MATH 2610, EXAMPLES OF SECTION 12.6

VANDERBILT UNIVERSITY

Question 1. Show that the equation

$$
\ddot{x}+\left(x^{4}+\dot{x}^{2}-1\right) \dot{x}+x=0
$$

admits a non-constant periodic solution.
Solution 1. Set $y=\dot{x}$ so that the equation becomes

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-\left(x^{4}+y^{2}-1\right) y-x .
\end{aligned}
$$

We will apply the Poincaré-Bendixson theorem. Start noting that $(0,0)$ is the only critical point of the system. Consider the function $V(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}$. Then

$$
\begin{aligned}
\frac{d}{d t} V(x(t), y(t)) & =x \dot{x}+y \dot{y} \\
& =x y+y\left(-\left(x^{4}+y^{2}-1\right) y-x\right) \\
& =\left(1-\left(x^{4}+y^{2}\right)\right) y^{2}
\end{aligned}
$$

Consider the curve γ given by $x^{4}+y^{2}=1$. Then, $\frac{d}{d t} V(x(t), y(t))$ is ≥ 0 inside γ and ≤ 0 outside γ. The curve γ lies between the circle $x^{2}+y^{2}=1$ and the square $\left\{(x, y) \in \mathbb{R}^{2} \mid \max (|x|,|y|)=1\right\}$, touching them at the points $(\pm 1,0)$ and $(0, \pm 1)$. We can choose as the region R of the PoincaréBendixson theorem any annulus $r_{A} \leq x^{2}+y^{2} \leq r_{B}$ with $0<r_{A}<1$ and $r_{B}>\sqrt{2}$.

