MATH 2610, EXAMPLES OF SECTIONS 1.1 AND 1.2

VANDERBILT UNIVERSITY

Question 1. Classify the differential equations below as linear or non-linear and state their order.
(a) $y^{\prime}+\cos (y)=0$
(b) $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=10 \sin (t)$
(c) $y y^{\prime \prime}+\frac{1}{x}=y$
(d) $e^{\sin x^{2}} \frac{d y}{d x}+x y=e^{-x}$

Question 2. A 100ℓ tank initially contains 10 kg of salt dissolved in 50ℓ of water. Brine containing $1 \mathrm{~kg} / \ell$ of salt flows into the tank at the rate $2 \ell / \mathrm{min}$, and the well-stirred mixture flows out of the tank at the rate $1 \ell / \mathrm{min}$. Write an initial value problem for the amount of salt in the tank.

SOLUTIONS.

Question 1.

(a) Non-linear due to $\cos (y)$; first order. (b) Linear second order. (c) Non-linear due to $y y^{\prime \prime}$; second order. (d) Linear first order.
Question 2. Let $x(t)$ be the amount of salt at time t, measured in $k g$. Then $\frac{d x}{d t}$ is measured in $\mathrm{kg} / \mathrm{min}$, and it is given by

$$
\frac{d x}{d t}=\text { in }-o u t .
$$

We have

$$
\text { in }=1 \frac{\mathrm{~kg}}{\ell} \times 2 \frac{\ell}{\min }=2 \frac{\mathrm{~kg}}{\min },
$$

and

$$
o u t=1 \frac{\ell}{\min } \frac{x(t) k g}{V(t) \ell}=\frac{x(t)}{V(t)} \frac{\mathrm{kg}}{\min } .
$$

Since $V(t)=50+(2-1) t=50+t$, we find

$$
\frac{d x}{d t}=2-\frac{x}{50+t} .
$$

Since at time zero there were 10 kg of salt, the initial condition is $x(0)=10$. Therefore

$$
\left\{\begin{array}{l}
\frac{d x}{d t}+\frac{x}{50+t}=2 \\
x(0)=10
\end{array}\right.
$$

is the sought initial value problem.

