MATH 2610, EXAMPLES OF SECTION 9.8

VANDERBILT UNIVERSITY

Question 1. Determine $e^{A t}$ by using generalized eigenvectors to find a fundamental matrix if

$$
A=\left[\begin{array}{rrr}
5 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 5
\end{array}\right] .
$$

Solutions.

1. A simple computation gives

$$
\operatorname{det}\left[\begin{array}{rrr}
5-\lambda & -4 & 0 \\
1 & -\lambda & 2 \\
0 & 2 & 5-\lambda
\end{array}\right]=-\lambda(\lambda-5)^{2},
$$

so $\lambda_{1}=0$ and $\lambda_{2}=5$ are the eigenvalues, with λ_{2} of multiplicity two.
To find an eigenvector associated with λ_{1}, we solve

$$
\left[\begin{array}{rrrll}
5 & -4 & 0 & \vdots & 0 \\
1 & 0 & 2 & \vdots & 0 \\
0 & 2 & 5 & \vdots & 0
\end{array}\right]
$$

Applying Gauss-Jordan elimination we find $u_{1}=(-4,-5,2)$, and $x_{1}=e^{0 t} u_{1}=(-4,-5,2)$ is a solution to $x^{\prime}=A x$.

Next, we move to λ_{2}, and consider:

$$
\left[\begin{array}{rrrll}
0 & -4 & 0 & \vdots & 0 \\
1 & -5 & 2 & \vdots & 0 \\
0 & 2 & 0 & \vdots & 0
\end{array}\right]
$$

Applying Gauss-Jordan elimination, we find

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & 0 \\
0 & 1 & 0 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right]
$$

Thus, this system has only one free variable, yielding only one linearly independent eigenvector which we can take to be $u_{2}=(-2,0,1)$. Hence $x_{2}=e^{5 t}(-2,0,1)$ is a second linearly independent solution to $x^{\prime}=A x$. To find a third linearly independent solution, we need to find a generalized eigenvector associated with $\lambda_{2}=5$. Compute

$$
(A-5 I)^{2}=\left[\begin{array}{rrr}
0 & -4 & 0 \\
1 & -5 & 2 \\
0 & 2 & 0
\end{array}\right]^{2}=\left[\begin{array}{rrr}
-4 & 20 & -8 \\
-5 & 25 & -10 \\
2 & -10 & 4
\end{array}\right]
$$

Now we solve

$$
\left[\begin{array}{rrrrr}
-4 & 20 & -8 & \vdots & 0 \\
-5 & 25 & -10 & \vdots & 0 \\
2 & -10 & 4 & \vdots & 0
\end{array}\right]
$$

Applying Gauss-Jordan elimination gives

$$
\left[\begin{array}{rrrrr}
-1 & 5 & -2 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right]
$$

which has two free variables that yield two linearly independent generalized eigenvectors $u_{2}=$ $(-2,0,1)$ and $u_{3}=(5,1,0)$ (notice that we already knew from above that u_{2} is a solution since it is an eigenvector). To find a third (linearly independent) solution to $x^{\prime}=A x$, compute

$$
x_{3}=e^{A t} u_{3}=e^{5 t}\left(u_{3}+t(A-5 I) u_{3}\right)=e^{5 t}\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t e^{5 t}\left[\begin{array}{rrr}
0 & -4 & 0 \\
1 & -5 & 2 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=e^{5 t}\left[\begin{array}{c}
5-4 t \\
1 \\
2 t
\end{array}\right] .
$$

A fundamental matrix is now given by $X=\left[x_{1} x_{2} x_{3}\right]$, i.e.,

$$
X(t)=\left[\begin{array}{ccc}
-4 & -2 e^{5 t} & e^{5 t}(5-4 t) \\
-5 & 0 & e^{5 t} \\
2 & e^{5 t} & 2 e^{5 t} t
\end{array}\right]
$$

Recall that $e^{A t}=X(t)(X(0))^{-1}$. Plugging $t=0$ into $X(t)$ and using Gauss-Jordan elimination we find

$$
(X(0))^{-1}=\frac{1}{25}\left[\begin{array}{rrr}
1 & -5 & 2 \\
-2 & 10 & 21 \\
5 & 0 & 10
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
e^{A t} & =X(t)(X(0))^{-1}=\frac{1}{25}\left[\begin{array}{ccc}
-4 & -2 e^{5 t} & e^{5 t}(5-4 t) \\
-5 & 0 & e^{5 t} \\
2 & e^{5 t} & 2 e^{5 t} t
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & 2 \\
-2 & 10 & 21 \\
5 & 0 & 10
\end{array}\right] \\
& =\frac{1}{25}\left[\begin{array}{ccc}
-4+295^{5 t}-20 t e^{5 t} & 20-20 e^{5 t} & -8+8 e^{5 t}-40 t e^{5 t} \\
-5+5 e^{5 t} & 25 & -10+10 e^{5 t} \\
2-2 e^{5 t}+10 t e^{5 t} & -10+10 e^{5 t} & 4+21 e^{5 t}+20 t e^{5 t}
\end{array}\right] .
\end{aligned}
$$

