains bounded. The trajectories in
this case are closed and we have a stable center.

y

x

Remark 29.2. Note that we do not have any case with λ = 0 because ad− bc ̸= 0.

29.1. Summary of stability analysis for linear systems.

Consider the system ẋ = Ax, where A =

[
a b
c d

]
is a real matrix, and let λ1, λ2 be its eigenvalues.

The stability of the critical point (0,0) is as follows:

Eigenvalues Type of critical point Stability

0 < λ1 < λ2 improper node unstable

λ2 < λ1 < 0 improper node asymptotically stable

λ1 < 0 < λ2 saddle point unstable

λ1 = λ2 = λ > 0 proper or improper node unstable

λ1 = λ2 = λ < 0 proper or improper node asymptotically stable

λ = α± iβ, β ̸= 0, α > 0 spiral unstable

λ = α± iβ, β ̸= 0, α < 0 spiral asymptotically stable

λ = ±iβ, β ̸= 0 center stable

Above, the terms on the second and third columns are defined by the given conditions on the
eigenvalues listed in the first column.

30. Almost linear systems

Definition 30.1. Consider the autonomous system ẋ = f(x, y), ẏ = g(x, y). Let (x0, y0) be a
critical point. The system is called stable if, given any ε > 0, there exists a δ > 0 such that every
solution x(t), y(t) of the system that satisfies√

(x(0)− x0)2 + (y(0)− y0)2 < δ
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also satisfies √
(x(t)− x0)2 + (x(t)− y0)2 < ε

for all t ≥ 0.

If (x0, y0) is stable and there exists a η > 0 such that any solution x(t), y(t) that satisfies√
(x(0)− x0)2 + (y(0)− y0)2 < η

also satisfies limt→∞(x(t), y(t)) = (x0, y0), then the critical point is asymptotically stable. A
critical point that is not stable is called unstable.

(Sometimes a critical point (x0, y0) is implicitly understood, e.g., (x0, y0) is the only critical
point, and then we simply talk about the system being stable (unstable).

The interpretation of this definition is as follows. A critical point is stable if any trajectory that
begins near (within δ of) (x0, y0) stays near (within ε of) (x0, y0). If trajectories not only stay near
but converge to (x0, y0) as t → ∞, then the critical point is asymptotically sable.

ε

δ

(x(0), y(0))

ε

δ

(x(0), y(0))

asymptotically stable stable, but not asymptotically stable

ε

δ

(x(0), y(0))

unstable

For linear systems, the definition of (asymptotically) stable/unstable critical points based on the
eigenvalues of the system agrees with the previous definition.

Example 30.2. Suppose that (0, 0) is a center of the linear system ẋ = ax+ by, ẏ = cx+dy. Show
that (0, 0) is stable in the case of the above definition.

Let x(t) and y(t) be a solution. Then

(x(t)− 0)2 + (y(t)− 0)2 = (x(t))2 + (y(t))2

= [c1(cos(βt)a1 − sin(βt)b1) + c2(sin(βt)a1 + cos(βt)b1)]
2

+ [c1(cos(βt)a2 − sin(βt)b2) + c2(sin(βt)a2 + cos(βt)b2)]
2,

where a + ib = (a1, a2) + i(b1, b2) is an eigenvector associated to the eigenvalue iβ, β ̸= 0, and c1
and c2 are constants. Using AB ≤ A2

2 + B2

2 , (A+B)2 ≤ A2 +B2 + 2|A||B| ≤ 2(A2 +B2), we have

[c1(cos(βt)a1 − sin(βt)b1) + c2(sin(βt)a1 + cos(βt)b1)]
2

≤ 2c21(cos(βt)a1 − sin(βt)b1)
2 + 2c22(sin(βt)a1 + cos(βt)b1)

2

≤ 4c21(cos
2(βt)a21 + sin2(βt)b21) + 4c22(sin

2(βt)a21 + cos2(βt)b21)

≤ 4(c21 + c22)(a
2
1 + b21), where we used cos2(βt) ≤ 1, sin2(βt) ≤ 1.
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Similarly,

[c1(cos(βt)a2 − sin(βt)b2) + c2(sin(βt)a2 + cos(βt)b2)]
2 ≤ 4(c21 + c22)(a

2
1 + b21)

so that

(x(t))2 + (y(t))2 ≤ 4(c21 + c22)(a
2
1 + a22 + b21 + b22)

We also have:

x(0) = c1a1 + c2b1, y(0) = c1a2 + c2b2.

Solving for c1, c2 in terms of x(0), y(0)[
a1 b1
a2 b2

] [
c1
c2

]
=

[
x(0)
y(0)

]
⇒

{
c1 =

b2x(0)−b1y(0)
a1b2−b1a2

c2 =
−a2x(0)+a1y(0)

a1b2−b1a2

Thus,

(x(t))2 + (y(t))2 ≤ 4 (c21 + c22)(a
2
1 + a22 + b21 + b22)

≤ 8 ((a22 + b22)(x(0))
2 + (a21 + b21)(y(0)

2)
(a21 + a22 + b21 + b22)

(a1b2 − b1a2)2

≤ 8
(a21 + a22 + b21 + b22)

2

(a1b2 − b1a2)2
((x(0))2 + (y(0)2),which gives

√
(x(t))2 + (y(t))2 ≤

√
8
|a21 + a22 + b21 + b22|

|a1b2 − b1a2|
√
(x(0))2 + (y(0))2

Let ε > 0 be given, want to find δ > 0 such that
√
(x(t))2 + (y(t))2 < ε if

√
(x(0))2 + (y(0))2 < δ.

From the above we see that this is the case if we choose δ < |a1b2−a2b1|√
8 |a21+b21+a22+b22||

ε.

In practice, determining the stability (instability of non-linear systems can be very difficult. For
almost linear systems, defined below, however, the stability/instability can in general be determined.

Definition 30.3. Let (0,0) be a critical point of the system

ẋ = ax+ by + F (x, y),

ẏ = cx+ dy +G(x, y),

where a, b, c and d are constants and F and G are continuous in a neighborhood of the origin.
Assume that ad− bc ̸= 0. The system is called almost linear near the origin if

F (x, y)√
x2 + y2

→ 0 and
G(x, y)√
x2 + y2

→ 0 as
√

x2 + y2 → 0

The assumption ad−bc ̸= 0 implies that the corresponding linear system (obtained by setting
F = G = 0) has only (0, 0) as critical point. The definition implies that F (0, 0) = 0 = G(0, 0).
Moreover, if F and G are differentiable and we write the system as ẋ = f(x, y), ẏ = g(x, y),
then the partial derivatives of F and G vanish at (0, 0) and from Taylor’s expansion we have that
fx(0, 0) = a, fy(0, 0) = b, gx(0, 0) = c, gy(0, 0) = d. Given ẋ = f(x, y), ẏ = g(x, y), the linear system[

ẋ
ẏ

]
=

[
fx(0, 0) fy(0, 0)
gx(0, 0) gy(0, 0)

] [
x
y

]
is called the linearization of the system.

Typical examples of almost linear systems involve powers of x and y.
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Example 30.4. Show that ẋ = 2x+ y + x2 + y2, ẏ = x− y + y3 is an almost linear system.

We have F (x, y) = x2 + y2, G(x, y) = y3. We have F (x,y)√
x2+y2

=
√
x2 + y2 → 0 as

√
x2 + y2 → 0.

For G(x, y), we have, for |y| < 1, |y3| ≤ y2, thus

0 ≤ |G(x, y)|√
x2 + y2

≤ y2√
x2 + y2

≤ x2 + y2√
x2 + y2

→ 0 as
√

x2 + y2 → 0

Example 30.5. Is ẋ = 2x+ y + x2 + y2, ẏ = x− y +
sin

√
x2+y2√

x2+y2
almost linear?

No. Because sin θ
θ → 1 as θ → 0.

The idea of almost linear systems is that they are a perturbation of the corresponding linear
system (or, if we write ẋ = f(x, y), ẏ = g(x, y), that the full system is a pertubation of its lineariza-
tion). It is reasonable to expect that in this case the stability of the system should be the same of
very similar to that of the corresponding linear system. This is the case (with one exception).

Theorem 30.6. Consider an almost linear system and let λ1, λ2 be the eigenvectors of the cor-
responding linear system. Then the stability properties of the critical point (0, 0) for the almost
linear system are the same as those of the corresponding linear system, with one exception: if λ1

and λ2 are purely imaginary then the stability of the almost linear system cannot be deduced from
the corresponding linear system.

Example 30.7. Show that the system

ẋ = −2x+ 2xy

ẏ = x− y + x2

is almost linear near the origin and determine its stability.

We have F (x, y) = 2xy, G(x, y) = x2. We find

0 ≤ |F (x, y)|√
x2 + y2

=
2|x||y|√
x2 + y2

≤ x2 + y2√
x2 + y2

→ 0 as
√

x2 + y2 → 0

0 ≤ G(x, y)√
x2 + y2

=
x2√

x2 + y2
≤ x2 + y2√

x2 + y2
→ 0 as

√
x2 + y2 → 0

The corresponding linear system is ẋ = −2x, ẏ = x − y. Its eigenvalues are -2 and -1, giving
an asymptotically stable improper node. By the above theorem, (0,0) is an asymptotically stable
critical point for the original (almost linear) system:

Example 30.8. Show that the system

ẋ = sin(y − 3x)

ẏ = cosx− ey

is almost linear near the origin and determine its stability.

To write the system as ẋ = ax+by+F (x, y), ẏ = cx+dy+G(x, y), we consider the linearization.
Put f(x, y) = sin(y− 3x), g(x, y) = cosx− ey and compute fx(0, 0) = −3, fy(0, 0) = 1, gx(0, 0) =
0, gy(0, 0) = −1. Then

ẋ = −3x+ y + (3x− y + sin(y − 3x)) = −3x+ y + F (x, y),

ẏ = −y + (y + cosx− ey) = −y +G(x, y).
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To study the limits F (x,y)√
x2+y2

and G(x,y)√
x2+y2

as
√
x2 + y2 → 0, we use Taylor’s expansion:

sin θ = θ − θ3

3!
+O(θ5)

ey = 1 + y +
y2

2!
+O(y3)

cos θ = 1− θ2

2!
+O(θ4)

where O(zm) means terms in powers of at least zm. Then,

F (x, y) = 3x− y + sin(y − 3x) = 3x− y + y − 3x− (y − 3x)3

3!
+O((y − 3x)5)

We can assume that |y − 3x| < 1 so that O((y − 3x)5) ≤ O((y − 3x)3) thus

0 ≤ |F (x, y)|√
x2 + y2

≤ O(|y − 3x|3)√
x2 + y2

≤ O(|y|3 + |x|3)√
x2 + y2

≤ O(x2 + y2)√
x2 + y2

where we also used that we can assume |y| < 1, |x| < 1. Thus

|F (x, y)|√
x2 + y2

→ 0 as
√

x2 + y2 → 0. Similarly,

G(x, y) = y + cosx− ey

= y + 1− x2

2!
+O(x4)− (1 + y +

y2

2!
+O(y3))

= −x2

2!
− y2

2!
+O(x4) +O(y3) and arguing as above we find

and arguing as above we find

G(x, y)√
x2 + y2

→ 0 as
√

x2 + y2 → 0.

The eigenvalues of the corresponding linear system are −3 and −1, giving an asymptotically
stable improper node. Thus, (0,0) is an asymptotically stable critical point for the orginal system.

Remark 30.9. Recalling that a second order DE can be written as a 2× 2 first order system, we
can also analyze the stability of second order DE.

30.1. Summary of stability for almost linear system.

Consider an almost linear system near the origin and let λ1, λ2 be the eigenvalues of the corre-
sponding linear system. The table below summarizes the stability properties of (0,0). We underlined
the cases that are different than linear systems.
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Eigenvalues Type of critical point Stability

0 < λ1 < λ2 improper node unstable

λ2 < λ1 < 0 improper node asymptotically stable

λ1 < 0 < λ2 saddle point unstable

λ1 = λ2 = λ > 0 proper or improper node or spiral unstable

λ1 = λ2 = λ < 0 proper or improper node or spiral asymptotically stable

λ = α± iβ, β ̸= 0, α > 0 spiral unstable

λ = α± iβ, β ̸= 0, α < 0 spiral asymptotically stable

λ = ±iβ, β ̸= 0 center or spiral indetermine

31. Energy Methods

Consider Newton’s law (force = mass × acceleration):

F = ma = mẍ.

When the force F = F (f, x, ẋ) depends only on x, F = F (x), the system is called conservative.

In this case we define the potential energy U = U(x) by dU(x)
dx = −F (x) or

U(x) = −
∫

F (x)dx+ κ

where κ is a constant. κ is chosen according to a pre-determined convention of where one sets
the value of the potential energy to be zero. (Only differences of potential energy are physically
meaningful thus one is free to choose a xzero such that U(xzero) = 0).

We can now rewrite Netwon’s law as

mẍ+
dU

dx
= 0

We now compute:

d

dt
(
1

2
m(ẋ)2 + U) = mẋẍ+

dU

dx
ẋ = (mẍ+

dU

dx
)︸ ︷︷ ︸

= 0

ẋ = 0

Show that the quantity E = 1
2m(ẋ)2 +U(x) is constant during the motion. The quality 1

2m(ẋ)2

is called the kinetic energy of the system and E is called the total energy.

In other words, to say that E is constant means that it is conserved (hence the name conservative)

Defining g(x) = U ′(x)
m , we obtain

ẍ+ g(x) = 0
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which is called the standard form of the DE for a conservative system. We can rewrite this
equation as a system in the phase plane for x and v = ẋ:{

ẋ = v,

v̇ = −g(x)

We now introduce the potential function G(x) =
∫
g(x)dx+C, where C is a constnat, and the

energy function E(x, v) = 1
2v

2 +G(x). The constant C is chosen according to a pre-determined
convention for the values where E equals to zero.

The fact that the total energy is conserved means that the level curves of E(x, θ), i.e., the
curves in the xv − plane satisfying E(x, θ) = k, where k is a constant, contain the phase plane
trajectories of the system. (Note that different trajectories can have different energies. E.g., if
(x1, v1) and (x2, v2) are two different solutions, then E(x1, v1) = k1, E(x2, v2) = k2 where k1 and
k2 are constants, but in general k1 ̸= k2).

Example 31.1. Consider the motion of a frictionless pendulum of length l in the figure. The
evolution of the angle θ with the vertical is described by

lθ

θ̈ +
g

l
sin θ = 0

where g is the gravitational acceleration (see page 208 of the textbook for a derivation of this
equation).

Assume that g/l = 1. Find E(θ, v) and choose it so that E(0, 0) = 0.

We have g(θ) = sin θ, so G(θ) = − cos θ + C. Thus

E(θ, v) =
1

2
v2 + C − cos θ

Plugging θ = 0 = v we find E(0, 0) = C − 1 = 0 ⇒ C = 1, so

E(θ, v) =
1

2
v2 + 1− cos θ

The critical points (x0, v0) of ẋ = v, v̇ = −g(x) are given by v0 = 0, g(x0) = 0. So the critical
points of the system are always along the x-axis, i.e., (x0, 0).

Recalling that g(x) = 1
m

dU(x)
dx = G′(x), we have g(x0) = 0 = 1

mU ′(x0) = G′(x0). Thus, x0 must
be a critical point (in the sense learned in calculus) of the potential function G(x) and the potential
energy U(x). We will now see that how to use this information to sketch the trajectories of the
system.
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Example 31.2. Sketch the phase portrait of a conservative system with potential function whose
graph is

y

x

G(x)

We draw the phase plane below the graph of G and recall that the critical points of the system
are those (x0, 0) with G′(x0) = 0.

y

x

v

x

k1

k2

k3

k4

k5

k6c e a x1 b x2 d

k3

A B

k1

k3

k5

k6

k4

k2

We see that the system has two critical points, A and B. Let us look at the level curves of the
energy function:

1

2
v2 +G(x) = k

Since v = ±
√

2(k −G(x)), v exists (is red-valued) only for k −G(x) ≥ 0.

Consider a strict local minimum of G at x, and take a level curve E(x, v) = k4, where k4 is
slightly greater than G(x1). There is an interval (a, b) containing x1 such that G(a) = k4 = G(b)
and G(x) < k4 for a < x < b.
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Note that v = 0 for x = a and x = b, and that v = ±
√
2(k4 −G(x) is well defined and non-zero

for x ∈ (a, b) (and undefined for x /∈ [a, b]).

Thus the two curves

v = +
√

2(k4 −G(x)) and v = −
√
2(k4 −G(x))

join at x = a and x = b to produce a closed curve about A.

This is the case for any k such that G(x1) < k < k5, such as k3 in the picture, where the value
k5 is indicated in the picture (red line). Hence A is a center.

For the level curves with E(x, v) = k4, there is a region that corresponds to no curve because
G(x) > k4 there (between x = b and x = d). But for x ≥ d, v is well-defined, with |v| increasing
without bound as x increases and v = 0 at x = d. Similarly for k3.

Consider next the strict local maximum x2 and the level curve E(x, v) = k1, with k1 > G(x2).
We see that v is not defined for x < c, thus the trajectory lies to the right of x = c. v = 0 only for
x = c, i.e., the trajectory only touches the x-axis for x = c.

For the part of the trajectory with v positive, v = +
√

2(k1 −G(x)), as x varies from x = c to x1
and then from x1 to x2, G(x) decreases and then increases, hence v increases and then decreases.
From x2 on, G(x) decreases without bound.

Similarly, for v negative, v = −
√

2(k1 −G(x)), v decreases from x = c to x1 and increases from
x1 to x2, decreasing again for x > x2. The corresponding trajectory is illustrated above.

Consider now values k such that k < G(x1), such as k5 and k6 in picture. We see that trajectories
exist (v is red-valued) only for x to the right of the intersection of y = h with G(x).

Finally, we see that k2 corresponding to a “limiting case”, separating the closed curves from the
unbounded ones. We see that B is a saddle point.

Remark 31.3. To draw the arrows indicating the direction of increasing time, it is useful to recall
v = ẋ, thus v > 0 gives that x increases along the trajectory and v < 0 that x decreases along the
trajectory.

Example 31.4. Sketch the phase portrait of the pendulum

θ̈ + sin θ = 0

We take E(0, 0) = 0, so G(θ) = 1− cos θ.

G has strict local minimum at θ ± 2nπ, n = 0, 1, 2, . . . and strict local maximum at θ =
±(2n+ 1)π, n = 0, 1, 2, . . .

Arguing as in the previous example, we conclude that the critical points (±2nπ, 0) are centers
and (±(2n+ 1)π, 0) are saddle points. Level curves E(θ, v) = k with k > 2 do not cross the θ axis
and correspond to trajectories that are not closed curves.
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θ

y

θ

v

2

G(x)

−4π −3π −2π −π 0 π 2π 3π 4π

32. Lyapunov’s method

For consertive systems, we saw that a great deal of information can be obtained by considering
the energy function E(x, v). The Lyapunov method generalizes the energy method to autonomous
systems ẋ = f(x, y), ẏ = g(x, y). In this case we no longer have an energy. Instead, we look for an
appropriate function that generalizes E.

Definition 32.1. Let W = W (x, y) be a function that is continuous on a disk D containing (0,0)
and assume that W (0, 0) = 0. We call W :

• Positive definite on D if W (x, y) > 0 for all (x, y) ∈ D, (x, y) ̸= (0, 0).

• Positive semi-definite on D if W (x, y) ≥ 0 for all (x, y) ∈ D.

• Negative definite on D if W (x, y) < 0 for all (x, y) ∈ D, (x, y) ̸= (0, 0).

• Negative semi-definite on D if W (x, y) ≤ 0 for all (x, y) ∈ D.

The theorems below apply to systems ẋ = f(x, y), ẏ = g(x, y) where the origin is an isolated
critial point. I.e., f(0, 0) = 0 = g(0, 0) and there exists a disk D about (0, 0) such that no other
critical point other that (0,0) exists within D.
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Theorem 32.2 (Lyapunov’s stability theorem). Let V be a positive definite function on an open
disk D containing the origin. Suppose that (0,0) is an isolated critical point for the system ẋ =
f(x, y), ẏ = g(x, y). Set

W (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

(1) If W is negative semi-definite on D, then (0,0) is stable.

(2) If W is negative definite, then (0,0) is asymptotically stable.

The idea behind this theorem is very simple. Let (x(t), y(t)) be a solution starting near the
origin. Compute:

d

dt
V (x(t), y(t)) = Vx(x(t), y(t))ẋ(t) + Vy(x(t), y(t))ẏ(t)

= Vx(x(t), y(t))f(x(t), y(t)) + Vy(x(t), y(t))g(x(t), y(t))

= W (x(t), y(t))

If W is negative semi-definite on D, this means that d
dtV (x(t), y(t)) ≤ 0. Hence, the function

F = F (t) = V (x(t), y(t)) is a non-increasing function of t.

On the other hand, V is positive definite, V increases when x and y move away from (0,0). Now,
if a trajectory (x(t), y(t)) were to escape the vicinity of (0,0), then the function F (t) would have
to increase with t, contradicting the fact that F ′(t) ≤ 0. Moreover, if W is negative definite then
F (t) has to be strictly decreasing, and this cases trajectories cannot be closed about (0,0) and the
only possibility is that they converge to (0,0). These ideas are illustrated in the picture below.

(x(t1), y(t1))

(x(t2), y(t2))

t1 < t2

trajectory moving away from the origin

V (x(t1), y(t1))

V (x(t2), y(t2))

t1 < t2

V (x(t1), y(t1)) < V (x(t2), y(t2))

graph of V

x

z

y

The function V in the theorem is called Lyapunov function.



80 Diff Eq

The main drawback of the theorem is that it gives no idea of how to find the V . However,
experiences shows that in many cases, expressions of the form V (x, y) = axl + bym with l,m
positive even numbers and a, b constants appropriately chosen, produce Lyapunov functions. Note
that such V ’s are positive definite for a, b > 0.

Example 32.3. Consider ẋ = −2y3, ẏ = x− 3y3.

We see that the origin is a critical point and in fact the only critical point since

−2y3 = 0, x− 3y3 = 0 ⇒ (x, y) = (0, 0), so the critical point is isolated.

We seek a Lyapunov function in the form V (x, y) = ax2 + by2. Then,

W (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 2ax(−2y3) + 2by(x− 3y3)

= −4axy3 + 2bxy − 6by4

This is not negative semi-definite because along the line y = x we have:

W (x,−x) = −4ax4 + 2bx2 − 6bx4

For x very small, x4 is much smaller than x2 and the term +2bx2 dominates the remaining ones,
giving W (x, x) > 0 (recall that a, b > 0).

We now try V (x, y) = ax2 + by4. Then

W (x, y) = 2ax(−2y3) + 4by3(x− 3y3)

= −4axy3 + 4by3x− 12by6

If we put a = b = 1, then W (x, y) = −12y6 which is negative semi-definite. By the above
theorem, (0,0) is a stable critical point.

Remark 32.4. We could of course have chosen any positive a = b. This shows that Lyapunov
functions are not unique.

Remark 32.5. The last example cannot be treated with the method of almost linear systems. This
is because the corresponding linear system is ẋ = 0, ẏ = x, which does not satisfy ad− bc ̸= 0. In
other words, although (0, 0) is an isolated critical point of the system, it is not an isolated critical
point of the corresponding linear system.

The next theorem is a criterion for instability.

Theorem 32.6 (Lyapunov’s instability theorem). Suppose that the origin is an isolated critical
point for the system ẋ = f(x, y), ẏ = g(x, y). Let V = V (x, y) be a continuous function defined on
an open disk D containing (0, 0) and assume that V (0, 0) = 0. Suppose that

W (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

is positive definite on D. Finally, assume that for every disk D′ centered at the origin, there exist
a (x0, y0) ∈ D′ such that V (x0, y0) > 0. Then (0, 0) is unstable.

As in the previous theorem, the main difficulty to apply this theorem consists in finding the
function V .

Example 32.7. Show that ẋ = −y3, ẏ = −x3, is unstable using V (x, y) = −xy.

First, note that (0, 0) is an isolated critical point.
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The function V (x, y) is continuous, V (0, 0), and every disk about the origin contians a point
where V is positive (any point where x and y have opposite signs). Compute:

W (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= −y(−y3) + (−x)(−x3)

= y4 + x4 , which is positive definite.

Hence, (0, 0) is an unstable critical point.

33. Limit cycles and periodic solutions

Definition 33.1. A non-critical closed trajectory with at least one other trajectory spiriling into
it (as time approaches plus or minus infinity) is called a limit cycle. When nearby trajectories
approach a limit cycle, we call it stable, and unstable when they recede. If trajectories approach
a limit cycle from one side and recede from the other, it is called semi-stable.

Remark 33.2. In the above definition non-trivial means not a single point (since critical points
are closed trajectories).

limit cycle stable limit cycle

unstable limit cycle semi-stable limit cycle

An importnat fact about limit cycles is the following:
A limit cycle must enclose at least one critical point. Moreover, any critical point

enclosed by a limit cycle cannot be a saddle point.

For the next theorem, we recall that a simply connected domain in the plane is an open connected
set that has no “holes”.
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simply connected not connectednot simply connected

(thus not simply connected)

Theorem 33.3 (Bendixson negative criterion). Let f(x, y) and g(x, y) have continuous first partial
derivatives in a simply connected domain D and assume that fx(x, y) + gy(x, y) does not change
sign in D. Then there are no non-constant periodic solutions to ẋ = f(x, y), ẏ = g(x, y) that lie
entirely in D. In particular, if D = R2, then the system has no non-constant periodic solutions.

Example 33.4. Show that ẋ = −2x− y − xy2, ẏ = x− 3y − x2y has no closed trajectories (other
possibly than critical points).

Since a closed trajectory corresponds to a periodic solution, we will apply Bendixson’s criterion
with D = R2. Compute:

fx(x, y) + gy(x, y) = −2− y2 − 3− x2

which is always negative, so by Bendixson’s criterion the system cannot have (non-constant) peri-
odic solutions.

The next theorem gives a sufficient condition for the existence of periodic solutions (i.e., closed
trajectories) that are not constants.

Theorem 33.5 (Poincaré-Bendixson theorem). Consider the system ẋ = f(x, y), ẏ = g(x, y), and
assume that f and g have continuous partial derivatives on a closed bounded region R. Suppose
that there are no critical points within R. Then any solution that stays within R for all t ≥ t0 for
some t0 is either a periodic solution or it approaches a limit cycle. Consequently, the system has a
non-constant periodic solution.

To apply this theorem, we need to find a region R that “traps” trajectories as illustrated in the
next example.

Example 33.6. Show that the equation

ẍ+ (4x2 + (ẋ)2 − 4)ẋ+ x3 = 0

has a non-constnat periodic solution.

We set y = ẋ and write the equation as the system:

ẋ = y

ẏ = −x3 − (4x2 + y2 − 4)y

The origin is the only critical point of this system. To find the region R, we will construct a
function V (x, y) that increases in x and y, and such that d

dtV (x(t), y(t)) is ≥ 0 inside a curve γ
enclosing the origin and ≤ 0 outside γ. This implies that trajectories outside γ move toward it
from the outside and trajectories inside γ move toward it from the inside. Thus, trajectories have
to remain in an annulus containing γ (see picture).
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Put V (x, y) = 1
4x

4 + 1
2y

2. Then

d

dt
V (x(t), y(t)) = x3ẋ+ yẏ = x3y − y(x3 + (4x2 + y2 − 4)y)

= −(4x2 + y2 − 4)y2

Thus, the function V (x(t), y(t)) is increasing in the variable t inside the ellipse γ given by
4x2 + y2 = 4 (since 4x2 + y2 − 4 < 0 inside γ) and decreaseing outside γ (since 4x2 + y2 − 4 > 0
outside γ). Pick a number A such that the ellipse CA given by 4x2 + y2 = A lies inside γ. A
trajectory starting outside CA but inside γ cannot cross CA. For, suppose that (x(t), y(t)) lies
outside CA and inside γ at time t, and inside CA at a later time t2. Then, since V is increasing in
x, y, we would have

V (x(t1), y(t1)) > V (x(t2), y(t2)),

but this contradicts V (x(t), y(t)) being increasing in t inside γ.

y

x

CB

r
CA

(x(t1), y(t1))

(x(t2), y(t2))

Similarly, choosing B such that the ellipse 4x2+y2 = B is outside γ, we conclude that a trajectory
starting inside CB but outside γ cannot cross CB. Thus, a trajectory that is outside CA and inside
CB has to stay between these two curves for a U future time. Taking R to be the annular region
between CA and CB, the Poincaré-Bendixson theorem now gives the result.

Remark 33.7. We are not saying that such a closed trajectory is given by the ellipses γ,CA or
CB.

34. Stability of higher dimensional systems

We will now generalize some of the stability results discussed for 2× 2 systems to n×n systems.

For x ∈ Rn, instead of working with the usual norm given by
√

x21 + x22 + · · ·+ x2n, it is convenient
to define

∥x∥ = max
i=1,...,n

|xi|

where maxi=1,...,n means the maximum when i varies from 1 to n.

For a n× n matrix A we define

∥A∥ = max
i,j=1,...,n

|aij |, where aij are the entries of A.
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It follows that

∥Ax∥ = max
i=1,...,n

|
n∑

l=1

ail zl| ≤ max
i=1,...,n

n∑
l=1

|ail| |zl|

≤
n∑

l=1

∥A∥ |zl| ≤
n∑

l=1

∥A∥ ∥z∥ = n∥A∥ ∥z∥

Definition 34.1. Consider the system ẋ = f(t, x), where x = x(t) is a n-component vector
function, f(t, x) = (f1(t, x), ...fn(t, x)) with each fi(t, x) a real valued function with continuous
partial derivatives. We say that a solution Φ(t) to this system is stable (also called Lyapunov
stable) for t ≥ t0, if for any ε > 0 there exist a δ = δ(t0, ε) > 0 such that if ∥x(t0) − Φ(t0)∥ < δ,
where x(t) is any solution ẋ = f(t, x), then ∥x(t)− Φ(t)∥ < ε for all t ≥ t0. If in addition, for any
such x(t) we have that limt→∞∥x(t) − Φ(t)∥ = 0, then Φ(t) is called asymtotically stable. If Φ is
not stable, then we call it unstable.

δ
ε

Φ(t)

stable

δ

ε

Φ(t)

asymptotically stable

δ
ε

Φ(t)

unstable

This definition generalizes the stability of critical points previously introduced. Indeed, when
the solution Φ is a critical point and t0 = 0, the above definition reduces to that of a critical point,
except that the norm ∥.∥ employed is different. This is not an issue because both norms in question
are equivalent, i.e., there exist constants A,B,C and D such that

A
√
x21 + x22 + · · ·+ x2n ≤ max

i=1,...,n
|xi| ≤ B

√
x21 + x22 + · · ·+ x2n

and C max
i=1,...,n

|xi| ≤
√

x21 + x22 + · · ·+ x2n ≤ D max
i=1,...,n

|xi|

Theorem 34.2. Consider ẋ = A(t)x(t) + f(t). A solution Φ(t) is stable (asymptotically stable) if
and only if the zero solution is a stable (asymptotically stable) solution to ẋ(t) = A(t)x(t).

Theorem 34.3. Let A = A(t) be a n × n continuous matrix function. Let X be a fundamental
matrix for the system ẋ = Ax, t ≥ t0. If there exists a constant κ > 0 such that ∥X(t)∥ ≤ κ for
all t ≥ t0, then the zero solution is stable. Moreover, if limt→∞ ∥X(t)∥ = 0, the zero solution is
asymptotically stable.

We conclude this brief description of higher dimensional systems with almost (higher dimen-
sional) linear systems.

Definition 34.4. Let A be a n× n matrix with non-zero determinant. Let f = f(t, x) be contin-
uously differentiable for t ≥ 0 and ∥x∥ < κ for some κ > 0. Suppose that f(t, 0) = 0 for all t ≥ 0.
Assume that for every ε > 0 there exists a δ > 0 such that 0 < ∥z∥ < δ implies ∥f(t, z)∥/∥z∥ < ε

for all t ≥ 0 (i.e., lim∥z∥→0
∥f(t,z)∥

∥z∥ = 0 uniformly in t). Under these conditions, we call the system

ẋ = Ax+ f almost linear.
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Theorem 34.5. Let ẋ = Ax+ f be an almost linear system. If all eigenvalues of A are negative,
then the zero solution is asymptotically stable. If at least one eigenvalue of A has positive real part,
then the zero solution is unstable.
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