MATH 2610, EXAMPLES OF SECTION 9.6

VANDERBILT UNIVERSITY

Question 1. Find the general solution of

$$
x^{\prime}=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right] x
$$

Question 2. Find the general solution of

$$
x^{\prime}=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] x
$$

Solutions.

1. The characteristic equation is

$$
\operatorname{det}\left[\begin{array}{cc}
-3-\lambda & -2 \\
9 & 3-\lambda
\end{array}\right]=-9+\lambda^{2}+18=\lambda^{2}+9=0
$$

whose solutions are

$$
\lambda_{1}=3 i, \lambda_{2}=-3 i
$$

Recall that we saw in class that in the complex root case, the first root already gives two linearly independent solutions, so it is enough to consider $\lambda_{1}=3 i$. We want to solve

$$
\left[\begin{array}{cc}
-3-3 i & -2 \\
9 & 3-3 i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Using Gauss-Jordan elimination and ignoring the free variable we find

$$
v=\left[\begin{array}{c}
-2 \\
3+3 i
\end{array}\right]
$$

This gives

$$
x=\left[\begin{array}{c}
-2 \\
3+3 i
\end{array}\right] e^{3 i t}
$$

Next, we separate the real and imaginary parts,

$$
\begin{aligned}
x & =\left[\begin{array}{c}
-2 e^{3 i t} \\
(3+3 i) e^{3 i t}
\end{array}\right]=\left[\begin{array}{c}
-2 \cos (3 t)-2 i \sin (3 t) \\
(3+3 i)(\cos (3 t)+i \sin (3 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \cos (3 t)-2 i \sin (3 t) \\
3 \cos (3 t)-\sin (3 t)+i(3 \cos (3 t)+-3 \sin (3 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \cos (3 t) \\
3 \cos (3 t)-3 \sin (3 t)
\end{array}\right]+i\left[\begin{array}{c}
-2 \sin (3 t) \\
3 \sin (3 t)+3 \cos (3 t)
\end{array}\right] .
\end{aligned}
$$

Hence the two linearly independent solutions are

$$
x_{1}=\left[\begin{array}{c}
-2 \cos (3 t) \\
3 \cos (3 t)-3 \sin (3 t)
\end{array}\right]
$$

$$
x_{2}=\left[\begin{array}{c}
-2 \sin (3 t) \\
3 \sin (3 t)+3 \cos (3 t)
\end{array}\right] .
$$

2. As before, we look for solutions of the characteristic equation

$$
\operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 5 & 2 \\
-6 & -6-\lambda & -5 \\
6 & 6 & 5-\lambda
\end{array}\right]=0
$$

The solutions are

$$
\lambda_{1}=0, \lambda_{2}=2 \pm 3 i \Rightarrow \lambda_{1}=0, \lambda_{2}=2+3 i
$$

where as in the previous problem we can pick only one of the two complext roots. The eigenvectors are

$$
\begin{gathered}
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
v_{2}=\left[\begin{array}{c}
1+i \\
-2 \\
2
\end{array}\right] .
\end{gathered}
$$

The solution corresponding to $\lambda_{1}=0$ then becomes,

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

while the two solutions obtained from $\lambda_{2}=2+3 i$ are

$$
\begin{aligned}
& x_{2}=\left[\begin{array}{c}
\cos (3 t)-\sin (3 t) \\
-2 \cos (3 t) \\
2 \cos (3 t)
\end{array}\right] e^{2 t}, \\
& x_{3}=\left[\begin{array}{c}
\cos (3 t)+\sin (3 t) \\
-2 \sin (3 t) \\
2 \sin (3 t)
\end{array}\right] e^{2 t} .
\end{aligned}
$$

