MATH 2610, EXAMPLES OF SECTIONS 4.6 AND 4.7

VANDERBILT UNIVERSITY

Question 1. Knowing that

$$
y_{1}=x^{2}, \text { and } y_{2}=x^{3}
$$

are two linearly independent solutions of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

find the particular solution y_{p} of the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{3} . \tag{1}
\end{equation*}
$$

Question 2. By directly plugging in the formula for y_{p}, namely,

$$
\begin{equation*}
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2}(x) \int \frac{y_{2}(x) f(x)}{W(x)} d x \tag{2}
\end{equation*}
$$

show that it yields a solution to

$$
\begin{equation*}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=f(x) . \tag{3}
\end{equation*}
$$

Solutions.

1. It is important to notice that (2) holds when the equation is written as in (3), i.e., with the coefficient of $y^{\prime \prime}$ equal to 1 . Thus, we divide (1) by x^{2}, obtaining

$$
y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}} y=x,
$$

in which case $f(x)=x$. We have

$$
W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=x^{2} 3 x^{2}-x^{3} 2 x=x^{4}
$$

(notice that $W \neq 0$ since the equation is not defined for $x=0$). Then

$$
\int \frac{y_{2}(x) f(x)}{W(x)} d x=\int \frac{x^{3} x}{x^{4}} d x=x
$$

and

$$
\int \frac{y_{1}(x) f(x)}{W(x)} d x=\int \frac{x^{2} x}{x^{4}} d x=\ln x .
$$

We thus find

$$
y_{p}=x^{3}(\ln x-1) .
$$

2. We have to plug (2) into (3). Since we shall differentiate y_{p}, it is useful to remember the Fundamental Theorem of Calculus, which gives

$$
\left(\int \frac{y_{2}(x) f(x)}{W(x)} d x\right)^{\prime}=\frac{y_{2}(x) f(x)}{W(x)}
$$

and

$$
\left(\int \frac{y_{2}(x) f(x)}{W(x)} d x\right)^{\prime}=\frac{y_{2}(x) f(x)}{W(x)} .
$$

Using these formulas and the product rule we find

$$
y_{p}^{\prime}=-y_{1}^{\prime} \int \frac{y_{2} f}{W}-y_{1} \frac{y_{2} f}{W}+y_{2}^{\prime} \int \frac{y_{1} f}{W}+y_{2} \frac{y_{1} f}{W},
$$

where we write $\int \frac{y_{2} f}{W}$ instead of $\int \frac{y_{2}(x) f(x)}{W(x)} d x$ in order to simplify the notation (analogously for the other integral). Taking another derivative

$$
y_{p}^{\prime \prime}=-y_{1}^{\prime \prime} \int \frac{y_{2} f}{W}-2 y_{1}^{\prime} \frac{y_{2} f}{W}-y_{1}\left(\frac{y_{2} f}{W}\right)^{\prime}+y_{2}^{\prime \prime} \int \frac{y_{1} f}{W}+2 y_{2}^{\prime} \frac{y_{1} f}{W}+y_{2}\left(\frac{y_{1} f}{W}\right)^{\prime} .
$$

Using y_{p}, y_{p}^{\prime} and $y_{p}^{\prime \prime}$ into the equation we find

$$
\begin{aligned}
y_{p}^{\prime \prime}+p y_{p}^{\prime}+q y_{p} & =-\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) \int \frac{y_{2} f}{W}+\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right) \int \frac{y_{2} f}{W} \\
& -\frac{y_{2} f}{W}\left(p y_{1}+2 y_{1}^{\prime}\right)+\frac{y_{1} f}{W}\left(p y_{2}+2 y_{2}^{\prime}\right)-y_{1}\left(\frac{y_{2} f}{W}\right)^{\prime}+y_{2}\left(\frac{y_{1} f}{W}\right)^{\prime} .
\end{aligned}
$$

Since by hypothesis y_{1} and y_{2} are solutions of the homogeneous equation,

$$
y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0,
$$

and

$$
y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0,
$$

so

$$
y_{p}^{\prime \prime}+p y_{p}^{\prime}+q y_{p}=-\frac{y_{2} f}{W}\left(p y_{1}+2 y_{1}^{\prime}\right)+\frac{y_{1} f}{W}\left(p y_{2}+2 y_{2}^{\prime}\right)-y_{1}\left(\frac{y_{2} f}{W}\right)^{\prime}+y_{2}\left(\frac{y_{1} f}{W}\right)^{\prime}
$$

By the product rule

$$
\left(\frac{y_{2} f}{W}\right)^{\prime}=y_{2}^{\prime} \frac{f}{W}+y_{2} f^{\prime} \frac{1}{W}+y_{2} f\left(\frac{1}{W}\right)^{\prime}
$$

and

$$
\left(\frac{y_{1} f}{W}\right)^{\prime}=y_{1}^{\prime} \frac{f}{W}+y_{1} f^{\prime} \frac{1}{W}+y_{1} f\left(\frac{1}{W}\right)^{\prime}
$$

Therefore

$$
\begin{aligned}
y_{p}^{\prime \prime}+p y_{p}^{\prime}+q y_{p}= & -\frac{y_{2} f}{W}\left(p y_{1}+2 y_{1}^{\prime}\right)+\frac{y_{1} f}{W}\left(p y_{2}+2 y_{2}^{\prime}\right) \\
& -y_{1} y_{2}^{\prime} \frac{f}{W}-y_{1} y_{2} f^{\prime} \frac{1}{W}-y_{1} y_{2} f\left(\frac{1}{W}\right)^{\prime} \\
& +y_{2} y_{1}^{\prime} \frac{f}{W}+y_{2} y_{1} f^{\prime} \frac{1}{W}+y_{2} y_{1} f\left(\frac{1}{W}\right)^{\prime} .
\end{aligned}
$$

Notice that the last two terms of the second line cancel with the last two terms of the third line. We are left with

$$
\begin{aligned}
y_{p}^{\prime \prime}+p y_{p}^{\prime}+q y_{p} & =-\frac{y_{2} f}{W}\left(p y_{1}+2 y_{1}^{\prime}\right)+\frac{y_{1} f}{W}\left(p y_{2}+2 y_{2}^{\prime}\right)-y_{1} y_{2}^{\prime} \frac{f}{W}+y_{2} y_{1}^{\prime} \frac{f}{W} \\
& =-p \frac{y_{2} f}{W} y_{1}-2 \frac{y_{2} f}{W} y_{1}^{\prime}+p \frac{y_{1} f}{W} y_{2}+2 \frac{y_{1} f}{W} y_{2}^{\prime}-y_{1} y_{2}^{\prime} \frac{f}{W}+y_{2} y_{1}^{\prime} \frac{f}{W} .
\end{aligned}
$$

The first and third terms on the last line cancel out, and then

$$
y_{p}^{\prime \prime}+p y_{p}^{\prime}+q y_{p}=-2 \frac{y_{2} f}{W} y_{1}^{\prime}+2 \frac{y_{1} f}{W} y_{2}^{\prime}-y_{1} y_{2}^{\prime} \frac{f}{W}+y_{2} y_{1}^{\prime} \frac{f}{W}
$$

$$
\begin{aligned}
& =-2 \frac{f}{W} y_{2} y_{1}^{\prime}+2 \frac{f}{W} y_{1} y_{2}^{\prime}-y_{1} y_{2}^{\prime} \frac{f}{W}+y_{2} y_{1}^{\prime} \frac{f}{W} \\
& =\frac{f}{W} y_{1} y_{2}^{\prime}-\frac{f}{W} y_{2} y_{1}^{\prime}=\frac{f}{W}\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right) \\
& =f
\end{aligned}
$$

where in the last step we used that $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$.

