MATH 2610, EXAMPLES OF SECTIONS 9.4 AND 9.5

VANDERBILT UNIVERSITY

Question 1. Find the eigenvalues and eigenvectors of the following matrices:
(a)

$$
A=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]
$$

(b)

$$
B=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Solutions.

a. Start with the characteristic equation

$$
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right]=-(3-\lambda)(2+\lambda)+4=0
$$

whose solutions are the eigenvalues

$$
\lambda_{1}=2, \lambda_{2}=-1
$$

Let us find the corresponding eigenvectors.

$$
\underline{\lambda_{1}=2}
$$

$$
\left[\begin{array}{cc}
3-\lambda_{1} & -2 \\
2 & -2-\lambda_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & -4
\end{array}\right]
$$

hence we want to solve

$$
\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right] v_{1}=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find

$$
v_{1}=a\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

As we saw in class, we can drop the free variable a and write

$$
v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

$$
\underline{\lambda_{2}}=-1:
$$

$$
\left[\begin{array}{cc}
3-\lambda_{2} & -2 \\
2 & -2-\lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right]
$$

hence we want to solve

$$
\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right] v_{2}=\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find

$$
v_{2}=a\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Again, we drop the free variable a, obtaining

$$
v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues and eigenvectors:

$$
\lambda_{1}=2, v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \lambda_{2}=-1, v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

b. Start with the characteristic equation

$$
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 2-\lambda & 1 \\
2 & 1 & 1-\lambda
\end{array}\right]=(1-\lambda)((2-\lambda)(1-\lambda)-1)-(1-\lambda-2)+2(1-2(2-\lambda))=0 .
$$

Rearranging,

$$
\begin{gathered}
(2-\lambda)(1-\lambda)^{2}-1+\lambda+1+\lambda-6+4 \lambda=(2-\lambda)(1-\lambda)^{2}-6(1-\lambda) \\
=(1-\lambda)((2-\lambda)(1-\lambda)-6)=0 .
\end{gathered}
$$

The eigenvalues are now easily found to be

$$
\lambda_{1}=4, \lambda_{2}=-1, \lambda_{3}=1
$$

Let us find the corresponding eigenvectors.
$\underline{\lambda_{1}=4:}$

$$
\left[\begin{array}{ccc}
1-\lambda_{1} & 1 & 2 \\
1 & 2-\lambda_{1} & 1 \\
2 & 1 & 1-\lambda_{1}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

so we need to solve

$$
\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solving the system and ignoring the free variable as before we obtain

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Repeating the process for $\lambda_{2}=-1, \lambda_{3}=1$ we find, respectively

$$
v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues with corresponding eigenvectors

$$
\lambda_{1}=4, v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \lambda_{2}=-1, v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \lambda_{3}=1, v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

