# Topics in Differential Topology

Blaine Lawson Jr.

Notes by Somnath Basu

# Index

- 1. Theory of Bundles
  - 1 Vector bundles
  - 2 G-Bundles
  - 3 Classification of Vector Bundles
  - 4 Characteristic Classes
  - 2 Connections
  - 3 Miscellaneous
- 2. Transversality Theory
  - 1 Transversality Theory
  - 2 Function Spaces
  - 3 Applications
- 3. Cobordism Theory
  - 1 Cobordism
  - 2 Thom construction
  - 3 Spin manifolds
- 4. Spinor Bundles
  - 1 Clifford Algebras
  - 2 Principal Symbol

1 Theory of bundles

# 1.1 Vector Bundles

All vector spaces considered are assumed to be over  $\mathbb{R}$  or  $\mathbb{C}$  unless mentioned otherwise.

We shall briefly review the basic theory of vector bundles. Let X be a topological space.

**Definition 1.1.1** A continuous family of vector spaces over X is a topological space E with a continuous map  $\pi : E \to X$  and has the structure of finite dimensional vector spaces on  $E_x := \pi^{-1}(x)$ , compatible with the topology induced from E. A morphism from a family over X ( $\pi : E \to X$ ) to another ( $\pi' : E' \to X$ ) is a contin-

A morphism from a family over X ( $\pi : E \to X$ ) to another ( $\pi : E \to X$ ) is a continuous map  $\phi : E \to E'$  such that the following diagram commutes :



and  $\phi_x := \phi|_{E_x} : E_x \to F_x$  is linear for all  $x \in X$ .  $\phi$  is called an isomorphism if it is a homeomorphism.

It is easily verified that  $\phi$  is an isomorphism if and only if  $\phi_x$  is for all x.

**Definition 1.1.2** A family  $\pi : E \to X$  is trivial if it is isomorphic to  $X \times \mathbb{R}^n \xrightarrow{\pi_1} X$  for for some n.

A vector bundle of rank n on X is a continuous family of vector spaces  $\pi : E \to X$ which is locally trivial, i.e., there exists a covering of X by open sets  $\{U_i\}_{i \in I}$  such that  $\pi^{-1}(U_i)$  is homeomorphic (fibrewise) to  $U_i \times \mathbb{R}^n$  (via continuous maps  $\phi_i$ ).

If two such open sets intersect then let  $x \in U_i \cap U_j$ . We have

$$\phi_i^{-1} \circ \phi_j : (U_i \cap U_j) \times \mathbb{R}^n \to (U_i \cap U_j) \times \mathbb{R}^n$$

which preserves the fibre. Thus we have **transition** maps  $g_{ij} : U_i \cap U_j \to GL_n(\mathbb{R})$  which satisfy the *cocycle* conditions :

(i)  $g_{ij}g_{ji} = \mathrm{Id}$ 

(ii)  $g_{ij}g_{jk}g_{ki} = \mathrm{Id}.$ 

This transition data is all one needs to reconstruct E from X. We shall denote such a transition data by  $(\mathcal{U}, g)$ .

**Definition 1.1.3** A vector bundle E over X (a  $C^k$  manifold) is of type  $C^k$  if E is a  $C^k$  manifold and  $\pi : E \to X$  is  $C^k$  and local trivializations are  $C^k$ .

In terms of the transition data it means that  $g_{ij}$  are  $C^k$  for all i, j.

**Definition 1.1.4** A cross section of a bundle  $\pi : E \to X$  is a continuous map  $s : X \to E$  such that  $\pi \circ s = Id_X$ .

Denote the space of all sections by  $\Gamma(E)$  and the space of all  $C^k$  sections by  $\Gamma_k(E)$ . Observe that both these constructs are vector spaces and  $\Gamma(E)$  (resp.  $\Gamma_k(E)$ ) is a module over C(X) (resp.  $C^k(X)$ ). For the trivial bundle  $E = X \times \mathbb{R}^n$ ,  $\Gamma(E) = C(X, \mathbb{R}^n)$ . It can be shown that  $\Gamma(E)$  is a free C(X) module of rank *n* if and only if *E* is trivial of rank *n*. In fact, if *X* is compact then  $\Gamma(E)$  is a f.g. projective C(X) module and every f.g. projective C(X) module is a vector bundle.

**Exercise** Show that every cross section of the Möbius band to  $S^1$  has at least one zero.

**Example** (i)  $\mathbb{CP}^n = \{ \text{lines through the origin in } \mathbb{C}^{n+1} \}$  and its tautological line bundle T. The transition functions are  $g_{ij} = z_i/z_j$  for the standard trivialization. This is an example of a holomorphic bundle over a complex manifold. It is known that any section of T must have a zero. Furthermore

**Proposition 1.1.5**  $\Gamma_{hol}(T) = \{0\}$ 

**Proof** If there was a section  $\sigma : \mathbb{CP}^n \to T$  then composing with  $p: T \to \mathbb{C}^{n+1}$  we have a holomorphic map  $p \circ \sigma : \mathbb{CP}^n \to \mathbb{C}^{n+1}$  which by the maximum principle has to be a constant. Thus  $p \circ \sigma(l) = v \in l \forall l$  whence v = 0.

**Example** (ii) Grassmanians -  $G_k(V) = \{k \text{ dimensional subspaces passing through the origin in <math>V\}$  where V is f.d. vector space. In particular  $G_1(\mathbb{C}^{n+1}) = \mathbb{CP}^n$ .  $G_k(V)$  and  $G_{n-k}(V)$  can be identified with each other once we choose a metric on V. One can analogously study tautological bundles on these spaces. It is known that  $G_k(\mathbb{R}^n)$  is a compact real analytic manifold of dimension k(n-k) and is actually diffeomorphic to  $O(n)/(O(k) \times O(n-k))$ . Similar results hold for the complex cases.

**Example** (iii) Let  $X_k := \{A \in M_n(\mathbb{R}) | \text{rk}A = k\}$  be a subset of the  $n \times n$  real matrices. One can associate natural bundles  $E \to X_k$  and  $Q \to X_k$  with  $E_A = \text{ker}A$  and  $Q_A = \text{Im}A$ . We also have a short exact sequence of bundles :

$$0 \to E \to X_k \times \mathbb{R}^n \to Q \to 0.$$

**Example** (iv)  $T \equiv \{A \in M_n(\mathbb{C}) | A^2 = A, \operatorname{rk} A = 1\}$  is an algebraic subvariety in  $\mathbb{C}^{n^2}$ . This effectively says that that the trivial bundle  $\mathbb{C}^n = \ell \oplus \mathcal{K}$  where  $A|_{\ell} = \operatorname{Id}|_{\ell}$  and  $\mathcal{K} = \operatorname{Im} A$ . There is the usual holomorphic map  $\pi : T \to \mathbb{CP}^{n-1}$  sending A to its image, a line in  $\mathbb{C}^n$ . Note that  $\pi^{-1}(\ell) = \{H|$  hypersurfaces H such that  $H \cap \ell = \{0\}\} \cong \operatorname{Hom}(\ell^{\perp}, \ell)$ . This is also called **torsor**.

If X is a manifold, i.e., a locally Euclidean space then one can define a linear space at each point of  $x \in X$ . This will be called the tangent space at x and can be defined in various ways. The manifold in question can be  $C^{\infty}$  or  $C^k$  depending on how the Euclidean pieces are glued together.

**Definition 1.1.6** Let X be a smooth manifold and  $x \in X$ . The germ of a (smooth) function at x is defined to be the equivalence pair (U, f) where U is a neighbourhood of x and  $f: U \to \mathbb{R}$  is a smooth function under the equivalence relation  $(U, f) \sim (V, g)$  if there exists a smaller neighbourhood W of x contained in  $U \cap V$  such that  $f|_W \equiv g|_W$ . The set of all germs forms an  $\mathbb{R}$ -algebra and is denoted by  $\mathcal{O}_{X,x}$ .

The (real) vector space of all derivations of  $\mathcal{O}_{X,x}$  is called the **tangent space** of X at x. It is denoted by  $T_xX$  and the elements are called **tangent vectors**.

There is a surjective  $\mathbb{R}$ -algebra homomorphism

$$\chi: C^{\infty}(X) \to \mathcal{O}_{X,x}, \ f \mapsto [f]$$

sending the function to its germ at x. There is also a natural evaluation map (a homomorphism of  $\mathbb{R}$ -algebras)

$$e: \mathcal{O}_{X,x} \to \mathbb{R}, \ [f] \mapsto f(x)$$

which is also surjective. The kernel is the unique maximal ideal  $\mathfrak{m}_x$  of  $\mathcal{O}_{X,x}$ . Working locally we see that this tangent space can also be thought of as the "totality" of all directions in X at x. This turns out to be independent of the chart chosen. It can be shown that the  $\mathbb{R}$  vector space  $T_x X$  of  $\mathbb{R}$  derivations of  $\mathcal{O}_{X,x}$  is isomorphic to the vector space  $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}_x/\mathfrak{m}_x^2,\mathbb{R})$  by mapping X to the linear functional  $f \to X(f)$ . The vector space  $\mathfrak{m}_x/\mathfrak{m}_x^2$  is called the **cotangent space** to X at x and denoted by  $T_x^*X$ . Taking the disjoint union of  $T_x X$  (resp.  $T_x^*X$ ) and pulling back the topology from X we can make

$$TX := \prod_{x \in X} T_x X \ (\operatorname{resp} T^* X) := \prod_{x \in X} T_x^* X)$$

into a smooth manifold of dimension 2n called the **tangent bundle** (resp. **cotangent bundle**). For any smooth map  $f : X \to Y$  there is an induced map  $f_* = Df : TX \to TY$  which obeys the chain rule.

**Definition 1.1.7** Let  $f : X \to Y$  be a smooth map between manifolds (of dim X = m and dim Y = n).

(a) f is an immersion if  $f_x : T_x X \to T_{f(x)} Y$  is injective for all  $x \in X$ . (b) f is a submersion if  $f_x : T_x X \to T_{f(x)} Y$  is surjective for all  $x \in X$ .

A local description of immersions and submersions can be given. One chooses a suitable chart around each point  $x \in X$  and  $f(x) \in Y$ . Then the map f looks like inclusion of  $\mathbb{R}^m$  into  $\mathbb{R}^n$  via the first m coordinates if f is an immersion and looks like the projection onto the first n coordinates if f is a submersion. This follows from the implicit function theorem.

We can construct new vector bundles from given ones. A general guiding principle is that any natural operation of vector spaces carries over to vector bundles. Thus an inclusion of bundles  $E \to X$  into  $F \to X$  gives rise to the **quotient bundle**  $F/E \to X$ . Further given any two bundles E, F over X one can form the **direct sum bundle**  $E \oplus F$ , the **tensor product bundle**  $E \otimes F$ , the bundle  $\operatorname{Hom}_{\mathbb{R}}(E, F)$ , the **dual bundle of** E $E^* = \operatorname{Hom}_{\mathbb{R}}(E, X \times \mathbb{R}).$ 

**Example**  $\bigwedge^{p} T^{*}X$  is called the bundle of exterior p forms. The direct sum

$$\bigwedge T^*X := \bigoplus_{p \ge 0} \bigwedge^p T^*X$$

is an algebra with a self map  $d: \bigwedge^p T^*X \to \bigwedge^{p+1} T^*X$  such that  $d^2 = 0$ .

Replacing the fibre  $\mathbb{R}^n$  in vector bundles with a topological space F would result in the notion of **fibre bundles** which do not enjoy such liberties in construction.

For any two bundles  $h: E \to \tilde{E}$  over X choose a common chart for both bundles and

denote the transition functions by  $g_{ij}$  and  $\tilde{g}_{ij}$  respectively. It can be shown that E is isomorphic to  $\tilde{E}$  if and only if there exists maps  $h_i: U_i \to GL_n(\mathbb{R})$  such that

$$g_{ij}h_j = h_i \tilde{g}_{ij}.$$

Thus it provides a criteria for saying when a bundle is trivial, i.e.,  $g_{ij} = h_i h_j^{-1}$ .

**Definition 1.1.8** Given continuous maps  $f : X \to B$  and  $g : Y \to B$  define  $X \times_B Y = \{(x, y) \in X \times Y | f(x) = g(y)\}.$ 

If  $X \to B$  is a bundle then

$$\hat{f}: X \times_B Y \to Y, \ (x, y) \mapsto y$$

is also a bundle with the same fibre as  $X \to B$  and is called the **pullback** of  $X \to B$  by g. It is easy to see that f is proper/finite/surjective/injective implies that  $\tilde{f}$  is also so.

**Definition 1.1.9** Suppose X, Y, B are manifolds and  $f : X \to B, g : Y \to B$  are smooth. Then f is transversal to g (write  $f \pitchfork g$ ) if

$$f_*T_xX + g_*T_yY = T_zB$$

for all  $(x, y) \in X \times Y$  such that f(x) = z = g(y).

**Lemma 1.1.10** For maps  $f : X \to B, g : Y \to B$  such that  $f \pitchfork g, X \times_B Y$  is a smooth submanifold of  $X \times Y$  (of codimension = dim B).

**Proof** Choose local coordinates  $(x_i), (y_j), (z_k)$  on X, Y and Z respectively. Now  $(x, y) \in X \times_B Y$  if and only if F(x, y) := f(x) - g(y) = 0. Then

$$F_* = f_* - g_* : T_x X \oplus T_y Y \to T_z B$$

is surjective if and only if  $f \pitchfork g$ . A simple application of inverse function theorem then gives the result.

This result has a number of corollaries :

**Corollary 1.1.11** If f is a submersion then  $X \times_B Y$  is a submanifold and  $\tilde{f} : X \times_B Y \to Y$  is also a submersion.

**Proof** Since f is a submersion we have  $f \pitchfork g$  and  $X \times_B Y$  is a submanifold. Also

$$T_{(x,y)}X \times_B Y = \{(v,w) \in T_xX \oplus T_yY | f_*(v) = g_*(w)\}$$

and  $f_*(v, w) = w$ . Since  $f_*$  is surjective, given  $w \in T_y Y$ , there exists  $v \in TxX$  such that  $f_*(v) = g_*(w)$  whence  $\tilde{f}$  is also a submersion.

**Corollary 1.1.12** If f is a smooth fibre bundle over B then  $\tilde{f}$  is a smooth fibre bundle over Y.

**Corollary 1.1.13** If  $f \pitchfork g$  and f is an immersion then  $\tilde{f}$  is an immersion.

**Proof** If  $\tilde{f}_*(v,w) = w = 0$  then  $f_*(v) = g_*(w) = 0$  implies v = 0 since  $f_*$  is injective.  $\Box$ 

**Proposition 1.1.14** Let  $E \xrightarrow{\pi} B$  be a vector bundle of rank n and  $g: Y \to B$  a continuous map. Then  $\tilde{\pi}: E \times_B Y$  is vector bundle of rank n over Y and  $\tilde{g}$  (refer figure below) is a morphism of bundles.



Here  $g^*(E) = E \times_B Y$  is called the **pullback** of E by g. Further, if  $\pi$  and g are smooth them  $\tilde{\pi}$  is also smooth.

**Proof** First notice that

$$\tilde{\pi}^{-1}(y) = \{(e, y) \in E \times Y | \pi(e) = g(y)\} = \pi^{-1}(g(y)) \cong E_{g(y)}$$

has the structure of an n dimensional vector space. If local trivializations of  $\pi^{-1}(U)$  are given by cross sections  $e_1, \dots, e_n \in \Gamma(E|_U)$  then local trivializations of  $\tilde{\pi}^{-1}(g^{-1}(U))$  are given by cross sections  $e_1 \circ g, \dots, e_n \circ g$  of  $g^*(E)$ . Further if  $g_{ij}$  are the transition functions for E then  $g_{ij} \circ g$  are the transition functions for  $g^*(E)$ .

It is easily verified that

Exercise (i)  $g^*(E \oplus F) = g^*E \oplus g^*F$ (ii)  $g^*(E \otimes F) = g^*E \otimes g^*F$ (iii)  $g^*(\bigwedge^k E) = \bigwedge^k g^*E$ (iv)  $(g \circ f)^*E \cong f^*(g^*E)$ .

Set  $Vect_n(X) = \{\text{isomorphism classes of vector bundles of rank } n \text{ on } X\}$ . Any continuous map  $g: X \to Y$  induces a map

$$g^*: Vect_n(Y) \to Vect_n(X).$$

We define

$$\nu(X) := \coprod_{n \ge 0} Vect_n(X)$$

and endowed with the operations  $\oplus$ ,  $\otimes$  this becomes a semi-ring. We define the group completion by setting

$$\mathcal{K}(X) = (\nu(X) \times \nu(X)) / \sim$$

where  $(E, F) \sim (E', F')$  if and only if  $\exists G \in \nu(X)$  such that  $G \oplus E' \oplus F \cong G \oplus E \oplus F'$ . This turns  $\mathcal{K}(X)$  into a ring and the induced map  $g^* : \mathcal{K}(Y) \to \mathcal{K}(X)$  is a ring homomorphism. The group G acting on the fibre (for  $\mathbb{R}^n$  it is usually  $GL_n(\mathbb{R})$ ) of a bundle  $E \to X$  is called the **structure group**. Recall that prescribing a bundle  $E \to X$  is the same as giving cocycles with values in the structure group G. Let  $G \subseteq GL_n(\mathbb{R})$  be Lie subgroup.

**Definition 1.1.15 (Reduction of the structure group)** Let  $E \to X$  be a vector bundle of rank n. Then a reduction of structure of E to  $G \subseteq GL_n(\mathbb{R})$  is a cocycle  $(\mathcal{U}, g)$ with  $E \cong E(\mathcal{U}, g)$  and  $g_i j : U_i \cap U_j \to G \subseteq GL_n(\mathbb{R})$ .

Suppose  $T_0 \in (\mathbb{R}^n)^{\otimes n} \otimes (\mathbb{R}^n) * \otimes l$  such that  $gT_0 = T_0$  for all  $g \in G$ . Then  $T_0$  defines a global section

$$T \in \Gamma(E^{\otimes k} \otimes E^{* \otimes l})$$

given by  $T(x) = T_0$  in each trivialization.

Conversely if  $T \in \Gamma(E^{\otimes k} \otimes E^{*\otimes l})$  where  $E = E(\mathcal{U}, g)$  then let  $T_i$  be the representation of T in the local trivialization over  $U_i$ , i.e.,

$$T_i: U_i \to \mathbb{R}^{\otimes k} \otimes \mathbb{R}^{* \otimes l}$$

#### ??

**Example** (i)  $G = O_n \subseteq GL_n(\mathbb{R})$  - a reduction to  $O_n$  determines a metric on E, i.e.,  $\langle,\rangle \in \Gamma(E^* \otimes E^*)$ . Using a partition of unity it can be shown that every vector bundle over a paracompact space has a metric. In general the structure can always be reduced from  $GL_n(\mathbb{R})$  to  $O_n$  since  $GL_n$  deformation retracts to  $O_n$ .

**Example** (iii)  $GL_n^+(\mathbb{R}) \subseteq GL_n(\mathbb{R})$  - Amounts to choosing an orientation on E.

**Example** (iii)  $GL_n(\mathbb{C}) \subseteq GL_{2n}(\mathbb{R})$  - Amounts to choosing  $J : E \to E$  such that  $J^2 = \text{Id}$ . In other words  $J \in \Gamma(E^* \otimes E) = \Gamma(\text{Hom}(E, E))$ . This makes  $E_x$  into a complex vector space.

**Example** (iv)  $SU_n \subseteq GL_{2n}(\mathbb{R})$  - Amounts to choosing (i) J as before, (ii) an inner product  $\langle , \rangle$  such that  $\langle Jv, Jw \rangle = \langle v, w \rangle$  and (iii) a global section  $\phi \in \Gamma(\bigwedge_{\mathbb{C}}^n E)$ .

**Example** (v) Octonions - Let  $\ominus$  denote the octonions and  $G_2 = \operatorname{Aut}(\ominus)$ . We have  $G_2 \subseteq SO(7) \subseteq GL(7) = GL(\operatorname{Im} \ominus)$ . Reduction to  $G_2$  gives a bundle ??

# **1.2** *G*-Bundles

Let G be a topological group and P be a topological space.

**Definition 1.2.1** *P* is called a **right** *G*-space if there exists a continuous map  $P \times G \rightarrow P$  such that

$$(p \cdot g_1) \cdot g_2 = p \cdot (g_1 g_2) \forall p \in P, g_1, g_2 \in G.$$

P is a free G space if there are no fixed points of the G action.

Let  $\pi: P \to P/G \equiv X$  be the orbit map. It is continuous if we put the quotient topology on X.

**Definition 1.2.2** A morphism of (right) G-spaces over X ( $\pi : P \to X, \tilde{\pi} : \tilde{P} \to X$ ) is a map  $h : P \to \tilde{P}$  such that  $\tilde{\pi} \circ h = \pi$  and h(pg) = h(p)g.

The trivial right G space over X is  $X \times G$  with right multiplication on G.

**Definition 1.2.3** A principal G bundle over a topological space X is a free right G space  $\pi : P \to X$  which is locally trivial (with fibre G).

**Example** (i) H < G closed subgroup -  $\pi : G \to G/H$  is a principal H bundle. For example  $SO_n \to SO_n/SO_{n-1}$  corresponds to an oriented o.n. tangent frame bundle.

**Example** (ii) Universal cover - Let  $\pi : \tilde{X} \to X$  be the universal cover of X. It is a principal  $\pi_1(X)$  bundle.

**Example** (iii) Normal covers - Let  $\pi : X_H \to X$  be a normal cover of X with  $\pi_1(X_H) = H \triangleleft \pi_1(X)$ . Then it is a principal  $\pi_1(X)/H$  bundle.

**Example** (iv) Frame bundles - Let  $E \to X$  be a vector bundle. One can construct the frame bundle  $P_{GL}(E) \xrightarrow{\pi} X$  where  $\pi^{-1}(x) =$  all basis of  $E_x$ . Observe that for any two frame B, B' of  $E_x$  there exists  $g \in GL_n(R)$  such that B = B'g. This turns it into a principal  $GL_n(\mathbb{R})$  bundle.

If we have a metric on E then we can define the bundle of o.n. frames (denoted by  $P_O(E)$ ) which is a principal  $O_n$  bundle. Further, if E has an orientation then there is the  $P_{SO}(E)$ , a principal  $SO_n$  bundle consisting of oriented o.n. frames.

**Example** (v) Let  $g \in SO_n$ . Considering the columns of g as vectors in  $\mathbb{R}^n$  we may think of g as a *n*-tuple of vectors, i.e.,  $g = (e_1 | \cdots | e_n)$ . This allows us to define

$$\pi: SO_n \to S^{n-1}, \ g \mapsto e_1.$$

Observe that  $\pi^{-1}(e_1) =$  all oriented o.n. bases of  $e_1^{\perp} = T_{e_1}S^{n-1}$ . This gives us a principal  $SO_{n-1}$  bundle.

**Definition 1.2.4** Let  $E \to X$  be a vector bundle with a  $G \subseteq GL_n(\mathbb{R})$  structure. Then E is given by a cocycle, i.e.,  $E = E(\mathcal{U}, g), g = \{g_{ij}\}_{i,j\in I}$  such that  $g_{ij} : U_i \cap U_j \to G$ . The associated principal G-bundle is defined as follows :

For each  $i \in I$  we take  $U_i \times G$  with G acting on the right. A change of trivialization (or an equivalence relation  $\sim$ ) would be given by

$$(U_i \cap U_j) \times G \to (U_i \cap U_j) \times G$$
  
 $(x,g) \mapsto (x,g_{ij}(x).g).$ 

Set

$$P := \coprod_i (U_i \times G) / \sim$$

to be the required bundle over X.

Observe that  $P_{GL_n}(E)$  is just the frame bundle and  $P_{O_n}(E)$  is the o.n. frame bundle of the Riemannian vector bundle E. In general  $P_G(E)$  is a subset of  $P_{GL_n}(E)$ . In other words we have



and dividing the inclusion by G we have

$$P_G(E)/G \to P_{GL}(E)/G$$

$$\cong X \xrightarrow{\tilde{\pi}}_{s} s$$

Thus the following tells us when such reductions exist.

**Lemma 1.2.5** Let  $P_G \to X$  be a principal *G*-bundle and  $H \subset G$  be a closed subgroup. Then reductions  $P_H \subset P_G$  are in one-to-one correspondence with sections *s* of the fibre bundle  $P_G/H \to X$  with fibre G/H.

**Example** (i)  $H = \{1\}$  - The trivializations of X correspond bijectively to  $\Gamma(P_G)$ . **Example** (ii)  $H = O_n \subset GL_n = G$  for  $P_{GL_n}(E) \to X$  - Since  $GL_n/O_n$  is just the positive definite inner products on  $\mathbb{R}^n$ ,

 $P_{GL_n}(E)/O_n \cong$  bundle of positive definite inner products on E

Thus reductions to  $O_n$  are in bijective correspondence with  $\Gamma(P_{GL_n}(E)/O_n)$ .

Using Čech cohomology we have another approach to principal G-bundles. Let  $\rho : G \to GL_n$  be a representation of G (*n* arbitrary).

**Definition 1.2.6** Define the associated vector bundle for a principal G-bundle  $P \rightarrow X$  and a given  $\rho$  to be

$$E_{\rho} := P \times_G \mathbb{R}^n \equiv P \times \mathbb{R}^n / G$$

where G acts by

$$g(p,v) := (pg^{-1}, \rho(g)v).$$

The associated bundle construction will be shortened to ABC. If  $\{g_{ij}\}$  are the transition functions for P then  $\{\rho \circ g_{ij}\}$  are the transition functions for  $E_{\rho}$ . A special case is the inclusion  $G \hookrightarrow GL_n$ .

**Example** (i) Let  $P = P_{GL_n}(E)$  and

$$\rho: GL_n \to GL(\underbrace{\mathbb{R}^n \oplus \cdots \oplus \mathbb{R}^n}_m).$$

Then  $E_{\rho} = E \oplus \cdots \oplus E$ . **Example** (ii) Let  $P = P_{GL_n}(E)$  and

$$\rho: GL_n \to GL(\underbrace{\mathbb{R}^n \otimes \cdots \otimes \mathbb{R}^n}_m).$$

Then  $E_{\rho} = E \otimes \cdots \otimes E$ .

**Example** (iii) Let  $P \to X$  be a principal G-bundle and  $\rho: G \to GL_n$ . Then there are associated representations  $\otimes^k \rho$ ,  $\otimes^k \rho$  and  $\wedge^k \rho$ . Then

$$E_{\oplus^k\rho} = \oplus^k E_{\rho}, \ E_{\otimes^k\rho} = \otimes^k E_{\rho}, \ E_{\wedge^k\rho} = \bigwedge^k E_{\rho}$$

For a fixed P, ABC sends representations of G into vector bundles (with G structure) on X.

**Example** (iv) Let  $\tilde{X} \to X$  be the universal covering map. This is a principal  $\pi_1(X)$ bundle. Let  $\rho: \pi_1(X) \to GL_n$ . Since  $\pi_1(X)$  has the discrete topology,  $E_\rho$  is a vector bundle with *locally constant* transition functions.

Suppose  $h: P \to \tilde{P}$  is an isomorphism. Then by

$$U_i \times G \stackrel{\phi_i}{\leftarrow} \pi^{-1}(U_i) \stackrel{h}{\to} \tilde{\pi}^{-1}(U_i) \stackrel{\phi_i}{\to} (x,g) \mapsto (x,h_i(x)g)$$

we have maps  $h_i: U_i \to G$ . Using the commutative diagram below (corresponding to the a change of trivialization)

$$\begin{array}{c|c} (U_i \cap U_j) \times G \xrightarrow{h_i} (U_i \cap U_j) \times G \\ g_{ji} & & & \downarrow \tilde{g}_{ji} \\ (U_i \cap U_j) \times G \xrightarrow{h_j} (U_i \cap U_j) \times G \end{array}$$

we have

$$(x,g) \xrightarrow{h_i} (x,h_i(x)g)$$

$$\downarrow^{g_{j_i}} \qquad \qquad \downarrow^{\tilde{g}_{j_i}}$$

$$(x,g_{j_i}(x)g) \xrightarrow{h_j} (x,h_j(x)g_{j_i}(x)g) = (x,\tilde{g}_{j_i}(x)h_i(x)g)$$

As a consequence we get

$$\tilde{g}_{ij}(x) = h_j(x)g_{ji}(x)h_i^{-1}(x).$$

Using the Čech cohomology theory we see that

$$\operatorname{Prin}_G(X) \cong H^1(X, G).$$

Thus for  $G \subset GL_n$ , a closed subgroup,

{isomorphism classes of rank n vector bundles with structure group G}

 ${{ \ \ } \ \ } \ ^{1-1}_{\ \ } \label{eq:2.1}$  {isomorphism classes of principal  $G\text{-bundles}\}$ 

since for a vector bundle E the associated principal G-bundle has the same transition functions. Conversely, given a principal G-bundle using the ABC we get a rank n vector bundle.

# **1.3** Classification of Bundles

We want to classify isomorphism classes of vector bundles of rank n over a compact, Hausdorff space X. For this we need to study the grassmanians. Recall that

$$G_n(\mathbb{R}^N) \equiv \{n - \text{dimensional linear subspaces of } \mathbb{R}^N\}$$

which is diffeomorphic to  $O_N/(O_n \times O_{N-n})$ . We have the tautological vector bundle

$$\mathbb{E}_{n}^{N} = \{(P, v) \in G_{n}(\mathbb{R}^{N}) \times \mathbb{R}^{N} | v \in P\}$$

$$\downarrow^{\pi}_{V}$$

$$G_{n}(\mathbb{R}^{N})$$

The nested sequence of inclusions  $\mathbb{R}^N \subset \mathbb{R}^{N+1} \subset \mathbb{R}^{N+2} \subset \cdots$  (via the first  $N, N+1, \ldots$  coordinates resp.) we have the following :

**Definition 1.3.1** Let  $G_n(\mathbb{R}^\infty)$  be the union of  $G_n(\mathbb{R}^N)$ 's as N varies. We provide it with the **direct limit topology** coming from the compact sets

$$K_1 \subset K_2 \subset K_3 \subset \cdots$$

where  $K_k = G_n(\mathbb{R}^{n+k})$ . A set  $C \subseteq G_n(\mathbb{R}^{\infty})$  is closed if and only if  $C \cap K_k$  is closed in  $K_k$  for all k.

We may define a space  $\mathbb{E}_n \to G_n(\mathbb{R}^\infty)$  by defining it to be the union of  $\mathbb{E}_n^N$  and putting the direct limit topology. We shall need some facts from general topology to prove that this a vector bundle. We restate

**Definition 1.3.2** Let Y be a space with a filtration

$$K_1 \subset K_2 \subset K_3 \subset \cdots$$

such that Y is the union of it and each  $K_j$  is a compact Hausdorff space. Further  $K_j \subset K_{j+1}$  is an embedding. The **weak/direct limit/compactly generated** topology is defined by saying :

a subset C is closed if and only if  $C \cap K_j$  is closed in  $K_j$  for all j.

**Example** (i)  $G_n(\mathbb{R}^{n+1}) \subseteq G_n(\mathbb{R}^{n+2}) \subseteq \cdots$  **Example** (ii)  $S^n \subset S^{n+1} \subset \cdots$ **Example** (iii)  $\{K_i\}_{i\geq 1}, K_i = \{x \in \mathbb{R}^i \text{ s.t. } \|x\| \leq i\}.$  **Lemma 1.3.3** Let  $Y = \bigcup_{i \ge 1} K_i$  be as above. Then a closed subset  $C \subset Y$  is compact if and only if  $C \subset K_n$  for some n.

**Proof** The 'if' direction is trivial. Conversely, suppose on the contrary  $C \not\subseteq K_n$  for all n. Then choose  $x_n \in C \setminus K_n$ . This sequence has no convergent subsequence, a contradiction.

**Definition 1.3.4** Given topological spaces X, Y define [X, Y] to be the homotopy classes of continuous maps from X to Y.

It follows from the lemma that

**Corollary 1.3.5** If  $Y = \bigcup_{i>1} K_i$  has the weak topology and if X is compact then

$$[X,Y] = \lim_{\longrightarrow_j} [X,K_j].$$

Consequently we have :

$$\pi_n(Y) = [S^n, Y] = \lim_{\longrightarrow_j} [X, K_j].$$

We state without proof the following :

**Proposition 1.3.6** Let  $V_1 \subset V_2 \subset \cdots$  and  $W_1 \subset W_2 \subset \cdots$  be locally compact Hausdorff spaces with weak topologies. Let there be filtrations

$$K_1 \subset K_2 \subset \cdots \subset K'_i \subset V_i$$
  
 $L_1 \subset L_2 \subset \cdots \subset L'_i \subset W_i.$ 

Then  $V \times W$  is homeomorphic to the direct limit of the  $K_j \times L_i$ 's.

We are ready to prove that  $\mathbb{E}_n \xrightarrow{\pi} G_n(\mathbb{R}^\infty)$  is a vector bundle. Given  $P \in G_n(\mathbb{R}^\infty)$  (this means  $P \in G_n(\mathbb{R}^N)$  for some N), set

$$U(P) := \left\{ Q \in G_n(\mathbb{R}^\infty) | P^\perp \cap Q = \{0\} \right\}$$
$$= \bigcup_{M \ge N} \left\{ Q \in G_n(\mathbb{R}^M) | P^\perp \cap Q = \{0\} \text{ in } \mathbb{R}^M \right\}.$$

This is an open set. Now pick a basis  $v_1, \ldots, v_n$  of P. Define continuous sections

$$\sigma_k : U(P) \to \pi^{-1}(U(P)), \ Q \mapsto w_k \in Q \text{ s.t. } \mathrm{pr}^{\perp}(w_k) = v_k$$

where the map  $pr^{\perp}$  maps Q isomorphically to P via projection from  $\mathbb{R}^M$  to P. Thus it is just the frame bundle of  $G_n(\mathbb{R}^\infty)$ . There are principal and o.n. frame bundles also.

**Definition 1.3.7**  $St_n^{\circ}(\mathbb{R}^N)$  is the set of o.n. n-frames in  $\mathbb{R}^N$ . This is called the **Stiefel** manifold and is compact.

Alternatively

$$St_n^{\circ}(\mathbb{R}^N) = \{(e_1, \cdots, e_n) \in \underbrace{\mathbb{R}^N \times \cdots \times \mathbb{R}^N}_n | e_i \text{'s are mutually o.n.} \}$$

and looks like the quotient  $O_N/O_{N-n}$ . There is a natural map

$$\rho: St_n^{\circ}(\mathbb{R}^N) \to S^{N-1}, \ (e_1, \cdots, e_n) \mapsto e_1.$$

This makes it into fibre bundle with  $St_{n-1}^{\circ}(\mathbb{R}^{N-1})$  as its fibre. Similarly we have the fiber bundle

$$St^{\circ}_{n-2}(\mathbb{R}^{N-2}) \longrightarrow St^{\circ}_{n-1}(\mathbb{R}^{N-1})$$

$$\downarrow$$

$$S^{N-2}.$$

Proceeding recursively we get a fibre bundle

$$S^{N-n} \longrightarrow St_2^{\circ}(\mathbb{R}^{N-n+2})$$

$$\downarrow$$

$$S^{N-n+1}.$$

Using the long exact sequence for a fibration we see that  $St_n^{\circ}(\mathbb{R}^N)$  is (N-n-1) connected. Consequently

$$\pi_k(St_n^\circ) = \lim_{N \to \infty} \pi_k(St_n^\circ(\mathbb{R}^N)) = 0 \ \forall \ k.$$

Since  $St_n^{\circ}$  has a CW complex structure, by Whitehead's theorem on homotopy equivalence of CW complexes we conclude :

**Theorem 1.3.8 (Whitehead)**  $St_n^{\circ}$  is contractible.

Finally we state

**Theorem 1.3.9** Let X be a compact Hausdorff space. Then the induced bundle construction gives a bijection

$$[X, G_n(\mathbb{R}^\infty)] \cong Vect_n(X), \ f \mapsto f^* \mathbb{E}_n$$

**Proof** Given  $E \to X$ , a vector bundle of rank n, it suffices to find a continuous map  $F: E \to \mathbb{R}^N$  lo large N which is linear and injective on every fibre  $E_x, x \in X$ . Then set  $f(x) := [F(E_x)] \in G_n(\mathbb{R}^N)$ . It is easily verified that  $E \cong f^* \mathbb{E}_n(\mathbb{R}^N) = f^* \mathbb{E}_n$  producing the pullback :

where  $\tilde{f}(e) = (f(\pi(e), F(e))).$ 

Since the pullback by homotopic maps yield isomorphic bundles the map

$$[X, G_n(\mathbb{R}^\infty)] \xrightarrow{\Phi} Vect_n(X), \ f \mapsto f^* \mathbb{E}_n$$

is well defined and surjective. Thus every isomorphism class of vector bundle  $E \to X$ gives a unique homotopy class in  $[X, G_n(\mathbb{R}^\infty)]$ . Using the fact that two bundles are isomorphic if and only if the maps from the base to  $G_n(\mathbb{R}^\infty)$  are homotopic (Covering Homotopy Theorem) we get that  $\Phi$  is a bijection.

For each  $x \in X$  there are open sets  $W \subseteq V \subseteq U$  containing x such that

(i)  $\overline{W} \subset V, \overline{V} \subset U$ 

(ii)  $\phi: \pi^{-1}(U) \to U \times \mathbb{R}^n$  is a local trivialization.

Cover X by finitely many of these  $W_1, \ldots, W_l$ . Choose  $\rho_k : U_k \to [0, 1]$  such that it is 1 on  $\overline{W_k}$  and 0 on  $U_k \setminus V_k$ . Extend it to X by zero. Also let  $\Phi_k := \operatorname{pr} \circ \phi_k : \pi^{-1}(U_k) \to \mathbb{R}^n$ . Define

$$F: E \to \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_l,$$
$$F(e) = (\rho_1(\pi(e)\Phi_1(e), \dots, \rho_l(e)\Phi_l(e)).$$

Then F is linear and injective. With a modification this construction works for X paracompact Hausdorff spaces and in particular for manifolds and metric spaces. The diagram below commutes upto homotopy

induces one between the grassmanians :

Passing to the limit gives a map  $\sigma: G_n(\mathbb{R}^\infty) \times G_m(\mathbb{R}^\infty) \to G_{n+m}(\mathbb{R}^\infty)$  such that

$$\sigma^*(\mathbb{E}_{n+m}) = \mathbb{E}_n \oplus \mathbb{E}_m.$$

Thus if  $f_E : X \to G_n(\mathbb{R}^\infty), f_F : X \to G_m(\mathbb{R}^\infty)$  classifies E, F respectively then  $\sigma \circ (f_E, f_F) : X \to G_{n+m}(\mathbb{R}^\infty)$  classifies  $E \oplus F$ . Similarly we have tensor products

$$G_n(\mathbb{R}^\infty) \times G_m(\mathbb{R}^\infty) \xrightarrow{\tau} G_{nm}(\mathbb{R}^\infty)$$

sending (P,Q) to  $P \otimes Q$ . Also  $\tau^*(\mathbb{E}_{mn}) = \mathbb{E}_n \otimes \mathbb{E}_m$ . ??

# 1.4 Characteristic Classes

Recall that for a topological space X,  $C_n(X)$  is just the free abelian groups generated by maps  $f : \Delta^n \to X$ . Equipped with the usual boundary map  $\partial : C_n(X) \to C_{n-1}(X)$ such that  $\partial^2$  = this becomes a graded chain complex. The homology of this complex is the **simplicial homology** of X and denoted by  $H_n(X,\mathbb{Z})$ . If  $f : X \to Y$  then there is an induced  $f_* : C_*(X) \to C_*(Y)$  which descends to the homology. Now let  $\Lambda$  be an abelian group. Define

$$C^{n}(X,\Lambda) \equiv \operatorname{Hom}_{\mathbb{Z}}(C_{n}(X),\Lambda)$$
$$\delta: C^{n}(X,\Lambda) \to C^{n+1}(X,\Lambda), \ \delta\phi:=\phi \circ \partial$$

 $\partial^2 = 0$  implies  $\delta^2 = 0$ . The homology of this complex will be the **simplicial cohomology** of X with coefficients with  $\Lambda$  and denoted  $H^n(X, \Lambda)$ . For f as before, there is an induced map  $f^* : H^*(Y) \to H^*(X)$ . Under the assumption that  $\Lambda$  is a ring, there is a product structure on the cohomology groups called the **cup product** :

$$H^{l}(X,\Lambda) \otimes H^{m}(X,\Lambda) \xrightarrow{\smile} H^{l+m}(X,\Lambda)$$

such that This turns  $H^*(X, \Lambda)$  into a graded commutative ring. Finally, for  $\alpha \in C^l(X, \Lambda), \beta \in C^m(X, \Lambda)$ 

$$\alpha \sim \beta(\langle v_0, \dots, v_{l+m} \rangle) = \alpha(\langle v_0, \dots, v_l \rangle) \beta(\langle v_l, \dots, v_{l+m} \rangle).$$

For any  $\mathcal{U} \in H^{l}(G_{n}(\mathbb{R}^{\infty}), \Lambda)$  (call it a  $\mathcal{U}$ -characteristic class) we set

$$\mathcal{U}(E) \equiv f_E^*(\mathcal{U}) \in H^l(X, \Lambda)$$

for any  $f_E: X \to G_n(\mathbb{R}^\infty)$  classifying  $E \in Vect_n(X)$ .

**Lemma 1.4.1** If  $f: Y \to X$  is a continuous map of vector spaces and  $E \to X$  is a vector bundle over X then

$$\mathcal{U}(f^*E) = f^*(\mathcal{U}(E).$$

**Proof** We have

$$Y \xrightarrow{f} X \xrightarrow{f_E} G_n(\mathbb{R}^\infty) .$$

Therefore  $\mathcal{U}(f^*E) = (f_E \circ f)^*(\mathcal{U}) = f^*(f_E^*\mathcal{U}) = f^*(\mathcal{U}(E)).$  So  $E \cong F$  implies  $\mathcal{U}(E) = \mathcal{U}(F)$  for any  $\mathcal{U}$ .

**Example** (i)  $G_1(\mathbb{R}^\infty) = \mathbb{P}^\infty(\mathbb{R}) = S^\infty/\mathbb{Z}_2$  is also the direct limit of  $\mathbb{P}^n(\mathbb{R})$ 's. It is known that

$$H^*(\mathbb{P}^n(\mathbb{R}), \mathbb{Z}_2) = \mathbb{Z}_2[x]/(x^{n+1})$$

and  $H^*(\mathbb{P}^{\infty}(\mathbb{R}), \mathbb{Z}_2) = \mathbb{Z}_2[x]$ . Let  $w_1 = x \in H^1(\mathbb{P}^{\infty}, \mathbb{Z}_2) = \text{Hom}(H_1(\mathbb{P}^{\infty}), \mathbb{Z}_2)$ . Given a line bundle  $\ell \to X$ 

$$w_1(L) = f_\ell^*(w_1) \in H^1(X, \mathbb{Z}_2) = \operatorname{Hom}(\pi_1(X), \mathbb{Z}_2).$$

 $w_1(\ell)$  is the **orientation class**. For a loop  $\gamma \subseteq X$ ,  $\ell|_{\gamma}$  is trivial or the Möbius band if and only  $w_1(\ell|_{\gamma}) = 0$  or 1 respectively. In fact, the following is an isomorphism

$$Vect_1^{\mathbb{R}}(X) \xrightarrow{\cong} H^1(X, \mathbb{Z}_2).$$

To see this let  $\ell \to X$  be a line bundle and  $S(\ell) \to X$  be the unit sphere bundle which is also a principal  $\mathbb{Z}_2$ -bundle. Then  $\ell = S(\ell) \times_{\mathbb{Z}_2} \mathbb{R}$  is the associate bundle. Thus  $Vect_1^{\mathbb{R}}(X) \cong Prin_{\mathbb{Z}_2}(X)$  is just the  $\mathbb{Z}_2$  covering space of X. But the latter is just the group  $Hom(\pi_1(X), \mathbb{Z}_2) \cong H^1(X, \mathbb{Z}_2)$ .

In the complex case  $\mathbb{P}^{\infty}(\mathbb{C}) = G_1(\mathbb{C}^{\infty})$  and  $H^*(\mathbb{P}^{\infty}(\mathbb{C}), \mathbb{Z}) = \mathbb{Z}[c_1]$  where  $c_1$  generates  $H^2(\mathbb{P}^{\infty}, \mathbb{Z}) = \mathbb{Z}$ . Let  $\lambda \to X$  be a  $\mathbb{C}$ -line bundle with a classifying map  $f_{\lambda} : X \to \mathbb{P}^{\infty}$ . As before

$$\lambda = P_{S^1}(\lambda) \times_{S^1} \mathbb{C}$$

where  $P_{S^1}(\lambda)$  is the unit circle bundle of  $\lambda$ . Thus

$$Vect_1^{\mathbb{C}}(X) \cong Prin_{S^1}(X) \cong H^1(X, S^1).$$

**Lemma 1.4.2** The map  $Vect_1^{\mathbb{C}}(X) \xrightarrow{c_1} H^2(X,\mathbb{Z})$  is an isomorphism.

**Proof** The exact sequence of constant sheaves

$$0 \to \mathbb{Z} \to \mathbb{R} \to S^1 \to 0$$

gives a long exact sequence in cohomology (via Cech cohomology) :

$$0 = H^1(X, \mathbb{R}) \to H^1(X, S^1) \to H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R}) = 0.$$

The middle arrow is thus forced to be an isomorphism. To see that  $H^i(X, \mathbb{R}) = 0, i = 1, 2$ we let  $g_{ij}: U_i \cap U_j \to \mathbb{R}, g_{ij} + g_{jk} - g_{ki} \equiv 0$  on  $U_i \cap U_j \cap U_k$  be a cocycle on  $\mathcal{U} = \{U_i\}_{i \in I}$ . Take a partition function of unity  $\{\psi_i\}_{i \in I}$  define

$$h_i: U_i \to \mathbb{R}, \ h_i(x) := \sum_j g_{ij}(x)\psi_j(x).$$

For  $x \in U_i \cap U_j$ 

$$h_i(x) - h_j(x) = \sum_k g_{ik}(x)\psi_k(x) - g_{jk}(x)\psi_k(x) = \sum_k g_{ij}(x)\psi_k(x) = g_{ij}(x).$$

Hence  $H^1(X, \mathbb{R}) = 0$ . The case  $H^2(X, \mathbb{R}) = 0$  is similar. This completes the proof. Let  $j_{\mathbb{R}} : G_{n-1}(\mathbb{R}^\infty) \hookrightarrow G_n(\mathbb{R}^\infty), j_{\mathbb{C}} : G_{n-1}(\mathbb{C}^\infty) \hookrightarrow G_n(\mathbb{C}^\infty).$ 

**Proposition 1.4.3** (i)  $j_{\mathbb{R}}$  is an isomorphism on  $H^k(\cdot, \mathbb{Z}_2)$  for  $k \leq n-1$ . (ii)  $j_{\mathbb{C}}$  is an isomorphism on  $H^k(\cdot, \mathbb{Z})$  for  $k \leq 2n-1$ .

**Proof** We have the fibration in the complex case :

$$U(n) \to St_n^{\mathbb{C}}(\mathbb{C}^\infty) \to G_n(\mathbb{C}^\infty)$$

which is the hermitian o.n. frame bundle of the fibre bundle  $\mathbb{E}_n \to G_n(\mathbb{C}^\infty)$ . Since  $St_n^{\mathbb{C}}(\mathbb{C}^\infty)$  is contractible

$$\pi_k(G_n(\mathbb{C}^\infty) \cong \pi_k U(n) \; \forall \, k$$

Now the fibre bundle  $U(n-1) \to U(n) \to S^{2n-1}$  yields

 $\cdots \to \pi_k S^{2n-1} \to \pi_{k-1} U_{n-1} \to \pi_{k-1} U_n \to \pi_{k-1} S^{2n-1} \to \cdots$ 

and for k-1 < 2n-1 we get  $\pi_{k-1}U(n-1) \cong \pi_k U(n)$ . Since the diagram



commutes we get  $\pi_k G_{n-1}(\mathbb{C}^\infty) \cong \pi_k G_n(\mathbb{C}^\infty)$ . This implies that all the relative homology groups  $H_i(G_n(\mathbb{C}^\infty), G_{n-1}(\mathbb{C}^\infty))$  are zero if  $i \leq 2n-1$ . Consequently all relative cohomology groups are zero till 2n-1 and hence the theorem follows. The real case is similar.

We state two main results which will be useful in various applications to follow :

#### Theorem 1.4.4 (Cohomology of grassmanians)

 $(i)H^*(G_n(\mathbb{R}^\infty),\mathbb{Z}_2) \cong \mathbb{Z}_2[w_1,\ldots,w_n]$  where  $w_k \in H^k(G_n(\mathbb{R}^\infty),\mathbb{Z}_2)$ . Also, the map  $G_{n-1}(\mathbb{R}^\infty) \xrightarrow{g} G_n(\mathbb{R}^\infty)$  induces

 $g^* : H^*(G_n(\mathbb{R}^\infty), \mathbb{Z}_2) \to H^*(G_{n-1}(\mathbb{R}^\infty), \mathbb{Z}_2), \ w_i \mapsto w_i, \ i < n$ 

and  $kerg^* = (w_n)$ .  $(ii)H^*(G_n(\mathbb{C}^\infty),\mathbb{Z}) \cong \mathbb{Z}[c_1,\ldots,c_n]$  where  $c_k \in H^{2k}(G_n(\mathbb{C}^\infty),\mathbb{Z})$  and  $kerg^* = (c_n)$ .

**Theorem 1.4.5** Let  $H^*(G_{n+m}), \mathbb{Z}_2) = \mathbb{Z}_2[w_1, \ldots, w_{n+m}], H^*(G_n, \mathbb{Z}_2) = \mathbb{Z}_2[\overline{w_1}, \ldots, \overline{w_n}], H^*(G_m, \mathbb{Z}_2) = \mathbb{Z}_2[\tilde{w_1}, \ldots, \tilde{w_m}].$  Then the characteristic classes satisfy :

Real Case 
$$-\sigma^*(1+w_1+\cdots+w_{n+m}) = (1+\overline{w_1}+\cdots+\overline{w_n})(1+\widetilde{w_1}+\cdots+\widetilde{w_m})$$

Complex case  $-\sigma^*(1+c_1+\cdots+c_{n+m}) = (1+\overline{c_1}+\cdots+\overline{c_n})(1+\tilde{c_1}+\cdots+\tilde{c_m}).$ 

**Definition 1.4.6** Let  $E \to X$  be a vector bundle and  $f_E : X \to G_n(\mathbb{R}^\infty)$  be a classifying map. Then  $w_k(E) = f_E^*(w_k)$  is called the kth Stiefel-Whitney class of E. For the complex case,  $c_k(E) = f_E^*(c_k)$  is called the kth Chern class of E.

By the classifying theorem, there is a unique classifying map up to homotopy.

#### **Definition 1.4.7** Let $E \to X$ be a vector bundle.

(i) (Real case) The total Stiefel-Whitney class of E is  $w(E) = 1+w_1(E)+\cdots+w_n(E)$ . (ii) (Complex Case) The total Chern class of E is  $c(E) = 1 + c_1(E) + \cdots + c_n(E)$ . Let X, Y be manifolds with X compact. Suppose  $f : X \to Y$  is a smooth immersion. Then  $f^*(TY) = TX \oplus NX$  and

$$f^*w(TY) = w(f^*TY) = w(TX \oplus NX) = w(TX)w(NX).$$

**Example** (i) Let  $f : X \to \mathbb{R}^n$  be a smooth immersion. Then  $w(\mathbb{R}^n) = 1$  implies w(TX)w(NX) = 1.

**Example** (ii) Grassmanians -  $T_P(G_n(\mathbb{R}^N)) \cong \text{Hom}(P, P^{\perp})$ . At P we embed  $\text{Hom}(P, P^{\perp})$  as a coordinate chart into  $G_n(\mathbb{R}^N)$ . For n = 1,

$$T\mathbb{P}^{N-1} = \operatorname{Hom}(\lambda, \lambda^{\perp}) = \lambda^* \otimes \lambda^{\perp}.$$

The exact sequence of bundles

$$0 \to (\lambda^* \otimes \lambda) \cong \mathbb{R} \to (\lambda^*)^N \to \lambda^* \otimes \lambda^\perp \to 0$$

imply  $\mathbb{R} \oplus T\mathbb{P}^{N-1} = (\lambda^*)^N$ . Thus

$$w(\mathbb{P}^{N-1}) := w(T\mathbb{P}^{N-1}) = w((\lambda^*)^N) = w(\lambda^*)^N = (1+w_1(\lambda^*))^N = (1+w_1)^N.$$

**Example** (iii) For the complex case we get

$$c(\mathbb{P}^{N-1}) = (1 + c_1(\lambda^*))^N = (1 - c_1(\lambda))^N.$$

**Example** (iv) Consider  $\mathbb{P}^4(\mathbb{R})$ . Then

$$w(\mathbb{P}^4) = (1+w_1)^5 = 1+w_1+w_1^4.$$

If  $f : \mathbb{P}^4 \to \mathbb{R}^k$  is an immersion then  $w(\mathbb{P}^4)w(N\mathbb{P}^4) = 1$ . If  $w(N\mathbb{P}^4) = 1 + a_1w_1 + \cdots + a_{k-4}w_1^{k-4}$  then solving for  $a_i$ 's we get  $a_1 = a_2 = a_3 = 1$  and  $a_l = 0$  if  $l \ge 4$ . Thus  $w(N\mathbb{P}^4) = 1 + w_1 + w_1^2 + w_1^3$ . In particular, dim  $\mathbb{NP}^4 \ge 3$ . Consequently

**Theorem 1.4.8** There is no immersion of  $\mathbb{P}^4$  into  $\mathbb{R}^6$ .

But we also have

**Theorem 1.4.9 (Whitney)** There is an immersion of  $\mathbb{P}^4$  into  $\mathbb{R}^7$ ,

It is a basic fact that a compact embedded submanifold  $M \subseteq X$  of codimension q and oriented normal bundle defines an integral cohomology class  $[M] \in H^q(X, \mathbb{Z})$ . The idea is as follows:

Let  $f: N \to X$  be a closed oriented manifold of dim q. By the transversality theorem make  $f \pitchfork M$ . Then M # N counted with proper signs gives an integer which is defined to be [M](N). Let  $N_0, N_1$  be two closed manifolds of dim q. If there is an oriented manifold W of dimension q + 1 such that  $\partial W = N_0 = N_1$ . Let  $F: W \to X$  be a map. We may assume  $F \pitchfork M$ . Since

$$[M](\partial W) = [M](N_0) - [M](N_1)$$

on one hand and  $\delta[M] = 0$  on the other

$$0 = \delta[M](W) = [M](N_0) - [M](N_1).$$

Yet another view is to treat [M] as a closed differential form  $\tau$  of deg q supported in  $U_{\varepsilon}(M)$  such that

$$\int_{f(N)} \tau = \int_N f^*(\tau) = f(N) \# M, \ \int_{\text{normal disk}} \tau = 1.$$

Note that if X is oriented then  $H_{n-q}(X,\mathbb{Z}) \cong H^q_{\text{cpt}}(X,\mathbb{Z})$ .

Let  $E \xrightarrow{\pi} X^{\text{cpt}}$  be a smooth complex vector bundle of rank n. Let  $\mathcal{Z} \subseteq E$  be the **zero** section. It is a normally oriented submanifold. Let  $\sigma : X \to E$  be a cross section s.t.  $\sigma \pitchfork \mathcal{Z}$ .



Then  $\operatorname{zero}(\sigma) = \sigma^{-1}(\mathcal{Z})$  is a (complex codim n) normally oriented submanifold.

**Exercise**  $\sigma_* : N(\operatorname{zero}(\sigma)) \xrightarrow{\cong} E|_{\operatorname{zero}(\sigma)}$ .

**Definition 1.4.10**  $c_n(E) = [zero(\sigma)].$ 

Let  $\sigma_0, \sigma_1 \in \Gamma(E)$  be two sections transversal to  $\mathcal{Z}$ . Consider  $\sigma : X \times [0, 1] \to E$  defined by

$$\sigma(x,t) = (1-t)\sigma_0(x) + t\sigma_1(x).$$

 $\sigma \pitchfork \mathcal{Z}$  in a neighbourhood of  $\partial(X \times [0,1])$ ; so approximate  $\sigma$  by  $\tilde{\sigma} \pitchfork \mathcal{Z}$  such that

$$\tilde{\sigma} = \begin{cases} = \sigma_0 & \text{near } X \times \{0\} \\ = \sigma_1 & \text{near } X \times \{1\}. \end{cases}$$

Therefore  $\tilde{\sigma}^{-1}(\mathcal{Z})$  is a codim 2*n* normally oriented submanifold of  $X \times [0,1]$  with  $\sigma_i^{-1}(\mathcal{Z}), i = 0, 1$  as boundary components. Thus the definition of  $c_n(E)$  makes sense.

**Remarks** (i) Let  $f: X \to Y$  be a smooth map and  $E \to X$  a complex vector bundle of rank n.

$$\begin{array}{cccc}
f^*E & \xrightarrow{f} & E \\
& & & \pi & \sigma \\
& & & & & Y & \xrightarrow{f} & X
\end{array}$$

If  $f \pitchfork \operatorname{zero}(\sigma)$  then  $\sigma \circ f \pitchfork \mathcal{Z} \subseteq f^*E$  and  $f^{-1}(\operatorname{zero}(\sigma)) = \operatorname{zero}(\sigma \circ f)$ .

(ii)  $c_n(E) = 0$  if and only if there exists  $\sigma \in \Gamma(E)$  such that  $\sigma(x) \neq 0$  for all  $x \in X$ .

**Theorem 1.4.11** Let  $E \to X$  be a complex vector bundle of rank n over a compact manifold X. Suppose  $f_E : X \to G_n(\mathbb{C}^\infty)$  is the classifying map. Then  $f_E$  is homotopic to  $\tilde{f} : X \to G_{n-1}(\mathbb{C}^\infty) \subset G_n(\mathbb{C}^\infty)$  if and only if  $c_n(E) = 0$ .

**Proof** Let  $c_n(E) = 0$ . Thus there is a non-vanishing section which implies  $E \cong E_0 \oplus \mathbb{C}$ . Consequently

$$f_E \cong f_{E_0 \oplus \ell} = \phi \circ \tilde{f}_{E_0}$$

where  $\phi: G_{n-1}(\mathbb{C}^{\infty}) \subset G_n(\mathbb{C}^{\infty})$  for  $\mathbb{C}^N = \mathbb{C}^{N-1} \oplus \ell, N \ge n$ . Conversely, if  $\tilde{f}$  exists then  $c_n(E) = \tilde{f}^*(c_n(\mathbb{E}_{n-1})) = 0$ .

Let N large and set  $\ell_0$  to be the first coordinate line in  $\mathbb{C}^N$ , i.e.,  $\mathbb{C}^N = \ell_0 \oplus \mathbb{C}^{N-1}$ .

$$\Sigma_n = \{ P \in G_n(\mathbb{C}^N) : P \subseteq \ell_0^\perp \} = G_n(\mathbb{C}^{N-1})$$

We have  $j: G_{n-1}(\mathbb{C}^{N-1}) \to G_n(\mathbb{C}^{\infty})$  sending  $Q \mapsto \ell_0 \oplus Q$ .

- (1)  $\operatorname{codim}_{\mathbb{C}}(\Sigma_n) = n(N-n) n(N-n-1) = n$  and  $\operatorname{codim}_{\mathbb{R}}(\Sigma_n) = 2n$ .
- (2) There is a section  $u \in \Gamma(\mathbb{E}_n)$  given as follows: Fix a unit vector  $u_0 \in \ell_0$  and set

$$u(P) = \pi_P(u_0)$$

where  $\pi_P : \mathbb{C}^N \to P$  is the orthogonal projection on P.  $\operatorname{zero}(u) = \{P | P \perp \ell_0\} = \Sigma_n$ . Check that this vanishes non-degenerately and so  $\Sigma_n = c_n(\mathbb{E}_n)$  defined as before.

(3)  $G_{n-1}(\mathbb{C}^{N-1}) \hookrightarrow G_n(\mathbb{C}^N) \setminus \Sigma_n$  is a deformation retract. Define  $\ell_{P,t} \equiv \mathbb{C}\{(1-t)u_0 + t\pi_P(u_0)\}$  and

$$\psi_t : G_n(\mathbb{C}^N) \setminus \Sigma_n \to G_n(\mathbb{C}^N) \setminus \Sigma_n, \ t \in [0,1]$$
$$\psi_t(P) = (P \cap \ell_0^{\perp}) \oplus \ell_{P,t}.$$

Thus  $\psi_0(P) = ((P \cap \ell_0^{\perp}) \oplus \ell_0) \in j(G_{n-1}(\mathbb{C}^{N-1})), \ \psi_1(P) = P$  and  $\psi_t$  fixes  $G_{n-1}(\mathbb{C}^{N-1})$  point wise.

(4)  $\mathbb{E}_n|_{G_n\setminus\Sigma_n} \cong \mathbb{E}_{n-1} \oplus \mathbb{C}$ . Recall that for a complex vector bundle  $E \to X$ ,  $c_n(E) = 0$  if and only if  $f_E$  is a homotopic to a map into  $G_{n-1}(\mathbb{C}^{N-1})$ . 789

Let  $E \to X$  be a rank *n* complex vector bundle. Then  $c_n(E) = [\operatorname{zero}(\sigma)] \in H^{2n}(X, \mathbb{Z})$ for any section  $\sigma \pitchfork \mathcal{Z}$ . If *E* admits a nowhere vanishing section then  $c_n(E) = 0$ . 2 Transversality Theory

# 2.1 Transversality Theory

We begin with a review of definitions :

**Definition 2.1.1** Let  $f : X \to Y$  be a  $C^1$  map between manifolds.  $y \in Y$  is called a regular value if  $f_x : T_x X \to T_y Y$  is surjective for all  $x \in f^{-1}(y)$ .

If  $y \notin f(X)$  then it is also called a regular value. A value which is not a regular value is called a **critical value**. We shall use the following notations :

 $R_f \subseteq Y$  - the set of regular values

 $C_f \subseteq X$  - the set of critical points

 $f(C_f) \subseteq Y$  - the set of critical values.

**Definition 2.1.2**  $S \subseteq X$  is a  $C^r$  submanifold of codimension k if for all  $x \in S$  there is an open set U containing x and a  $C^r$  chart

$$\phi: U \xrightarrow{\cong} B \equiv \{ x \in \mathbb{R}^n \, s.t. \, \|x\| < 1 \}$$

such that  $\phi(U \cap S) = B \cap \mathbb{R}^{n-k}$  where  $\mathbb{R}^{n-k} \hookrightarrow \mathbb{R}^n$  via the first n-k coordinates.

We know that if  $f : X \to Y$  is a  $C^r$  map and  $y \in Y$  is a regular value of f then  $f^{-1}(y)$  is a  $C^r$  submanifold (of codimension = dim Y) in X. One can generalize this via transversality.

**Definition 2.1.3** Let  $f: X \to Y$  be a  $C^1$  map and let  $S \subseteq Y$  be a submanifold. Then f is transversal to S (denoted  $f \pitchfork S$ ) if  $f_x(T_xX) + T_{f(x)}S = T_{f(x)}Y$  for all  $x \in f^{-1}(S)$ .

If  $f: X \to Y$  is a  $C^r$  map and  $S \subseteq Y$  is a  $C^r$  submanifold of codimension k and  $f \pitchfork S$ then  $f^{-1}(S)$  is a submanifold (of codimension k) in X. Note that if dim  $X_i$  codim Sthen  $f \pitchfork S$  if and only if  $f(X) \cap S = \phi$ .

**Definition 2.1.4** A  $C^1$  map  $f : X \to Y$  is an **embedding** if it is an injective immersion. It will be called a **proper embedding** if it is proper and an embedding.

**Exercise** The image of a proper embedding is a closed set and a submanifold.

We will also need

#### Theorem 2.1.5 (Sard's Theorem)

Let  $f: X \to Y$  be a  $C^r$  map where  $r > min\{0, dim X - dim Y\}$ . Then  $f(C_f)$  has measure zero and  $R_f$  is residue, i.e., contains a countable intersection of open dense sets.

What follows is a discussion of embedding manifolds in  $\mathbb{R}^n$ .

**Theorem 2.1.6** Every compact  $C^r$  manifold  $(r \ge 1)$  admits a proper embedding into  $\mathbb{R}^N$  for some N.

**Proof** There exists finitely many local coordinate charts  $\phi_j : U_j \to 2B := B_2(0)$  and  $X = \bigcup_{j=1}^l \phi_j^{-1}(B)$ . Choose a smooth map  $\rho : [0, 2) \to [0, 1]$  such that

$$\rho(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & x \ge 3/2. \end{cases}$$

Define  $\rho_j(x) = \rho(||\phi_j(x)||)$  and extend by 0 on  $X \setminus U_j$ . Set

$$\Phi: X \to \mathbb{R}^{2l}, \ x \mapsto (\rho_1 \phi_1, \rho_1, \cdots, \rho_l \phi_l, \rho_l).$$

Check that  $\Phi$  is an immersion. If  $\Phi(x) = \Phi(y)$  then  $\rho_j(x)\phi_j(x) = \rho_j(y) = \phi_j(y)$  and  $\rho_j(x) = \rho_j(y)$  for all j. This implies that x = y.

**Theorem 2.1.7** Let  $X^n$  be a compact manifold of class  $C^r, r \ge 2$ . Then X admits a  $C^r$  embedding  $X \hookrightarrow \mathbb{R}^{2n+1}$ .

**Proof** We may assume, using the previous theorem, that  $X \subseteq \mathbb{R}^N$  for some N. Assume  $N \ge 2n+2$ . Fix a hyperplane  $\mathbb{R}^{N-1} \subseteq \mathbb{R}^N$ . For each  $u \in S^{N-1} \setminus \mathbb{R}^{N-1}$  we have a linear projection  $\pi_u : \mathbb{R}^N \to \mathbb{R}^{N-1}$  generated by

$$x \mapsto x, x \in \mathbb{R}^{N-1}$$
 and  $u \mapsto 0$ .

We claim that for a residual set of such u's  $\pi_u : X \to \mathbb{R}^{N-1}$  is an embedding. Applying induction with the claim then finishes the proof. So consider

$$F: X \times X \setminus \Delta \to S^{N-1}, \ (x, y) \mapsto (x - y) / \|x - y\|.$$

Then  $\pi_u(x) = \pi_u(y)$  if and only if x - y = tu for some  $t \in \mathbb{R}$  which is equivalent to  $(x - y)/||x - y|| = \pm u$ . Since dim  $(X \times X \setminus \Delta) = 2n < N - 1$ , by Sard's theorem  $S^{N-1} \setminus \text{Im } F$  is dense. So we can choose u such that  $u \notin \text{Im } F$ . For such a choice of  $u \in S^{N-1}$ ,  $\pi_u$  is one-to-one.

Now observe that  $\pi_u|_X$  is an immersion is equivalent to  $\pi_u|_{TxX}$  is injective which is equivalent to  $u \notin T_x X$  for all  $x \in X$ . Thus it suffices to consider the unit tangent bundle  $T_1 X$  - a compact manifold of class  $C^{r-1}$  and dimension 2n - 1. Sard's theorem applied to the (composed) map

$$T_1 X \subseteq \mathbb{R}^N \times S^{N-1} \xrightarrow{\pi_2} S^{N-1}$$

where dim  $T_1X = 2n - 1 < N - 1 = \dim S^{N-1}$  we get that  $S^{N-1} \setminus \pi_2(T_1X)$  is open and dense. Thus

$$S^{N-1} \setminus (\pi_2(T_1X) \cup \operatorname{Im} F) = (S^{N-1} \setminus \pi_2(T_1X)) \cap (S^{N-1} \setminus \operatorname{Im} F)$$

is also dense. Consequently,  $\pi_u$  is an embedding for almost all  $u \in S^{N-1}$ .

**Corollary 2.1.8** If  $X^n$  is a compact  $C^r$  manifold  $(r \ge 2)$  then it can be immersed in  $\mathbb{R}^{2n}$ .

This follows from the proof above since the last part of the argument still goes through with one less dimension.

**Theorem 2.1.9** Let  $X^n$  be a compact  $C^r$  manifold with  $r \ge 2$ . Given any  $C^r$  map  $f: X \to \mathbb{R}^N$   $(N \ge 2n+1)$  and  $\varepsilon > 0$  there is an embedding  $g: X \to \mathbb{R}^N$  such that  $\max_{x \in X} ||f - g|| < \varepsilon$ .

??

**Proposition 2.1.10** Let U be a  $C^r$  manifold  $(r \ge 2)$  of dimension n. Let  $\Phi : U \to \mathbb{R}^N$  be a  $C^r$  embedding. Suppose there exists a projection  $\pi : \mathbb{R}^N \to \mathbb{R}^M \subseteq \mathbb{R}^N (M \ge 2n+1)$  to a subspace such that  $\pi|_{\mathbb{R}^M} = Id|_{\mathbb{R}^M}$ . Then given  $\varepsilon > 0$  there exists a projection  $\pi' : \mathbb{R}^N \to \mathbb{R}^M$  such that

$$\|\pi(x) - \pi'(x)\| \le \varepsilon \|x\| \ \forall \ x \in \mathbb{R}^N$$

and  $\pi' \circ \Phi : U \to \mathbb{R}^M$  is a  $C^r$  embedding. Moreover, if  $\Phi$  is an immersion and  $M \ge 2n$  then  $\pi' \circ \Phi$  is also a  $C^r$  immersion.

**Proof** Recall that in the proof 2.1.7 we fixed  $\mathbb{R}^{N-1} \subseteq \mathbb{R}^N$  and fixed a unit vector  $u \in S^{N-1} \setminus \mathbb{R}^{N-1}$ . We considered  $\pi_u : \mathbb{R}^n \to \mathbb{R}^{N-1}$  with  $\pi_u(w + \lambda u) = w$  where  $w \in \mathbb{R}^{N-1}$ . Thus  $\pi_u : \mathbb{R}^{N-1} \times \mathbb{R} \to \mathbb{R}^{N-1}$  looks like

$$\begin{pmatrix} 1 & | v_1 \\ & \ddots & & \vdots \\ & & 1 & v_{N-1} \\ \hline 0 & \cdots & 0 & 0 \end{pmatrix}, u = \frac{1}{(1+|v|^2)^{\frac{1}{2}}} \begin{pmatrix} v_1 \\ & \vdots \\ & v_{N-1} \\ & -1 \end{pmatrix}.$$

Write  $x = (\tilde{x}, x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}$ . Then

$$\pi_u(x) = \tilde{x} + x_N v$$
, where  $v = (v_1, \cdots, v_{N-1})$ .

Now fix any  $v \in \mathbb{R}^{N-1}$  and define

$$\pi_v: \mathbb{R}^{N-1} \times \mathbb{R} \to \mathbb{R}^{N-1}, \ x \mapsto \tilde{x} + x_N v.$$

Also

$$\|\pi_0(x) - \pi_v(x)\| = |x_N| \|v\| \le \|v\| \|x\|$$

Choose v with sufficiently small norm. Going through the same arguments as in 2.1.7 we get the desired result.

**Corollary 2.1.11** Let  $f: U \to \mathbb{R}^M$  be a  $C^r$  map  $(r \ge 2)$  and  $\Phi: U \to \mathbb{R}^m$  be a  $C^r$  embedding (resp. immersion). Suppose  $M \ge 2n+1$  (resp.  $M \ge 2n$ ). Given  $\varepsilon > 0$  there exists a linear map  $L: \mathbb{R}^m \to \mathbb{R}^M$  such that

(i)  $f + L \circ \Phi : U \to \mathbb{R}^M$  is a  $C^r$  embedding (resp. immersion)

(*ii*)  $||L|| = \sup_{||y|| \le 1} ||Ly|| < \varepsilon$ .

In particular if  $\tilde{f} \equiv f + L \circ \Phi$  then  $||f(x) - \tilde{f}(x)|| \le \varepsilon ||\Phi(x)||, x \in U$ .

**Corollary 2.1.12** Assume all the hypothesis of corollary 2.1.11 and let  $U \subseteq \mathbb{R}^n$  be open. Then

$$\|D^{\alpha}f(x) - D^{\alpha}\tilde{f}(x)\| \le \varepsilon \|D^{\alpha}\Phi(x)\| \text{ for } \alpha = (\alpha_1, \cdots, \alpha_n), x \in U$$

**Exercise** Let X be a  $C^1$  manifold. Then there exists a compact exhaustion, i.e., a nested sequence of compact sets  $K_1 \subseteq K_2 \subseteq \cdots$  such that  $X = \bigcup_i K_i$  and  $K_i \subset K_{i+1}^{\circ} \forall i$ . Assuming the exercise, set  $A_i = K_i \setminus K_{i-1}^{\circ}$  and  $B_i = K_{i+1}^{\circ} \setminus K_{i-2}$ .  $A_i$ 's are like annulus radiating outside and  $B_i$ 's are open neighbourhoods of  $A_i$ 's.

**Theorem 2.1.13** Every  $C^r(r \ge 2)$  manifold of dimension n admits a proper embedding into  $\mathbb{R}^{2n+1}$  and a proper  $C^r$  immersion into  $\mathbb{R}^{2n}$ .

**Proof** Cover  $A_i$  with coordinate charts  $\{(U_{i_{\alpha}}, \phi_{i_{\alpha}})\}_{\alpha=1}^{l_i}, \phi_{i_{\alpha}} \to 2B$  and  $A \subset \bigcup_{\alpha} \phi_{i_{\alpha}}^{-1}(B)$  with  $\overline{U_{i_{\alpha}}} \subseteq B_i$ . Set

$$\Phi_{i} := (\rho_{i_{1}}\phi_{i_{1}}, \rho_{i_{1}}, \cdots, \rho_{i_{l_{i}}}\phi_{i_{l_{i}}}, \rho_{i_{l_{i}}}) : X \to \mathbb{R}^{2l_{i}}$$

where  $\rho_{i_{\alpha}}(x) = \rho(\|\phi_{i_{\alpha}}(x)\|)$  and extended by 0 on  $X \setminus U_{i_{\alpha}}$ . The construction is similar to 2.1.6. Then  $\Phi$  is a  $C^r$  embedding on a neighbourhood of  $A_i$  and is identically zero on  $X \setminus B_i$ . By choosing a projection  $\pi_i : \mathbb{R}^{2l_i} \to \mathbb{R}^{2n+1}$  we get a map

$$\psi_i := \pi_i \circ \Phi_i : X \to \mathbb{R}^{2n+1}$$

which is an embedding on a neighbourhood of  $A_i$  and zero on  $X \setminus B_i$ . Since supp  $\psi_i \subseteq A_{i-1} \cup A_i \cup A_{i+1}$ ,

$$\operatorname{supp} \psi_i \cap \operatorname{supp} \psi_j = \phi \text{ if } |i - j| > 3.$$

This prompts us to define

$$\tilde{\Psi} := \left(\sum_{j\geq 1} \psi_{4j}, \sum_{j\geq 1} \psi_{4j-1}, \sum_{j\geq 1} \psi_{4j-2}, \sum_{j\geq 1} \psi_{4j-3}\right) : X \to \mathbb{R}^{4(2n+1)}$$

which is a  $C^r$  embedding. We can successively project to get an embedding  $\tilde{\tilde{\Psi}} : X \to \mathbb{R}^{2n+1}$ . To complete the proof we shall need :

**Lemma 2.1.14** There is a  $C^r$  function  $f : X \to [0, \infty)$  such that  $f^{-1}[0, c]$  is compact for all  $c \in \mathbb{R}$ .

**Proof** By Tietze's extension theorem there exist continuous maps  $f_i : X \to [0, 1]$  such that

$$f_i(x) = \begin{cases} 1, & x \in A_i \\ 0, & x \in X \setminus B_i. \end{cases}$$

Define  $f \equiv \sum_{i} i f_{i}$ . Apply uniform approximation by a  $C^{r}$  function.

Now consider  $\Psi_1 := (\tilde{\tilde{\Psi}}, f) : X \to \mathbb{R}^{2n+2}$ . For a compact subset  $K \subseteq \mathbb{R}^{2n+2}$ ,

$$\Psi_1^{-1}(K) \subseteq f^{-1}(\pi(K))$$

where  $\pi : \mathbb{R}^{2n+2} \to \mathbb{R}$  is the projection to the last coordinate. Thus  $\Psi_1$  is proper. We project again and denote this new map by  $\Psi_1$  again. Define

$$\Psi := \Psi_1 - vf, \, v \in \mathbb{R}^{2n+1}$$

Given f this map is an embedding for almost all  $v \in \mathbb{R}^{2n+1}$ . Let  $f_0$  be any proper function (as defined in the exercise) on X. Set  $f := f_0 + e^{\|\Psi_1\|}$  and choose V such that  $\|v\| \ge 1$ . Then

$$\|\Psi_1 - v(f_0 + e^{\|\Psi_1\|})\| \ge \|v\|(f_0 + e^{\|\Psi_1\|}) - \|\Psi_1\| \ge f_0 + e^{\|\Psi_1\|} - \|\Psi_1\| > f_0.$$

Thus

$$\Psi^{-1}(\overline{B_R(0)}) = \{x | \|\Psi_1(x) - v(f_0(x) + e^{\|\Psi_1(x)\|})\| \le R\} \le f_0^{-1}[0, R]$$

is compact whence  $\Psi$  is proper.

# 2.2 Function Spaces

We set  $C^r(X,Y) = \{f | f : X \xrightarrow{C^r} Y\}$ . Fix  $f \in C^r(X,Y)$ . Choose  $U \subset X^n, K$  (compact)  $\subseteq U, V \subset Y^m$  and  $C^r$  local coordinates  $\phi : U \to \mathbb{R}^n, \psi : V \to \mathbb{R}^m$  such that  $f(K) \subseteq V$ . Set

$$\mathcal{U}_{\varepsilon}(f) = \mathcal{U}^{r}(f, (U, \phi), (V, \psi), K, \varepsilon)$$
  
:=  $\Big\{ g \in C^{r}(X, Y) | g(K) \subseteq V, \sup_{\phi(K)} \sum_{|\alpha| \leq r} \| D^{\alpha}(\psi \circ g \circ \phi^{-1}) - D^{\alpha}(\psi \circ f \circ \phi^{-1}) \| \leq \varepsilon \Big\}.$ 

**Definition 2.2.1** The weak topology on  $C^r(X,Y)$  is the topology generated by the weak basic neighbourhoods (a weak basic neighbourhood of f in  $C^r(X,Y)$  is a finite intersection of sets as above).

The proof of the following result is left as an exercise :

**Theorem 2.2.2** Suppose X is compact, of dimension n and of class  $C^r, r \ge 2$ . Then

- (i)  $C^r$ -embeddings are dense in  $C^r(X, \mathbb{R}^N)$  if  $N \ge 2n+1$  and
- (ii)  $C^r$ -immersions are dense in  $C^r(X, \mathbb{R}^N)$  if  $N \ge 2n$ .

For X compact,  $C^r(X, \mathbb{R}^N)$  is a Banach space. Define

$$||f - g|| = \sum_{i=1}^{l} \sup_{\phi_i(U_i)} \sum_{|\alpha| \le r} ||D^{\alpha}(f \circ \phi_i^{-1}) - D^{\alpha}(g \circ \phi_i^{-1})||$$

where  $\{(U_i, \phi_i)\}_{i=1}^l$  is a finite (compact) cover of X. One can also define the strong topology on  $C^r(X, Y)$  as follows. Fix  $f \in C^r(X, Y)$ ; choose a locally finite set  $\{(U_i, \phi_i)\}_{i \in I}$ of  $C^r$ -coordinates on X and a locally finite set  $\{(V_i, \psi_i)\}_{i \in I}$  of  $C^r$ -coordinates on Y and  $\{K_i^{\text{cpt}}\}_{i \in I}$  such that  $f(K_i) \subseteq V_i$  and  $K_i \subset U_i$ . Given  $\{\varepsilon_i\}_{i \in I}, \varepsilon_i > 0 \forall i \in I$  set

$$\mathcal{U} := \Big\{ g \in C^r(X, Y) | g(K_i) \subseteq V_i \,\forall \, i \in I, \, \sup_{\phi_i(K_i)} \sum_{|\alpha| \leq r} \| D^{\alpha} \tilde{g}_i - D^{\alpha} \tilde{f}_i \| \leq \varepsilon_i \,\forall \, i \in I \Big\},$$

where

$$\tilde{g}_i = \psi_i \circ g \circ \phi_i^{-1}, \ \tilde{f}_i = \psi_i \circ f \circ \phi_i^{-1}.$$

**Definition 2.2.3** We define the **strong topology** on  $C^r(X, Y)$  using such  $\mathcal{U}$  as basic neighbourhoods.

**Example**  $C^1(\mathbb{R},\mathbb{R})$  - Let  $f \in C^1(\mathbb{R},\mathbb{R})$  and  $\varepsilon : \mathbb{R} \to \mathbb{R}^{>0}$  be an arbitrary continuous function. Then

$$\mathcal{U} := \{g \text{ s.t. } \|g(x) - f(x)\|_{C^1} < \varepsilon(x) \,\forall x \in \mathbb{R}\}$$

is strongly open.

**Definition 2.2.4** The  $C^{\infty}$  topology on  $C^{\infty}(X, Y)$  is the union of all open sets from the injections

$$C^{\infty}(X,Y) \subset C^{r}(X,Y) \ \forall r \ge 1$$

where  $C^{r}(X,Y)$  is equipped with the weak or strong topology.

Note that the topology defined above doesn't depend on the ambient topology since we are taking union of all open sets. ??

Notation  $\operatorname{Imm}^{r}(X, Y) = C^{r}$ -immersions from X to Y (dim  $Y \ge \dim X$ ).  $\operatorname{Sub}^{r}(X, Y) = C^{r}$ -submersions from X to Y (dim  $X \ge \dim Y$ ).  $\operatorname{Prop}^{r}(X, Y) = \operatorname{proper} C^{r}$ -maps from X to Y.  $\operatorname{Emb}^{r}(X, Y) = C^{r}$ -embeddings from X to Y (dim  $Y \ge \dim X$ ).  $\operatorname{Diff}^{r}(X) = C^{r}$ -diffeomorphisms of X.

**Proposition 2.2.5**  $Imm^{r}(X,Y)$  is open in the strong topology on  $C^{r}(X,Y)$ .

**Proof** Let  $f \in \text{Imm}^r(X, Y)$ . Fix a locally finite coordinate covering  $\{(U_i, \phi_i)\}_{i \in I}$  for X and choose compact subsets  $K_i \subseteq U_i$  such that

(i)  $X = \bigcup_{I \in I} K_i^{\circ}$ 

(ii)  $f(K_i) \subseteq V_{\alpha(i)}$  where  $\{(V_\alpha, \psi_\alpha)\}_\alpha$  is a coordinate covering on Y. We define

$$T_i := \{ L : \mathbb{R}^n \to \mathbb{R}^m | L = d(\psi_{\alpha(i)} \circ f \circ \phi_i^{-1})_x, x \in K_i \}.$$

Then  $T_i$  is compact and

$$T_i \hookrightarrow \operatorname{Hom} \operatorname{Inj}(\mathbb{R}^n, \mathbb{R}^m) \hookrightarrow \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$$

where the last inclusion is an open map. Therefore  $\exists \varepsilon_i > 0$  such that

 $(T_i)_{\varepsilon_i} \subseteq \text{Hom Inj}(\mathbb{R}^n, \mathbb{R}^m).$ 

With this choice of  $\{\varepsilon_i\}_i$  we get a strong neighbourhood  $\mathcal{U} \subseteq \text{Imm}^r(X, Y)$  of f.  $\Box$ Similarly it can be shown

**Proposition 2.2.6** Sub<sup>r</sup>(X, Y) is open in the strong topology on  $C^{r}(X, Y)$ .

**Proposition 2.2.7**  $Prop^{r}(X,Y)$  is open in the strong topology on  $C^{r}(X,Y)$ .

**Proof** Fix  $f \in \operatorname{Prop}^{r}(X, Y)$ . Choose locally finite coordinate covering  $\{(U_{i}, \phi_{i})\}_{i \in I}$  of X,  $K_{i}^{\operatorname{cpt}} \subseteq U_{i}$  such that  $X = \bigcup_{i} K_{i}$  and coordinates  $\{(\tilde{V}_{i}, \psi_{i})\}_{i}$  on Y such that  $f(K_{i}) \subseteq V_{i}$ . We shall need :

**Lemma 2.2.8** The  $V_i$ 's can be chosen to be locally finite on Y.

**Proof** Choose a proper embedding  $Y \subseteq \mathbb{R}^N$  for some N. If

$$\lim_{i \to \infty} d(f(K_i), 0) \neq \infty$$

then there exists a subsequence  $\{i_j\}_{j\geq 1}$  and c>0 such that

$$(f(K_{i_j}) \cap \{x \text{ s.t. } \|x\| \le c\}) \ne \phi \ \forall i_j.$$

Consequently

$$f^{-1}(\lbrace x \text{ s.t. } \|x\| \le c \rbrace) \cap K_{i_j} \ne \phi \ \forall i_j.$$

Since  $K_i$ 's are locally finite this is a contradiction. Now replace (if required) the original  $\tilde{V}_i$ 's by

$$V_i := V_i \cap \{y | d(y, f(K_i)) < 1\}$$

This collection  $\{V_i\}_i$  is locally finite. Now choose  $\tilde{\varepsilon}_i$  such that

$$[f(K_i)]_{\tilde{\varepsilon}_i} \equiv \{y \in Y | d(y, f(K_i)) < \tilde{\varepsilon}_i\} \subseteq V_i.$$

This gives a neighbourhood  $\mathcal{U}$  of f in the strong topology on  $C^r(X, Y)$ . Choose  $\varepsilon_i$  such that

$$\sup_{\phi_i(K_i)} \|\psi_i \circ g \circ \phi_i^{-1} - \psi_i \circ f \circ \phi_i^{-1}\| < \varepsilon_i \Rightarrow d_{\mathbb{R}^n}(f,g) < \tilde{\varepsilon}_i \text{ on } K_i.$$

We need to show that any  $g \in \mathcal{U}$  is proper. Fix a compact set  $C \subseteq Y$ . C meets only finitely many of the  $V_i$ 's, say  $V_{i_1}, \ldots, V_{i_i}$ . Since  $f(K_i) \subseteq V_i$  holds for all i we get

$$g(K_i) \subseteq [f(K_i)]_{\tilde{\varepsilon}_i} \subseteq V_i.$$

Thus  $g(K_i) \cap C \neq \phi$  for possibly  $i = i_1, \ldots, i_l$ . Therefore

$$g^{-1}(C) \subseteq K_{i_1} \cup \cdots \cup K_{i_l}.$$

Being a closed set of a compact set, it is also compact. Hence g is proper and  $\mathcal{U} \subseteq \operatorname{Prop}^{r}(X,Y)$ .

We may use this to prove :

**Proposition 2.2.9**  $Emb^r(X,Y)$  is open in the strong topology on  $C^r(X,Y)$ .

**Proof** The set of proper immersions are open since each of them are. Fix  $f \in \text{Emb}^r(X, Y)$ and choose a locally finite coordinate neighbourhoods  $\{(U_i, \phi_i)\}_{i \ge 1}$  for X with compact subsets  $K_i \subseteq L_i \subseteq U_i$  such that

(i) 
$$K_i \subseteq L_i^\circ$$
  
(ii)  $V$ 

(ii)  $X = \bigcup_{i \ge 1} K_i^{\circ}$ .

Further, choose a locally finite family of coordinate charts  $\{(V_i, \psi_i)\}_{i\geq 1}$  for Y such that  $f(L_i) \subseteq V_i$ . Also choose  $\{\varepsilon_i\}_{i\geq 1}$  such that the neighbourhood  $\mathcal{U}$  defined with these choices consists of proper immersions. We claim that by shrinking  $\varepsilon_i$ 's sufficiently, we can make every  $g \in \mathcal{U}$  and embedding on  $L_i$  and hence on X. We shall need :

**Lemma 2.2.10** Let  $\mathcal{O}^{open} \subseteq \mathbb{R}^n$  and  $C^{cpt} \subseteq \mathcal{O}$ . Suppose  $F : \mathcal{O} \to \mathbb{R}^m$  is a  $C^1$  map which is an embedding on C. Then there exists  $\varepsilon > 0$  such that if  $G : \mathcal{O} \to \mathbb{R}^m$  is another  $C^1$  map satisfying

$$\sup_{C} \left\{ \|G - F\| + \|DG - DF\| \right\} < \varepsilon \quad (*)$$

then  $G|_C$  is an embedding.

**Proof** First observe that there exists  $\epsilon > 0$  such that (\*) implies that G is an immersion on C. Now suppose the lemma fails. Then there exists  $\{G_k\}_{k\geq 1} \subseteq C^1(\mathcal{O}, \mathbb{R}^m)$  such that

$$||G_k - F|| + ||DG_k - DF|| \to 0 \text{ as } k \to \infty.$$

But there are points  $x_k \neq y_k$  in C such that  $G_k(x_k) = G_k(y_k)$ . Passing to a subsequence if necessary assume  $x_k \to x$  and  $y_k \to y$ . This would imply F(x) = F(y) whence x = ysince F is injective. Passing to a subsequence we may assume that

$$u_n := \frac{x_n - y_n}{\|x_n - y_n\|} \to u \in S^{n-1}.$$

By Taylor expansion we get

$$\frac{\|G_k(x_k) - G_k(y_k) - DG_k(y_k)(x_k - y_k)\|}{\|x_k - y_k\|} \xrightarrow{k \to \infty} 0.$$

But the LHS of the above equals

$$\frac{\|DG_k(y_k)(x_k - y_k)\|}{\|x_k - y_k\|} = \|DG_k(y_k)u_k\| \to \|DF(y)u\| \neq 0$$

since F is an immersion. This completes the proof of the lemma.  $\Box$ Now assume as before that  $Y \subseteq \mathbb{R}^N$  for some N is a proper embedding. Set  $V_i$ 's such that  $V_i \subseteq \overline{[f(L_i)]_1}$ . Set

$$A_i = f(K_i), B_i = f(X \setminus L_i), \eta_i = d(A_i, B_i).$$

 $f(L_i)$  meets only finitely many  $V_j$ 's, say  $V_{j_1}, \ldots, V_{j_l}$ . By shrinking  $\varepsilon_i$ 's on each of the  $U_{j_k}$ 's we can arrange for

$$g(K_i) \cap g(K_{j_i} \cap (X \setminus L_i)) = \phi, \ g(K_i) \cap g(X \setminus L_i) = \phi.$$

On each  $U_j$  we change  $\varepsilon_j$  only finitely many times and hence it is permissible. This gives a strong neighbourhood  $\mathcal{U}$  of f. Verify that  $g \in \mathcal{U}$  is proper and an embedding.  $\Box$ 

**Exercise**  $f \in \text{Diff}^r(X)$  if and only if  $f: X \to X$  is a proper embedding.

**Corollary 2.2.11**  $Diff^{r}(X)$  is open in the strong topology.

The remaining section will deal with various approximation results.

**Theorem 2.2.12** If dim  $Y \ge 2 \dim X$  and  $r \ge 2$  then  $Imm^r(X, Y)$  is strongly dense in  $C^r(X, Y)$ .

**Proof** Fix  $f \in C^r(X, Y)$  and a strong neighbourhood  $\mathcal{U}$  of f as before. We may assume  $X \subseteq K_i^{\circ}$ . We shall construct a sequence of functions  $f_k : X \to Y$  such that (i)  $f_k \in \mathcal{U}_{\tilde{\mathcal{L}}}$ 

(ii)  $f_k|_{\bigcup_{j=1}^k K_j}$  is an immersion and (iii)  $f_k$  differs from  $f_{k-1}$  only on  $U_k$ . Then  $f_k \tilde{f}$  which is an immersion by the local finiteness of  $U_i$ 's. So suppose inductively that  $f_{k-1}$  is given. Consider

$$K_{k} \subseteq U_{k} \xrightarrow{f_{k-1}} V_{k}$$

$$\cong \bigvee \phi_{k} \qquad \cong \bigvee \psi_{k}$$

$$\phi_{k}(K_{k}) \subseteq \phi_{k}(U_{k}) \xrightarrow{\tilde{f}_{k-1}} \psi_{k}(V_{k}) \subseteq \mathbb{R}^{m}$$

where  $\tilde{f}_{k-1} = \psi_k \circ f_{k-1} \circ \phi_k^{-1}$ . Choose  $g_k : \phi_k(U_k) \to \mathbb{R}^M$  such that

(i)  $g_k$  is an immersion on a neighbourhood of  $\phi_k(U_k)$  and

(ii)  $g_k \equiv 0$  outside a bigger compact set in  $U_k$ .

Let  $\pi : \mathbb{R}^M \to \mathbb{R}^m$  be such that (here to use the cor 2.1.11 we need  $m \ge 2n$ ) (i)  $\|\pi_*(v)\| \le \varepsilon \|v\|$ ,

(ii)  $\tilde{f}_{k-1} - \pi g_k$  is an immersion on a neighbourhood of  $\phi_k(U_k)$ . Choosing  $\varepsilon$  small enough we can make

$$\sup_{\phi_k(U_k)} \sum_{|\alpha|| leqr} \|D^{\alpha} \tilde{f}_{k-1} - D^{\alpha} (\tilde{f}_{k-1} + \pi g_k)\| = \sup_{\phi_k(U_k)} \sum_{|\alpha| \le r} \|D^{\alpha} (\pi g_k)\|$$

as small as we line; in particular less than  $\varepsilon_k$ . Define  $f_k \equiv \psi_k^{-1}(\tilde{f}_{k-1} + \pi g_k)\phi_k$ . It will be an immersion on all of  $K_1 \cup \cdots \cup K_k$  for  $\varepsilon$  sufficiently small.

#### Lemma 2.2.13 (Basic Approximation Lemma)

Fix  $U^{open} \subseteq \mathbb{R}$ . Let  $F : U \to \mathbb{R}^m$  be of class  $C^s, 0 \le s < \infty$ . Given  $\varepsilon > 0, r > s$  and  $K^{cpt} \subseteq L^{\circ} \subseteq L^{cpt} \subseteq U$  there exists  $G : U \to \mathbb{R}^m$  of class  $C^s$  such that (i)  $G \equiv F$  in  $U \setminus L$ (ii) G is of class  $C^r$  on a neighbourhood of K(iii) G is of class  $C^r$  on an open subset where F is of class  $C^r$  and (iv)  $\sup_U \sum_{|\alpha| \le s} ||D^{\alpha}f - D^{\alpha}g|| < \varepsilon$ .

**Proof** For a suitable choice of  $\xi \in C_c^{\infty}(\mathbb{R})$  with  $\xi(t) = \xi(-t)$  we set  $\phi_{\varepsilon}(x) = \xi(||x||/varepsilon)/\varepsilon^n$  such that its integral over  $\mathbb{R}^n$  is 1. Define

$$F_{\varepsilon}(x) := \int_{\mathbb{R}^n} \phi_{\varepsilon}(y-x)F(y)dy.$$

This is well defined and smooth. We also have

$$\sup_{L} \sum_{|\alpha| \le s} \| D^{\alpha} F_{\varepsilon} - D^{\alpha} F \| < e(\varepsilon)$$

where  $e(\varepsilon) \to 0$  as  $\varepsilon \to 0$ . Choose  $\lambda \in C_0^{\infty}(U)$  such that  $\lambda \equiv 1$  on a neighbourhood of K and  $\lambda \equiv 0$  on a neighbourhood of  $U \setminus L$ . Consider  $G = \lambda F_{\varepsilon} + (1 - \lambda)F$ . Then

$$D^{\alpha}G - D^{\alpha}F = D^{\alpha}(\lambda(F_{\varepsilon} - F)) = \sum_{\beta} c_{\beta(\alpha-\beta)}D^{\beta}(\lambda)D^{\alpha-\beta}(F_{\varepsilon} - F)$$

and can be made as small as we want. Finally observe that G is smooth on a neighbourhood of K.

**Theorem 2.2.14** Let X, Y be  $C^r$  manifolds  $(r > s \ge 0)$ . Then  $C^r(X, Y)$  is strongly dense in  $C^s(X, Y)$ .

**Proof** Use the lemma and the argument of the immersion case.

The proofs of the following two results are left as exercises.

**Theorem 2.2.15** Let X, Y be smooth manifolds and  $s \ge 0$ . Then  $C^{\infty}(X, Y)$  is strongly dense in  $C^{s}(X, Y)$ .

**Lemma 2.2.16** Let  $U^{open} \subseteq X$  be a  $C^r$  manifold and  $f: X \to Y^{open} \subseteq \mathbb{R}^m$  be a  $C^r$ map. Let  $f(U) \subseteq V^{open} \subseteq Y$ . Then there exists an open neighbourhood  $\mathcal{U}$  of  $f|_U$  in  $C^r_{str}(U,V)$  such that the map :  $\mathcal{U} \to C^r(X,Y)$  defined by setting

$$g \mapsto \left\{ \begin{array}{ll} g(x), & x \in U \\ f(x), & x \notin U \end{array} \right.$$

is well defined and continuous.

As a consequence we get

**Theorem 2.2.17** Every  $C^r$ -manifold  $(r \ge 1)$  has a compatible  $C^s$ -structure for  $\infty \ge s > r$ .

# 2.3 Transversality Theorem

In this section we shall discuss the main theorem and a few applications.

#### Theorem 2.3.1 (Transversality Theorem)

Let U, X, Y be manifolds and  $S \subseteq Y$  a submanifold such that  $F : U \times X \to Y$  is map of class  $C^r, r > \max\{0, \dim X - \operatorname{codim} S\}$ . Then  $F \pitchfork S$  implies that  $F_u(\cdot) \equiv F(u, \cdot)$  is  $\pitchfork S$  for a.e.  $u \in U$ .

**Proof** Localize and reduce to  $\dim S = 0$ .



Fix  $y_0 \in S$ ,  $(u_0, x_0) \in U \times X$  and  $F(u_0, x_0) = y_0$ . Choose coordinate neighbourhoods V of  $y_0$  in Y, i.e.,

$$(\eta,\xi): V \to \mathbb{R}^s \times \mathbb{R}^m, y_0 \mapsto (0,0)$$

and  $V \cong \{(\eta, \xi) \text{ s.t. } \|\eta\| \leq 1, \|\xi\| \leq 1\}$  such that  $V \cap S \cong \{(\eta, 0) \text{ s.t. } \|\eta\| \leq 1\}$ . Choose a product neighbourhood  $U_0 \times X_0$  of  $(u_0, x_0)$  such that  $F(U_0 \times X_0) \subseteq V$ . On this neighbourhood

 $F \pitchfork S \Leftrightarrow 0$  is a regular value of  $\eta \circ F$ .

In the reduced case S is a point in Y, which is a regular value of F. Set  $M := F^{-1}(S)$  a  $C^r$ -submanifold of  $U \times X$  of codim = dim Y. The following lemma will complete the proof :

**Lemma 2.3.2**  $y \in Y$  is a regular value of  $F_u : X \times Y$  if and only if  $u \in U$  is a regular value of  $\pi : M \to U$  where  $\pi = pr_1|_M$ .

**Proof** Fix (u, x) with F(u, x) = y. Let dim Y = m and dim X = n. The local picture look like



We have the following grid :



 $(F_u)_*$  is surjective  $\Leftrightarrow \dim \ker (F_u)_* = m - n \Leftrightarrow \dim (T_x X \cap T_{(u,x)} M) = m - n \Leftrightarrow \dim (\ker \pi_*) = m - n \Leftrightarrow \pi_*$  is surjective (dim U = k, dim M = k + n - m). Also y is a regular value of  $F_u \Leftrightarrow (F_u)_*$  is surjective for all x such that  $F(u, x) = y \Leftrightarrow \pi_*$  is surjective  $\forall x \in F^{-1}(y) \cap \pi^{-1}(u) = M \cap \pi^{-1}(u) \Leftrightarrow u$  is a regular value of  $\pi$ .  $\Box$ 

**Theorem 2.3.3** Let  $f : X \to Y$  be a  $C^r$ -map and  $S \subseteq Y$  be a  $C^r$ -submanifold with  $r > \max\{0, \dim X - \operatorname{codim} S\}$ . Then given a strong neighbourhood  $\mathcal{U}$  of f, there exists  $g \in \mathcal{U}$  such that  $g \pitchfork S$ . Furthermore, if  $f \pitchfork S$  on some closed set  $C \subseteq X$  then we can assume  $f \equiv g$  on C.

**Proof** It suffices to consider the local case

$$K^{\operatorname{cpt}} \subseteq L^{\circ} \subseteq L^{\operatorname{cpt}} \subseteq X^{\operatorname{open}} (\subseteq \mathbb{R}^n) \xrightarrow{f} Y^{\operatorname{open}} (\supseteq S) \subseteq \mathbb{R}^m.$$

It suffices to show that for any  $\varepsilon > 0$  there is a  $C^r$ -map  $g: X \to Y$  satisfying :

(i)  $g \equiv f$  on  $X \setminus L$ 

(ii)  $g \pitchfork S$  on a neighbourhood of S

(iii)  $g \pitchfork S$  on a neighbourhood of C

(iv) 
$$\sup_X \sum_{|\alpha| \le r} \|D^{\alpha}g - D^{\alpha}f\| < \varepsilon$$

Choose  $\lambda \in C_0^{\infty}(\overline{X})$  such that  $\lambda \equiv 1$  on a neighbourhood of K and  $\lambda \equiv 0$  on  $X \setminus L$ . ??

#### Applications

**Proposition 2.3.4** Let  $M^{n-1} \subseteq X^n$  be a closed, smooth hypersurface (proper). Assume that X is connected and simply connected. Then M is orientable and  $X \setminus M$  has 2 components.

**Proof** The given hypothesis on X implies that it is orientable. If M isn't orientable then there is a loop  $\gamma$  (based at  $p \in M$ ) reversing orientation on TM and NM. Choose a unit normal vector along  $\gamma$  and let the new loop  $\tilde{\gamma}$  be as in the figure.



Since  $\pi_1(X) = \{0\}$  there is a map  $F : D^2 \to X$  such that  $F|_{\partial D^2} = \tilde{\gamma}$ . We may assume w.l.o.g that  $F \pitchfork M$  in a neighbourhood of  $p \in \partial D^2$ . Approximate F by  $\tilde{F}$  such that  $\tilde{F} \pitchfork M$  and  $\tilde{F} \equiv F$  near p. Then  $\tilde{F}^{-1}(M)$  is a compact 1-dim submanifold of D with only 1 boundary point p, a contradiction.

**Proposition 2.3.5** Let  $E \to X$  be a smooth vector bundle with rank  $E > \dim X$ . Then there exists a section which nowhere zero. If rank  $E = \dim X$  then there is a section which has isolated non-degenerate zeroes.

**Proof** Exercise.

If  $\sigma: X \to E$  has a zero, say  $\sigma(x) = (x, 0)$  then the composite map

$$d\sigma_x: T_x X \to T(x,0) E \xrightarrow{\mathrm{pr}} E_x$$

is an isomorphism. Consider  $\sigma_0 \equiv 0$  and apply transversality theorem to get S = zero section  $\subseteq E$ . In general, there exists  $\sigma$  with  $\sigma \pitchfork S$  and  $\sigma^{-1}(S)$  being a submanifold of codim m. Also

$$[\sigma^{-1}(S)] = w_m(E) \in H^m(X, \mathbb{Z}_2).$$

If E is oriented then  $\sigma^{-1}(S)$  is normally oriented and  $[\sigma^{-1}(S)] \in H^m(X, \mathbb{Z})$  is the **Euler** class.

**Theorem 2.3.6** Let X be a compact manifold with boundary  $\partial X \neq \phi$ . Then there are no smooth maps  $f: X \to \partial X$  such that  $f|_{\partial X} = Id|_{\partial X}$ .

**Proof** Given such an f, assume smoothness of the boundary (Collar Neighbourhood Theorem). Fix any  $p \in \partial X$  such that p is regular value of f restricted to the collar. One can approximate f by  $\tilde{f} \pitchfork p$  such that  $\tilde{f} = f$  on a neighbourhood of  $\partial X$ . Then  $\tilde{f}^{-1}(p)$  is a compact 1-dim manifold with one boundary point, a contradiction.

Using this we can prove the smooth version of

#### Theorem 2.3.7 (Brouwer Fixed Point Theorem)

Any continuous map  $F: D^n \to D^n$  has a fixed point.

**Proof** If such a map exists then this produces a map  $\tilde{f}: D^n \to S^{n-1}$  which is identity on  $S^{n-1}$ . This is a contradiction.

We shall use transversality to define the mod 2 degree of a map  $f: X \to Y$ . Note that the arguments in the theorem hold for non-compact spaces if the maps are proper and the homotopies are proper.

**Theorem 2.3.8** Let X, Y be compact n-manifolds without boundary.

- (i) Given a smooth map  $f: X \to Y$  we have  $\#\{f^{-1}(p)\} \equiv \#\{f^{-1}(q)\} \mod 2$  for regular values  $p, q \in Y$ .
- (ii) If f is homotopic to g then  $deg_2(f) = deg_2(g)$ .

As a consequence of this theorem

**Definition 2.3.9** Define  $deg_2(f) = \#\{f^{-1}(p)\} \mod 2$ .

This is also defined for continuous maps by choosing a smooth map in its homotopy class.

**Proof** For suitable neighbourhoods U, V of p, q respectively

$$f^{-1}(p) \subseteq f^{-1}(U) = \prod_{i=1}^{r} U_i, \ f^{-1}(q) \subseteq f^{-1}(V) = \prod_{j=1}^{s} V_j.$$

Let  $\gamma$  be an embedded curve joining p and q.



Then  $f \pitchfork \gamma$  on  $f^{-1}(U) \cup f^{-1}(V)$ . Now make  $f \pitchfork \gamma$  everywhere and also call this new function f.  $f^{-1}(\gamma)$  is a compact 1-dim manifold with  $\{p_1, \ldots, p_r, q_1, \ldots, q_s\}$  as boundary points, whence r + s is even. Thus  $r \equiv s \mod 2$ .

For the case where  $F: X \times I \to Y$  a homotopy between  $f = F_0$  and  $g = F_1$  and the proof in general, refer to the beautiful book (J. W. Milnor - Topology from the Differentiable Viewpoint). 3 Cobordism Theory

### 3.1 Cobordism

**Definition 3.1.1** Let  $X_0, X_1$  be smooth compact *n*-manifolds without boundary. We say  $X_0$  and  $X_1$  is **cobordant** if there is a compact (n+1)-manifold Y and a diffeomorphism  $\partial Y \sim X_0 \coprod X_1$ .

By the **Collar Neighbourhood Theorem** this is an equivalence relation. Let  $\Omega_n$  denote the equivalence classes of *n*-manifolds. It is a group under  $\coprod$ . Also, let  $\Omega_* = \bigoplus_{n\geq 0}\Omega_n$ , which is a ring under  $\times$ . Note that every element is a 2-torsion. Check that  $\Omega_0 = \mathbb{Z}_2, \Omega_1 = 0, \Omega_2 = \mathbb{Z}_2$ . We have proved before

**Theorem 3.1.2** Let  $f: X^m \to Y^n$  be a  $C^{\infty}$ -map between compact manifolds  $(n \leq m)$ . (i)  $[f^{-1}(p)] \in \Omega_{m-n}$  is independent of the regular value p. (ii)  $[f^{-1}(p)]$  depends only on the homotopy class of f.

Let k = m - n and let  $w = P(w_1, \ldots, w_{m-n})$  be a polynomial in Stiefel-Whitney classes. Then  $w([f^{-1}(p)]) \in \mathbb{Z}_2$  is well defined. This gives rise to many mod 2 degrees. We have :

#### Theorem 3.1.3 (Thom)

Let  $\alpha \in \Omega_k$ . Then  $\alpha = 0$  if and only if  $w(\alpha) = 0$  for all w.

Let  $M = \partial Y$ . Then  $TM \oplus \mathbb{R} = TY|_M$  and M = 0 in  $H^k(Y)$ .



Thus we have

$$0 = w(TY)[\partial Y] = w(TM \oplus \mathbb{R})[M] = w(TM)[M].$$

**Definition 3.1.4** A compact, oriented n-manifold is **oriented cobordant to zero** if there is a compact, oriented (n + 1)-manifold Y and an orientation preserving diffeomorphism  $\partial Y \xrightarrow{\cong} X$ .

Given a manifold X with an orientation, let -X denote the same manifold with the opposite orientation. Then

$$\partial(X \times [0,1]) = X \coprod (-X) \overset{\text{o. cob}}{\sim} 0.$$

We say  $X_0$  is oriented cobordant to X if  $X_1 \coprod (-X_0) \stackrel{\text{o. cob}}{\sim} 0$ .



Define  $\Omega_n^{SO}$  to be equivalence class of *n*-manifolds. This is an abelian group under  $\coprod$  and -[X] = [-X]. Also  $\Omega_*^{SO} = \bigoplus_{n \ge 0} \Omega_n^{SO}$  is a ring under  $\times$ . Similar arguments (as before) show that

**Theorem 3.1.5** Let  $f : X \to Y$  be a smooth map between compact oriented manifolds (or a smooth proper map). Then the oriented cobordism class  $[f^{-1}(p)] \in \Omega_{m-n}^{SO}$  is independent of the regular value and depends only on the proper homotopy class of f.

**Remarks** (i) Note that  $f^{-1}(p) \equiv M$  has an oriented normal bundle and  $df_x : N_x M \xrightarrow{\cong} T_{f(x)}Y$  for all  $x \in M$ . Orientations of NM and X determine an orientation for M.

(ii) If dim  $X = \dim Y$  then  $[f^{-1}(p)] \in \Omega_0^{SO} = \mathbb{Z}$  is just the degree of f (also equals the number of algebraic preimages of a regular value). Otherwise, suppose  $\omega \in H^n(Y, \mathbb{R})$  is a smooth *n*-form such that  $\int_Y \omega = 1$ . Define deg  $f = \int_X f^* \omega$ . For a regular value p of f, let  $\omega_{\varepsilon}$  be a *n*-form (compactly supported around p) with unit volume such that  $\omega_{\varepsilon} \to 0$ . This implies

$$\int_X f^* \omega_\varepsilon \to \sum n_j \delta_{x_j}$$

where  $n_i = \pm 1$  and  $x_i$ 's are the preimages of p.

(iii) Let  $f: X \to Y$  with dim  $X > \dim Y$ .  $\lim_{t\to 0} f^* \omega_t = \text{current of integration}$ over oriented submanifold  $f^{-1}(p)$ , i.e.,

$$\lim_{t \to 0} \int_X f^* \omega_t \wedge \alpha = \int_M \alpha, \ \forall \, \alpha \in \mathcal{E}^{m-n}(X).$$

Given any polynomial  $P = F(p_1, \ldots, p_l), k = m - n = 4l, P([f^{-1}(p)]) \in \mathbb{Z}$  is an invariant. We get  $[f^{-1}(p)] \in \Omega_{4l}^{SO}$  and depends only on the homotopy class of f.

**Definition 3.1.6** A framed submanifold of a manifold X is a compact submanifold  $M \subseteq X$  together with a trivialization of the normal bundle.



**Definition 3.1.7** Two framed submanifolds  $(M, \nu), (M', \nu')$  of X are framed cobordant in X if there is a framed submanifold  $(L, \tilde{\nu})$  in  $X \times [0, 1]$  such that (refer to the figure above)

$$L = (M \times [0, 1/3], \nu) \text{ in } X \times [0, 1/3]$$
$$L = (M \times [2/3, 1], \nu') \text{ in } X \times [2/3, 1].$$

Let  $f: X^m \to Y^n$  be a smooth proper map with  $m \ge n$  and Y oriented. Let  $y \in Y$  be a regular value of f and let  $v_1, \ldots, v_n$  be a basis of  $T_yY$  with positive orientation. The map  $df_x: N_xM \to T_yY$  is an isomorphism. Let  $\underline{\nu}$  be the pullback orientation on NM.



**Theorem 3.1.8** (i) The framed cobordism class of  $(f^{-1}(y), \underline{\nu})$  is independent of the choice of regular value and the choice of an oriented basis.

(ii) The framed cobordism class of  $(f^{-1}(y), \underline{\nu})$  depends only on the proper homotopy class of f.

**Proof** We break up the proof into various steps. In the proof M denotes  $f^{-1}(y)$ . **Step** 1 : We proceed to show independence of the choice of oriented basis  $v_1, \ldots, v_m$ of  $T_yY$ . Let  $v'_1, \ldots, v'_m$  be another. The two bases can be joined by a smooth family of bases  $\nu(t) = (v_1(t), \ldots, v_n(t))$ . Construct the framed bordism  $(M \times [0, 1], \tilde{\nu})$  where

$$\tilde{\nu}(t) = \begin{cases} \underline{\nu}, & 0 \le t \le 1/3\\ \nu(3t-1), & 1/3 \le t \le 2/3\\ \underline{\nu}', & 2/3 \le t \le 1. \end{cases}$$

**Step** 2 : If  $f \sim g$  via the homotopy H and p is a regular value of both, then the corresponding framed submanifolds are framed cobordant. Choose  $\varepsilon$  suitably and define  $F: X \times [0,1] \to Y$  such that

$$F(x,t) = \begin{cases} f(x), & 0 \le t < 1/3 + \varepsilon \\ H(x, \frac{t-1/3-\varepsilon}{1/3-2\varepsilon}), & 1/3 + \varepsilon \le t \le 2/3 - \varepsilon \\ g(x), & 2/3 - \varepsilon < t \le 1. \end{cases}$$

By transversality theorem, we can make  $F \pitchfork p$ , keeping it fixed on  $X \times ([0, 1/3] \cup [2/3, 1])$ . Now choose an ordered basis  $v_1, \ldots, v_m$  of  $T_yY$ . Set  $L = F^{-1}(p)$  with the pullback framing  $\underline{\nu}$  coming from  $v_1, \ldots, v_m$ .

**Step** 3 : Suppose p, q are regular values of f. Join p to q by a smooth embedded arc  $\gamma$ . There exists a neighbourhood U of  $\gamma$  and a diffeomorphism  $\phi : U \to B_2(0)$  satisfying  $\phi(\gamma(t)) = \{(t, 0, \dots, 0) | -1 \le t \le t\}.$ 



Hence there is a 1-parameter family of diffeomorphisms  $\psi_t: Y \to Y, t \in [0, 1]$  such that

- (i)  $\psi_t$  is compactly supported in U for all t (supp  $\psi_t = \{x | \psi_t(x) \neq x\}$ ).
- (ii)  $\psi_0 = \text{Id.}$
- (iii)  $\psi_1(p) = q$ .
- (iv)  $\psi_t$  is constant if  $t \in [0, 1/3] \cup [2/3, 1]$ .

Let  $F(x,t) := \psi_t(f(x))$ ; q is a regular value of both f = F(x,0) and  $\psi_1 \circ f = F(x,1)$ . By step 2 the corresponding framed submanifolds are framed cobordant. But the framed cobordism for  $\psi_1 \circ f$  (for q) is the same as the framed cobordism for f (for p).

As a consequence, for Y oriented with dim  $Y \leq \dim X$ , we get

 $[X, Y] \simeq \pi_0(\operatorname{Map}(X, Y)) \hookrightarrow$  framed cobordism classes of framed submanifolds (of codim = dim Y) of X.

Consider  $Y = S^m$  with a fixed orientation, i.e.,  $S^m$  is the compactification of  $\mathbb{R}^m$  with an oriented basis  $v_1, \ldots, v_m$  of  $T_0 S^m$ . The following is a partial converse of the result proved before :

**Theorem 3.1.9** Given  $(M, \underline{\nu})$ , a framed submanifold of codim m in a compact manifold X, there exists  $f : X \to S^m$  with 0 as a regular value and  $(M, \underline{\nu})$  as its associated framed submanifold.

**Proof** We use the

**Product Neighbourhood Theorem** Given a framed submanifold  $(M, \underline{\nu})$  of codim m, there is an open neighbourhood U of M and a diffeomorphism  $\phi : M \times D^m \to \overline{U}$  such that  $\phi_*(e_j) = v_j$  along  $M \times \{0\}$ , where  $e_j$ 's are the standard vector fields on  $D^m \subseteq \mathbb{R}^m$ .

For a quick proof of this, set

$$\Phi(x, t_1, \dots, t_m) = \exp_x \left( \left( \sum_{i=1}^m t_i v_i(x) \right) \right)$$

for some Riemannian metric on Y. Now apply the inverse function theorem to get a diffeomorphism in a neighbourhood. Define  $f: X \to S^m$  by

$$f(x) = \begin{cases} U \xrightarrow{\Phi^{-1}} M \times D^m \xrightarrow{\operatorname{pr}_2} D^m \xrightarrow{\psi} S^m, & x \in U \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

This construction also applies to framed cobordism.



As an upshot we have :

**Theorem 3.1.10** For X compact,  $[X, S^m] \xleftarrow{1-1} framed cobordism classes of X (of codim m).$ 

**Corollary 3.1.11** Suppose X is compact and oriented of dim m. Then  $[X, S^m] \cong \mathbb{Z}$ and two maps  $f, g: X \to S^m$  are homotopic if and only if deg f = deg g.

**Proof** We are interested in framed cobordism classes of 0-dimensional submanifolds. A framed submanifold is a finite set of points  $x_1, \ldots, x_l \in X$  with a choice of basis of each  $T_{x_i}X$ . Moreover, a framed cobordism depends only on the orientation of each frame (or only on  $\sum_{i=1}^{l} n_i$  where

$$n_i = \begin{cases} +1 & \text{if orientation agrees with } X \\ -1 & \text{otherwise.} \end{cases}$$

As the picture suggests



there is a cancellation of opposite pairs.

**Corollary 3.1.12** Suppose X is compact, non-orientable of dim m. Then  $f, g : X \to S^m$  are homotopic if and only if  $deg_2 f = deg_2 g$ .

Specializing to  $X = S^{m+k}$  we get that  $\pi_{m+k}(S^m)$  is the framed cobordism classes of k-dimensional framed submanifolds of  $S^{m+k}$ . For  $M^k \subseteq S^{m+k}$ , add the normal to  $S^{m+k}$ (equator of  $S^{m+k+1}$  in  $S^{m+k+1}$ ) to get a framing of  $M^k \subseteq S^{m+k+1}$ . This gives map

$$\pi_{m+k}(S^m) \to \pi_{m+k+1}(S^{m+1})$$

**Exercise** (i) Prove that this is induced by the suspension map. **Exercise** (ii) Prove a special case of the **Freudenthal Suspension Theorem** :  $\pi_{m+k}(S^m) \xrightarrow{\Sigma} \pi_{m+k+1}(S^{m+1})$  is an isomorphism if m > k+1.

This implies that

$$\pi_{m+1}(S^m) \cong \mathbb{Z}_2, m > 2.$$

# 3.2 Thom Construction

Suppose  $X^n \subseteq \mathbb{R}^{n+m}$  is a compact submanifold with  $\partial X \neq \phi$ . Let N be the normal bundle of X. We need :

#### Theorem 3.2.1 Tubular Neighbourhood Theorem

There exists  $\varepsilon > 0$  and a diffeomorphism

$$\Phi: \{v \in N \text{ s.t. } \|v\| < \varepsilon\} \equiv N_{\varepsilon} \to U_{\varepsilon} \equiv \{x \in \mathbb{R}^{n+m} | d(x, X) < \varepsilon\}$$

sending the zero section to X.

**Proof** Define a map  $e: N \to \mathbb{R}^{n+m}$  which sends  $v \in N_x$  to x + v. de = Id along points of X. Apply the inverse function and compactness of X to get  $\Phi$  and  $\varepsilon$ .

So we get  $X \subseteq U \cong N$  and there is a classifying map  $f: X \to G_m(\mathbb{R}^{n+m})$  for  $N \to X$ .



**Definition 3.2.2** Given a vector bundle  $E \to X$  with a metric, the **Thom space** of E is the quotient

$$\tau(E) \equiv E/(E - D^{\circ}(E)) \equiv D(E)/\partial D(E) \equiv E \cup \{\infty\}$$

where  $D(E) = \{ v \in E \text{ s.t. } \|v\| \le 1 \}.$ 

The compactification of  $U \to N \to \mathbb{E}_m$  yields



Thus, associated to X is a base point map  $F_X : S^{n+m} \to \tau(\mathbb{E}_m)$ .

**Proposition 3.2.3** The corresponding element  $[F_X] \in \pi_{n+m}(\tau(\mathbb{E}_m))$  is independent of choices (identification of U, N etc.) and independent of the choice of classifying maps  $X \to G_m(\mathbb{R}^{m+n'})$  for  $n' \ge n+2$ .

 $\mathbf{Proof}$