MATH 2610, EXAMPLES OF SECTION 2.2

VANDERBILT UNIVERSITY

Question 1. The intensity I of the light at a depth of x meters below the surface of a lake satisfies the differential equations $I^{\prime}=-1.4 I$.
(a) At what depth is the intensity half of the intensity I_{0} at the surface of the water?
(b) What is the intensity at a depth of 10 meters?
(c) At what depth will the intensity be 1% of that at the surface?

Question 2. According to one cosmological theory, there were equal amounts of the two uranium isotopes ${ }^{235} U$ and ${ }^{238} U$ at the creation of the universe in the big bang. At present there are 137.7 atoms of ${ }^{238} U$ for each atom of ${ }^{235} U$. Using the half-lives 4.51×10^{9} years for ${ }^{238} U$ and 7.10×10^{8} years for ${ }^{235} U$, and assuming a radioactive decay model of the form $x^{\prime}=k x$, calculate the age of the universe.

SOLUTIONS.

1a. The differential equation is of the form $x^{\prime}=k x$. This equation is separable, and can be written as

$$
\frac{d x}{x}=k d t
$$

provided that $x \neq 0$. Integrating

$$
\int \frac{d x}{x}=k \int d t \Rightarrow \ln |x|=k t+C
$$

where C is an arbitrary constant of integration. Thus,

$$
|x|=e^{C} e^{k t} .
$$

We can remove the absolute value by introducing a sign, i.e., the above tells us that

$$
x= \pm e^{C} e^{k t} .
$$

Since C is an arbitrary constant, so is e^{C}, and therefore we can set $A= \pm e^{C}$ for some constant A. Our solution then reads

$$
x(t)=A e^{k t} .
$$

Next, we notice that the constant A has a very simple interpretation: if x_{0} is the value of x at $t=0$, i.e., $x(0)=x_{0}$, then

$$
x(0)=x_{0}=A e^{k 0} \Rightarrow A=x_{0},
$$

and therefore we can write the solution as

$$
x(t)=x_{0} e^{k t} .
$$

Now we turn our attention to the problem in question. We have that the intensity at a depth of x meters is $I(x)=I_{0} e^{-1.4 x}$. Then

$$
I(x)=\frac{I_{0}}{2}=I_{0} e^{-1.4 x} \Rightarrow x=\frac{\ln 2}{1.4} \approx 0.495 \text { meters } .
$$

1b. Plugging in, $I(10)=I_{0} e^{-1.4 \times 10} \approx 8.3 \times 10^{-7}$.
1c. Solving $I_{0} e^{-1.4 x}=0.01 I_{0}$ for x gives $x=\frac{\ln 100}{1.4} \approx 3.29$ meters.
2. Let $N_{8}(t)$ and $N_{5}(t)$ be the numbers of ${ }^{238} U$ and ${ }^{235} U$ atoms, respectively, t billions of years after the big bang. Since both isotopes follow a radioactive decay model $x^{\prime}=k x$, whose solution is (see previous problem) $x(t)=x_{0} e^{k t}$, we have

$$
N_{8}=N_{0} e^{-k t},
$$

and

$$
N_{5}=N_{0} e^{-\ell t}
$$

where N_{0} is the initial number of atoms of each isotope, which is the same for both ${ }^{238} U$ and ${ }^{235} U$ by hypothesis. Notice however that the rates of decay, k and ℓ, differ for these isotopes. Their values are given by

$$
\begin{aligned}
& N_{8}(4.51)=\frac{N_{0}}{2}=N_{0} e^{-k \times 4.51} \Rightarrow k=\frac{\ln 2}{4.51}, \\
& N_{5}(0.71)=\frac{N_{0}}{2}=N_{0} e^{-\ell \times 0.71} \Rightarrow \ell=\frac{\ln 2}{0.71} .
\end{aligned}
$$

We know that for the value of t corresponding to "now" we have $\frac{N_{8}}{N_{5}}=137.7$, hence

$$
\frac{N_{8}}{N_{5}}=\frac{N_{0} e^{-k t}}{N_{0} e^{-\ell t}}=e^{(\ell-k) t}=e^{\left(\frac{\ln 2}{0.71}-\frac{\ln 2}{4.51}\right) t}=137.7 .
$$

Solving for t gives

$$
t=\frac{\ln 137.7}{\frac{\ln 2}{0.71}-\frac{\ln 2}{4.51}} \approx 5.99
$$

According to this theory, therefore, the universe should be about 6 billion years old.

Note: According to our best current models, the age of the universe is estimated to be about 13.7 billions of years, and the initial ratio of ${ }^{235} U$ to ${ }^{238} U$ is estimated to be 1.65 rather than one, as in the exercise ${ }^{1}$. See S. Weinberg, Cosmology, Oxford University Press. The interested student can consult the non-technical book The First Three Minutes: A Modern View Of The Origin Of The Universe, by the same author.

[^0]
[^0]: ${ }^{1}$ It makes sense that it is larger than one because three additional neutrons must be added to the progenitor of ${ }^{235} U$ to from the progenitor of ${ }^{238} U$.

