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Potation
Unless stated otherwise

we adopt
C reel in lice run from 0 to 3 Latin indices fromto and repeated indices are summed over theirrangexd denote coordinates in spacetime with

X t denoting a time coordinate and x 3
denoting spatial coordinates We write lfzdj.nosimply 9 a for the corresponding basis ofcoordinatevectors

Signature convention for Lorentzian metrics isttt
Indices are raised and lowered with the

spacetime metric
We use units where Ce 8T G I where

one is the speed of light in vacuum and G is
Newton's gravitational constant














































































































It denotes the Sobolev space with noon 11 µ

Def definition Theo theorem Prop proposition EX
example














































































































Introduction

The field of relativistic flat dynamics isconcerned with the study of fluids in situations whes
effects pertaining to the theory of relativitycannot be neglected It is an essential tool in
high energy nuclear physics cosmology ant astrophysicsRZ we Relativistic effects are manifest in modelsof relativistic fluids through the geometry ofspacetimeThis can be done in two ways a by letting thefluidinteract with a final spacetime

geometry that isdetermined
by a solution to vacuum Einstein'sequations or b by considering thefluidequation couplet to Einstein's equations Is

a we are neglecting the effects of the














































































































fluid's matter and energy on the curvature of
spacetime while in b such effects a e

takes into account We will discuss both
situations

A crucial aspect of relativistic fluid dynamicis that the mathematical structure presentin the equation of motion are
substantially

different than those present is classical
c fluids e.g the fluidvelocity satisfies a constraint is the relativisticcase something with no analog in classicalfluidsThus results for relativistic fluids cannot beobtained as a simple extension of techniquesused for classical fluids














































































































toolsfrottiage.meny
The proper framework to discuss relativity

and relativistic fluid is that of Lorentzian
geometry Since our goal is toget to fluids as soonas possible we will only introduce some rudimentarynotion that will be needed Our approaches
pragmatic in the sun that we will take the quickestrouteto the concept we need avoiding as much as possible ofthe discussion of the geometric structures involved Students
should be aware that by no means our discussion replaces
an actual introduction to the topic and that whatfollowsdoes not necessarily consist of the most appropriate wayofthinking about such concepts Similar remarks apply
throughout these notes whenever geometric concepts are
needed An introduction to Lorentzian geometry is the
context of general relativity can be found in CHE
and wa BEET and O't offer an introductionto Lorentzian geometry as a topic on its own














































































































R For simplicity we introduce mostof the
concept in IR The generalization to differentiable
manifold is straightforward

Lorentzians
Def.tt tziametric in IR is a nap that

assigns to each x E in a symmetric non degenerate bilinear

f own gun in xn R of signature ttt Technical
to those familiar with geometry will notice that we identify
T R with 112 itself we willalwaysmake this identification
A spacetime is 112 endowed with a Lorentzian metric CR g

We will often omit the x dependenceand writeg
forgon

Thus a Lorentzian metric is as inner product that isnot positive definite Because of this we will often referto giv w v w E N as the Lorentzian inner product or
simply product of v and w

Nott we cill often say simply metric for
a Lorentzian metric














































































































EI The trio is defined asfollows
Let Tn be the matrix in diagonal l L L 1,21 Is
standa L rectangular coordinates e set

M V W v TTn w V w t v w f v2hr2y u w3

TrapMVP
where v n Ivo u v2 v W no h w w C IR and
C IT transpose IR m is the Minkowskispace

Note that he is a constant Lorentzian metric i.eit does not depeded on t ER

Of course we can also express in c r t other coordinates
For example taking It r 0,41 where fr O f are spherical
coordinates is IR Tn reads

I
i

n I

is
where the entries not showed e.g mor mro etc ane zero

EI The Schwarzchild metric
of is defined by

taking spherical coordinates t r o ol as in the pre ios
example and setting for r and w expressed in spherical coordi














































































































atco Jsoc v wi vtgs.cn where entries not showed are zero

Jsc
c any

r Y and R is a constant
R 2 14 is theusual

presentation
This expression is valid for r R only but using different coordinatesit can be extended to the whole of 1124 see Kruskal extensions

R For different choicesof v w mi v w can be OO L O IAlso we can banc v fo with mtv v1 o Similar
f on Gsc These are in factgeneralfeatures of Lorentzian metrics

More generally consider a Lorentzian metric g anda coordinate basis In rectangular coordinates
4 so

Eyal is just the canonical basis of IR Wefolkthe standard notation of differentialgeometry Recall our
coordinate conventions we define the matrix of with e tries

ni t
Ja glsg i

n o which is asymmetric since
g is a symmetric sie newfan The

Tx
g tu w rig w Jap V up














































































































Notation From now on we will write g
fo the matrix of in a given basis in practice identifying
g with its matrix expression Thu we write

Jiu wi gap v up

The norm sguared w r t g of a vector is definedby
trig glr ul gapv.ve

vote that 1.1g sometimeswritten simply 1.1 is not really a norm
A Lorentzian metric defines at each point xE R a double

cone called the light cone by the set of vectors v based
at sod that lvig glr.us 0

gcw.wsco relight
Vectors suds that wig so

come
are called lol so
are called time like and belongto the interior of the lightcone
ing 0 are called space like7 tl 0 and belong to the exteriorofthe high cone We call a curvetime like etc if its tangent vector ateach point is time like etc














































































































Is the theory of relativity the light cones correspond
to the region where light i.e eletumagnetic radiation propagate
Object with mass propagate along time like curves to particle or

information can propagate along space like curves thiswould mean thattheir speed is greater than the speedof light violating a fundamentalpostulate of the theory of relativity that nothing propagatesfaster thanthe speed of light In kinboshi space the picture is recall ourunits convention

n x t
speed t't

z light cone

iniiiii

Potato Since
g is non degenerate i.e yl v w 0for all w implies v o the matrix gap is invertible Wedenote the entries of the in x by GM Thu

ginger oh
where Sf is the Kronecker delta














































































































Covariant're
A concept that will be importantfor us is that

of a directional derivative i e derivative in the directions
of a vector E Conceptually this involves projectingonto I Because of this projection the directional derivatiowill depend on the inner product g In multivariable calculuswe define the derivative in the direction of IT by

0 I V

where is the Euclidean inner product acts on a scalar

function f by O f I Of E'oaf and on a vector

field r componentwise i e DIV Effi Moreover

the product rule bolts i e v.v 0 w t v Ew
Tote the manifest dependence of 0 on the Euclidean inner
product

We want something similar when the inner product is
given by a metric g

Def The covarianttive of a vectorfield r
in the direction of Ir is the recto field v alias
expressed in coordinate Xd thus with respect to














































































































a coordinate basis III o is given by

0 4 Ingrid
where

Ppv
4 is the d component of the covariant derivative

of v is the direction of fj i.e we abbreviate if 0

defined by

Corri fit 7 v

where Ira are the Christoffel of g definedby

Ij tag 19g at 9Gra Egm
If f is a scalar function we also define

E f Erff
so the covariant derivative of a scalar agree with the
calculus directional derivative In particular tff ff
Remark It is as exercise in tensor calculus to showthat 0 v as introduced above is well defined i e it isindependent of the coordinate system we use














































































































Crucial observation about notation Throughout the
literature one always write fur for Cfr i.e

Fv Iv Thus tf r is the a component

of the covariant derivative of v in the direction of
and got the covariant derivative of the a component

of v is the direction
of

The way we introduced covariant differentiationseems very at hoc because of the pragmatic approach
we are taking here Students should consult the suggestedliterature for a more elegant and natural way of doing itThe following proposition summarize the basicproperties of the covariant derivative For convenience someproperties are stated in coordinatesand in a coordinate free fashionProp For vectorfield I t andZ and scalarfunctionf avg.it hell that

193 P Z
f thy f IZ th z














































































































b 1 It Z It 0 2

c product rule

1gap't E gap EI 2 ftp.pI tf
0 GCI El glo I 2 It GCI Z

Vote that the product rule wouldnot hold if we were tahiy
an ordinary derivative instead of a covariant derivative e g
gap't 2f gaps t 2f tga I Gtf tf ga t 2 f

d torsion free conditio
Korf Korf o

D I 0 I CE t where I I is
a vectorfield called the commutator of E and I definedfollows I Eh I I da
I I Idol If Op Irl I'd IV If I'd e Op

I ITwhere it can be showed that C E t is independent of thecoordinate system used














































































































Property c is also known as compatibility betweenthe covariant derivative and themetric while it is possible
to define other derivative operators one can show that there
exists a unique derivative operator satisfying as Cd above It
is called the Levi Civita covariant derioah.ve Cov LeviCiri ta connection f covariant derivative are also known as
connections

Duality and one forms

DI A oneform in IR is a linear nap w thatassignto each x C in a linen map wax i 112 N

If we define the maps dx A IR by
d x 11 ofOx

extending this definition linearly to all vectors then a onefan wcan be expressed as

w w dirt
where the we are function that are the componenents of u onthese coordinates














































































































Given a rotor field v we can define a one formvi real v flat by

Vic El glu Il
for any vector field It is not difficult to see thatthecomponents of VI are given by

b a gaff
Vb is called the o f to u Similarly give a
one form w we define the vector field w real w sharp by

gl w I we I

or any vector field which is well defined in view of thenon degeneracy ofg It follows that in component
w I gapupw is called fl field duel to w

The maps C y and c an inverse of each other and provide
isomorphism between the space of vectorfields and forms
glI.cn l VblIl glI v GCI by u1 0 forall I and w I glue I wit

Iw Ii a Il o for all I














































































































In view of the above we can identify u and u with
their duals Therefore we will no longer write b and it will
be clean from the context whether we are dealing with a vector

fiell o a one four In components an upper index indicate
a vector field and a lone index a onefour Thu

V a gapup and w gapup
Because of the above formulas the operation of passingfrom a vectorfield to a form and vice versa are known as

raising flowering and index recto fill1 7 form raising an index form sectorfield We can also
use these isomorphisms to define an inner product between one fourW andµ by

gcwim yapvrf gdfw.ir
where the last equalityfollow from a simple calculation Moreoverfoeforms on vectorfields gov w ya uhwe u wa Vaw GMVaWpWe will now extend covariant differentiation toformswe do this by demanding it to satisfy a product rule

Def The covariant derivative of a oscform w is the
direction of a vectorfield is defined as the one fan wire by

0 UCI D w I t w l II














































































































fo any vector field TL
Using the definition of 0 Id we find

qua qua Ijawwhere
similarly to what we hadfor vectorfields f wameanC a The product rule holt fon 91 fun f a function
Tensors

we define the linear map dxhxodxpi.IR xR ohcalled the at of dxh dxf by
d x dxP I t dx4IIdxMI

Using this expression we can generalize one forms forming
maps that act on on ondeed pairs of vector fields A two Tessa
T is defined relative to coordinates by the nap

T Tap dx dip
where the Tap called thecontentsof T in these coordinatesare functions T act or I E O and I 147
TLE Il T.pdxhxodxflI.it Tap I f

T is calledsymmetric if Tap Tpa
Arguing similarly to what we did for one fans

we can extetdff.eeiat ottwo tensors














































































































leading to the follooing expression is coordinate

Orta Orta iii T ftp.T.y
where as above OrTep Ppt xpIt can be showed that these definitions do not depend onthe systemof coordinates one uses We will also encounter twotensor that are tensor products of one forms i e Tap warpin which case OpTap can also be computed by the product rule

p Tap Pplwarp Orwarp t waOrm
From these definitions we see that the metric is a

symmetric two tenson

y ga din dip
Compatibility of covariant differentiation with themetric
become i

Orgap 0

Given a two tensor it trace is the fuschos

tr IT gdfTap
Again the result does not depend on the system of coordinatesNot that

9 tutti Or tutti gaffTap














































































































Thdiffield v is the function
dir cu defined as

diver gapDave huh
we can also take Hedifattenson itis the one form dirCT defined as

DivCT PaTap
where Tap g rTr i Tap with the first index raisedsee below

The covariant wave operator Ilg applied to a scalarfinch f is defined by any of the following equivalent expression
Dgf gaff off

O Da f when by definition Of gdppp
gkC ganef
good f g 14 1We can also define a covariant wave operator applied torecto fields and tensors by

040 of 0 0 Tpp etc














































































































S t etc
As before our pragmatic approach lead to somewhat adhoc definition of two ten their covariant derivative and theirtrace but this will suffice to our purposes The above concertcover almost all the geometric background we will need Here we

introduce a few more ideas that will occasionally be seededand make Some observations

In the terminoly two refer to the fact that Tacts on two vector fields although we can let T act in one oeoto
field resulting in a one form

1 I Tep dx dip Ii F TapLxfWe can also consider Tl 1 which in general will be differentthan TLE unless T is symmetric

Strictly speaking our definition of two tensors is thatof a covariant two tensor covariant here returning to thefact that it acts on vectors We can also have ocotorfieldact on one form in the same way as one forms act on vectorfield i e we define

f dir 8














































































































and extend this definition linearly to have I aot
9 4

o any one form We can then define the tensor product
of 7 all 9 by

9 Op wig dalwloply
for any two one form w and

y Note daca is defusedabove it is not the derivative of w instead w Wadi9 w 9 wpdxf wp9aldxf wrote wa we canthen define a contravariant two tensor by
T The 9 Op

which acts on pairs of oneforms T is called symetricif the function TV are symmetric

Defining the tensor product of vectorfields andone forms in the obvious way we can form mixed contravariantcovariant tensors For example a 1 contravariant 1 covarianttensor is

T Hpd dxp
which acts on a pair w Il of a onefo n a 1 one rector
field














































































































Obviously there is no need to restrict ourselves totwo tensor i.e tensor that act on pains of objects Ah contravariant and l covariant tensor or a Cle et tensorforshort where chill is called therank of the tensor is given by
T T Up pe 9q 9h dip date

which acts on Cws uh Er IeC

hoseforms l vectorfields
For our purposes the whole distinction between covariantand contravariant tensor is immaterial as we can use theisomorphism between oneform and vector field to passfanone to the other For example the 10,21 tensor

T Tap text dip
can be identified with the 11,1 tenson

T T p da dxp
on yet with the 2,0 Tasso

T T P 9 Op














































































































where T p g Trp anl TN g gf Tro Thus
a h.lt tensor can be thought of as a Chi l l 11 tensor
etc

We note that fo tensor that are not symmetric wehave to pay attention to the order of the indices when
they are raised and lowered

E.g if we write Tf it
is not clear if it means g Tr or

gppTrd Both
expressions

agree if T is symmetric since

g rtr g gpggp.to d's gut gutbut an otherwise
different With the proper care with theorder of the indices we can always raise and lower indiceand do not need to keep the distinction between covariantand contravariant tensor

Using these ideas we can alsowrite the trace as
1 ret g Tap T a

which we can write simple T if T is symmetric

A sum over an upper and a lower index is














































































































called a contraction E g in the expression 1 dear
we are contracting the first index with the third Because
this can also be written as

1
pap gasTaps

contractions are sometime also called traces although foran arbitrary cult tensor we have to specify whichindices are being traced i.e contractet
Notation We often make an abu of language and referrerto the component of a tensor eg Tap as the tensor
The above construction also allow us to construct newtensorout of old ones E g if T Tap a up and U U Ma Pthen V T U is

given by
V TapLx dip u sor did Tapu r 1 401 100 daw

Varro
and the product rule hold for such tenions

O Varro P Taplin t Tap furs














































































































Remarhi The geometric framework outlined so fa is
essential for those who want a solid understanding of relativistic
fluids after all relativity is a geometric theory However

student who do not have a background in geometry should stillbe able to follow the main idea of these lectures In this regardif one thinks of a two tensor T as a matrix whose entries are
Tap and of the covariant derivative q as the ordinary
derivative of t stuff that can usually be treated as lower order
then one will be able to follow much of what follows














































































































Therelativistiction
The dynamics of a perfect i.e no viscous relativistic

fluid is described by the relativistic Euler equation to be
introduced below

Def The ene.gg tteusor of a relativisticperfectisotropic fluid is in is the symmetric two ten
Tap pts yup t Pgapwhere

gap is a Lorentzian metric p aut f are real valued
functions

representing thepressure antenergy density of the fluidera is a vectorfield one form recall our identification
representing the four Jvelocity offluid and normalized by

g yaputup n'u L

The energy momentum tensor is a fundamental object thatencodes the behavior of matter and is essential when one considersthe interaction of gravity and matter i.e coupling to Einsteinequation Each theory ofmatte e.g electromagnetism elasticityetc has its own energy momentum tenson a will discuss moreabout this when we consider theories with viscosity The flu L














































































































is callet isotropic as we are assuming that if one is at rest
with respect to the fluid tha the stresses in all directionsofthefluid are the same although it is possible to constructfluid motel without this assumption CRH Thefluid velocityis sometimes called the four velocity to emphasize that isrelativity the velocity is a vector field in spacetime so ithas four components The assumption 1night I can beunderstood as follows First it says that he is finelike so
fluid particle do not travelfaster than the speed of light
Second the energy density g entering in Tap is the energymeasured by an observer traveling with the fluL i.e atrest with respect to thefluid It is possible to show

using
kinetic

theory that the
energy density measured by an observerwith velocity vs will be warpTap Thus fo thefluid relocityitself we need to have g uhurtap th uh l Letus make another remark about kinetic theory it also gives theabove expression for Tap as a continum limit when

viscosityis ignored and under certain natural assumptions C Lw Whilekinetic theory provide what is probably the best justificationfor defining Tar by the above formula it is also possible














































































































to postulate Ta motivated by physical consideration we

Def The baryon density current of a relativistic perfect
sotropic fluid is defined by

Jd huh
when h is a real valuedfunction representing the bauyohhun.be
L ty of the fluid and uh is the fluid's velocity as above

Physically the baryon number density gives the density
ofmatter of the fluid the rest mass density measured by anobserver at rest w r t the fluid is given by nm where m isthemassofthe baryonic particles that constitute thefluid these arenotion from kinetic theory RH

potation we will not dealwith nos isotropicfluid sofromnowon we 0 it isotropic

Physically the quantities p s and u are not allindependent and are related by a relation known as an equation01 whose forn is determined experimentally or from kinetic
theory Under normal circumstance

e.g absent phase transitionthis relation is invertible in the sense that knowledge of anytwo quantities e.g g and n determine the third icy nIs this case we can choose
any two out of the three quantities














































































































to be the fustanental unknowns We will choose here S and
h anl assume that p is given as a function of these
qualities i e p p's t

Def The relativistic Euler equations are defined by the
equations

Tdp 0 conservation of energy momentum
P J's 0 conservation of baryonic charge
p pls n equation of stateh Tap and Ja are as abore pls s is a given equation

of state O is the covariant derivative of the metricgap
figuring in Tap vote that the fluid's velocity is normalized
as in the definition of Tap

R On physical ground we want 5 20 420 sad in most
models p20 From the point of view of the Cauchy problem these
should be assumed for the initial data and showed to propagate

Remart As sail in the introduction we can consider a relativist

fluid on a fixed background o couple to Einstein's equations In the
first case which will be treated in this section we assume g given but
we keep track of derivative ofgforfuture application to Einstein's eq














































































































We introduce the tenor Iap aid corresponds to projectiononto the space orthogonal to U Explicitely

Tap gap tune
so that Tapup u tu Upul 0 and if v isw

1orthogonal to u we have Tarot o then of Oa
w

We also note that n na I implie
uhPpu 0

It is convenient to decompose
Tf in the directions paralleland orthogonal to u First

Pat Oa Gts hauptPga
uhValptg up t pts Pau up t pts n'Bhp t Opp tho

UPP Tf uh 0 pts pts Gutt pts infra up theOpp
u k g dots but

4 tf tfTf uhPalpts ITMup t ftp.jquhitrfuptcptslhrfukup
o L

o
1 TrpOpp pts u gtfoup turnfqup t ITMOpp

fun O

pts ndO un t TMOpp














































































































Writing 0 Jd explicitly O J 0 nut I woah t n kn
Therefore we can rewrite the relativistic Euler equation as

wks t pts Kut 0

1g n'Ehf t Tf Kp O

udkn t h but I 0
The first equation is the conservation ofmass energy whilethe second equation is the conservation of momentum These

equations reduce to the non relativistic Euler equations in thenon relativistic limit RZ
while it is not difficult to obtain local existencea 1
uniqueness by writing the above equation as a firstordersymmetric hyperbolic system I see eg Au CBT he will usea different approach due to Lichuerouicz Li that makesthe role of the characteristic manifest and connect with whatwe will discuss later In fact as we will see but alsoa expected physically therearetwotynesogah.intiLsouatapotfooh ity These correspondto differences and th should be treated differently The first order symmetric hyperbolic system however treatsb teel.TT
Before continuing we will need a few more notions














































































































Thermodynamicistfluid
we begin introducing the following quantities

Theisterydensity E of the fluid
f h 1 t E

strictly speaking the fact u should be the rest mass
density um see above but there is no barn in settingm 1 here Thus the energy density of thefluid tale intoaccount the energy comingfrom thefluid rest mass

The specific enthalpy 4 of the fluid
h pts

assuming b O

We assume the existence of functions s and 0called the entropy density and temperature of thefluidsuch that the first.lawofthemodynamics holds
top n th n Ods

which can also be written
d s hdu tu Ods
d E pd t t Ods














































































































As before we can choose which two functions amongthese thermodynamic quantities are independent Later ce will
choose s as I 4 so p n O g and E are functions of Saul h

with these definitions we can write

Tap pts hour t pga uhhehe t Pgap the
Patty Klahn up t uh u Sup t f p so

he 0 Tf Tacuhud t un p
h V nut un Pah t uf Dpp

0
ual aught Ep

h OO sU.de the physically natural assumphiwhich we will hereafter assume we conclude

uh f s 0

Physical interpretation the fluid motion is locally
adiabatic i.e entropy is constant along the flow lines
of the fluid


















































Relativistic vorticity

A guy important quantity in fluids is the
vorticity I classical physics it is the curl of thevelocity Since the curl in 31 can be identified usingHodge duality with the exterio derivation of the
velocity thought of a a one font it seem natural
to define the vorticity of a relativistic fluid where
we are in four dimensions as the exterior derivative ofthe four velocity u This is almost right but the
correct definition requires an adjustment

Def The enthalpy w is defined a
Wd huh

The vorticity Sr is defined as the two fan duI components it is given by the equivalent expressions

Sap 9 hue lplhug
Valhurt Pplhunt



One reason to define the vorticity as above
rather than

say da is to have a relativistic
version ethicontheonen Fo a
classical fluid with velocity o we define its circulation
along a closed loop P as

if v dlCl

p
Kelvin's theonen state that this quantity is

conserved along fluid lines i e

Dieu Otto 0 Cid 0

This theorem has such a clean physical interphetatio
as conservation of vortices that we expect somethingsimilar to hold fo relativistic fluids Indeed itdoes but the quantity that is cone red non is

b i we did hu dad

with this definition



urge a 0

The same way that the classical proof goes through
using do which is the vorticity the relativistic
versions involve d that leading to a natural definitionof H vorticity as we did See CRZI for details

text ve derive an important relation between
the vorticity and the entropy Direct computationgives
a Rap ua hoan t 94up born Pplhat

h n up 1 up haPah t tph
Il by Tr PD Tf o

p f Kp n

If 0 p
ta Tf V p t u u 9h t Ppl
tu O p t O h up f n'rap nigh

OOps Hqs O



Therefore
udrap 0 Ops

This equation is known as the Life
It implies that for an at i e a

fluid with 1 0 the entropy must be constant
a result with no analogue in classical physics

existunigess
we will rewrite the relativistic Euler equationat a system fo w r h and s We assume that

P n O and E ane known function of h and S
we begin with an evolution equation for thevorticity We can unite the Lichnevouicz equationas after multiplying by 4

i w r hods

where iw is the interior contraction of the
two form 1 with w given by



inn where
Taking the exterior derivative

d line d Chords
where we used that d 0 and r is the
wedge product of forms which for one fans is
simply
w n p Cuadra n pp dxp warp din dxp

p
warp renal Lxhndxp

since d drLxP dx Pr did
We now recall the following formula

for the Lie derivation of a form in the direction
of a vector field Ii

L y d.li jn t i dy

IL our case dr 0 since I low so



Lw r dcholnds

Using the formula for the Lie derivative in terms
of covariant derivatives

expanding the RHS and
writing everything in component gives
wit ra t 0 wrap t Ppwrrap
0,14010ps 0,1401Pas

which is our evolution equation for the vorticity
This equation is remarkable because of thefollowingFrom the momentum equate we have hard u 0p 0s

Commuting with to get w we have a raw nots Oh
Since I 9w we would thus naively expect

wage O's 9h However this does not happen
the structure of the Lichneronicz equation whid in particular
casts ds as as exact derivative ds lead to only one

derivative on the KHJ This gain of derivative willhelp with existence and uniqueness below



In particular we point out how thefirst lawof
thermodynamics was used in the derivation of the vorticityequation we did not simply apply info to it and used
fat 0

Before continuing let us consider as applications A
sees a necessary condition for inotacionality is that s constant I
fact we have

Prop If s a constant and 1 0 on It _ol tha
s constant and 1 0 for t 0

P f Integrating usgs 0 along the floc line
of s give that s constant on spacetime Thus the equation
for the routicity gives

Lwr 0

which is a homogeneous transport equation for R Since

Alf o
O

uniqueness gives 1 0 It

Renaut Of course when we say 1 0 for f 0 we
are referring to t belonging to an interval where the solution
exists



Next we derive an evolution equationfor wWe start with the Hodge Laplacian not really a
Laplacian because

g is Lorentzian of wi

Il w dd t d d w dL w t d r

where dk is the adjoint of d Since d'tw Kut compute
d w Paw's O Chad n Sh h Eu

on
ndkauns handsn T

w 0 und in d Fh

when F log F Thus

dd w d Lind F Lw DF
It will be conochient to introduce I h and consider

F F T s Then since Iw 42

IF Offish t Ks fifth whitt Es

29 woah t Ks



28 we rapt 0 wa t 9 Es

2 wer wa t 29 were t Es

hogs

27 were wat 20 hot Is
To simplify the notation we henceforth adopt

Potation We will use B to indicate a generic
expressies which ca very f on line to line depending onat most the number of derivation of its arguments

Using the formula for the lie derivative in termsof covariant derivatiecs

Lwd F p 2 w wer OpCr a hot jurors
t Bfdg Os Owl

oBut who 0ps wdOrgs n Op l w ra s Opudras
Bp Og Os Dw so



Lwd F p 2Ff w wer O CptBplOg Os Owl
On the other hand

Daw n g Brown t Rrand s

g 0,0 Wpt Rp w 2Ff w WPP OpWn

Hr t Br log OsOw
Compute

a affff thou lost fl t ton
I
2h

f I Eff thus

f s Ct EFI e noir

Rr w t Hr t Br log OsOw
Next we apply whom to this equation and compute



wrqldtrlp wrqo.in
ur 90 r r t Rmwript Rr wtr

Curqirl ouwrqr.vn
Bp 9g Dw Js Oh r

Bp 93g d w d's 02h Oh

Thu

garth I w

Ywrq qwp

Bp 92g d w d's 02h Oh

Let us suppose that tuff 0 so we can define f and
the above becomes

f g e Ct H i
wrq qwr

B 93g 92W d's 02h Jnh



Pep Let

C f 2GT CI E Ed
h

2gdp e z n'up
where 0L 2 El and Ihigh L Then C P is an

inverse Lorentzian metric and the operator

C Pwr 49,0 eg r ch ti f wronger
is a strictly hyperbolic third order operator

proof This can be verified for example by computingthe characteristics associated to Gaf and C fur II
we now consider the equations derived for s r andw In these equations we treat h as a function of w byh _wFwj and expand the covariant derivatives absorbingthe terns in the Christoffel symbol into the B ternon the kits of the equations Doing so we find we

multiplied the equation for s by h



wtf S O

wi qua Ba 9g ow Os h

2g f Il z f JurdadOpus Doll g du 03,91
and we assume that 0 LEE 1 we will justify this
assumption later on We use the notation C ar fo thefern in bracket as in the above proposition and note that
the order of derivative appearing on the RHS is compatiblewith the order of this mixed system so that its characterskan ghee simply by the characteristics of the operators onthe LHS recall that at this point g is consideredgiven

Thus the systems characteristics are determined by
wing 0

which are the flow line of w lov of n and

C f 3 3 0
which are the characteristic con i.e the analogofthelight cone if C were the Minh hi metric of the metric e



Denote by 11.11µ the H Sobolev norm in A

Invoking standard energy estimates for strictlyhyperbolic operators see e y Ho3 Le we obtain
tIl s Il

µ 11510711
µ
tJ BC w

µ s
µ

O

All
µ E Riot 11

µ t J Bl g w
µ d

w
µ E

viat f tuts µ z uta d

where we use the following abuse of notation when we estimate
a term like 110 s

µ the derivatives could be time derivative
so we have 1102511

µ E Il SHµ thotsHµ t 1171511
µ Butfrom the point of view of derivative counting all teamscontribute the same Also on the LH we should havew

µ at 11Otw u 1 110thw Il
µ but all term contribute a

w
utz Switching µ to Ntl in the estimatefor S andP t 2 to Ntl in the estimatefor w and defining

W lls
µ t 11h11µ t 11h11pet



we obtain

we win tf w
which implies the energy bound for small t

W E Clercoil
This estimate is the main ingredientfor a proofoflocal existence and uniqueness similarly to the standard

argument for non linear wave equations see thereon nos linear wave equations

elementsfor the proof are
Under the above assumption OC 2 EL n O 0 etcit is possibly to successively solve for the time derivativeItu Ifs 9th in terms of the data This implies Ca thatwe can construct initial data for the s r w systemout of data for the original system and Cbl thatwe can construct analytic solutions to the original

equation ofmotion These analytic solutions satisfy the
system for s r w wi th ra a dacha op hue and
4 Hua Give non analytic data to the original



system we approximate it by analytic data a I

use the energy bound that holds to the analytic solution
to obtain via a limit a non analytic solution to the
original equations of notion In particular we have
a solution to

Pts udPaup t ITIVa p 0

whence IT is as before the projection onto the orthogonal
space to u but we do not know yet it to have thetornTap gap 1 u up because we have notyet showed that
thigh L However for pts 0 which will holdforsmall time but see below for more contracting with hp

ufriquf Laudslining 0
thus u remains normalized if normalized initially

Finally uniqueness can also be proved with an energyestimate in a lower norm for the difference of two solutions
Let us now discuss the assumption 0 CZ E L Givesan equation of state p pig s the fluid's sound speed as



defined

of
which is a well defined quantity for physical equationof state since the pressure of a fluid cannot decrease withwith an increase in density The sound speed is alsogivesby the following equivalent expressions RZ

ttfii.tl ls tlCoHetEnfIeH
tlfIletIafIel

It follows that z c Thus
oczsi.meausthtt.ttisoudspeepositioegetethan thespeedof light

We conclude that theeristdeternisedby C af 3 Jp 0 correspond to propagation of sound is
theft Thus the characteristics of the relativistic
Euler equation correspond to two types of propagation
phenomena transport along the flow line of u and Soundwaves we identify C43,3 D as wave because C is
a Lorentzian metric



we remark that N in the above estimates has
to satisfy µ 312 since we need to use Sobolev estimate
and product estimates From who s o we obtain that
s will remain positive if initially positive and fromJ J 0 written a uh 0 logis far the same hold
for n I provided say that the fluid's velocity does not blow
up Depending on the equation of state f on the thermoynamic relation we obtain positivity of o p and E PuttiyU together we conclude

tho Consider initial data in H th
t 312

for the relativistic Euler equations with an equation ofstate such that s h O n E p ft o 0 a 1 such that
0 L as If of 1 Assume also that lulgh L at ten
Then there exists a unique classical solution to the
relativistic Euler equation defined fo time interval

Regarh We have written the relativistic Euler equations in
a way that made it characteristic explicitandallowed us toprove existence and uniqueness But the way we wrote them is notyet2001 for further applications and we will present anotherfanof writing the equations later on



The Einstein Euler system
We will now consider the relativistic Euler equation coupledto Einstein's equations
C trc
we begin with some definition neededto define Einstein'squalia

Def The Riemann of a metric g
is the four tensor a CI tensor gives in a systemof
coordinates by

hair stir heir tiffs tiffswhere the I's anc the Christoffel symbols
The Riccarton is the following two tensorgivesas a trace ofthe Rieman tenson

Rap GMRr au Rr p
The s is the trace of the Ricci tensor

R gdfRap tha
These expressions are well defined in that theydo not depend othe coordinates used

Once
again those definition seen ad hoc and it is hot



clean what the above expression have to do with whatwe
intuitively expect a curvature This last concern is atleast partially clarified by the following proposition

the 4 If Reptar vanishes on an opes set U Thes

U the metric
g is isometric to the Minkowskimetric i.e

J l's the Minkowski meth o u but not necessarily writtena r f standal rectangular coordinates
ki Rep's measures the failure of the covariantderivative to commute in the sense that

0 0 Ir Ppr Er Repro Id
for any vector field I

1 In Riemannian geometry lit holds with Mishnahreplaced by Euclidean
Since intuitively the Minkowski space is the canonicalflat i.e non cured space 4 shows a connection between our

intuition ofcurvature and the Riemann tensor As for Cii wecan
imagine that measuring the rate of change of a quantityalong different paths first the x direction and then in the



XP direction and vice versa can lead to different resultif such paths travel regions of space that are differentlycurved
trop lis The Ricci tensor is symmetric i e Rap Rpd

Lii The following identity holds

Va Rf tangy 0

proff i follow by exploring certain symmetriesofRap r thatfollow from its definition e.g Rap Rea rwhich is particular imply that not all components of theRiemann tensor are independent in fact there are 20independent
components gig fellow from some further symnotuifor covariant derivative of the Riemann tenson known asBianchi identities

Il
Einstein's
Det Gives an energy momentum tens Tap Einsteis'sequations are defined as

Rap targa t d gap Tapwhere A is a constant know a cosmological constant IfTap 0 then we have theEinsteigation
Rep Larga t Aga O



R students should not be misled by the word
vacuum which may suggest that spacetime is somewhat trivial
that nothing is happening This is definitely not the case
as one could imagine from how complicated trap a L R are
Solution to vacuum Einstein's equations can be quite complex
a I even develop singularities In fact some of the bestknownexplicit solutions to Einstein's equation like Schwarzschild
and the Kerr solution one solution to Oscar Einstein's equations
with 1 0 Moreover Christodoulou proved Chl that
singularities can form on solutions to vacuum Einstein'squati
by the focusing of gravitational waves Thisdoesmatephysically gravitational waves carry energy so focusing then ata small region of spacetime can create a black hole

R Her we are interested in the case where

Tap is the energy momentum tenor for a perfectfluidbut our initial discussion applies as well to other theories
i.e other energy momentum tensors so we will keep it
general for now

Potation The energy momentum tensor involves variables



that depend on the particular theory we are studying Is the
case of relativistic Euler as seen then variable ane besides

of that already appear o the LHS of Einstein's equations
n s and p But if we take say Tap to be the energymomentum of electromagnetism the the variables in Tep willbe the electric and magnetic field Em and Bu Is order tokeep the discussion general we willdenotc.sumbolicsllyallHcvaviablesinTapbesidmctig and
so cti itayti.ca e this These
variable Y ar called the is we renal that
natter means anything that is not gravity i.e ale
variable in Ta except the metric Thus for exampleif we have the electric andmagneticfields we call themmatter fiells ere though physically we think oftheelectromagneticfield in terms of radiation rather than matter

As a consequence of the Bianchi identtie we barsee proposition above we have

V Rf targa Ag 1 0r e
thus 0 Tf O is a necessary condition for the existenceof a solution to Einstein's equations In particular the



efuah.eu of motion for the matter fields are Rtf o

This also gives another motivation for why the relativistic
Eule equations are fated O

typlefoE.se uatios

we will now discuss the Cauchy problem roughlystated
see below fon a precise statement give g and 21 initialcan we find g 4 solving Einstein's equations a I taking theinitial data

Suppose we have solution to Einstein's equations and
consider coordinate 1 413 0 Assume that initial data wasgires
along I xo t o and let µ be unit future directed
i.e pointing toward t o unit normal to 2T Then using
the expression fo Rap and R in coordinate we find that

Rap targe 1 Aga p
involve no term with two derivative of g w r t Of This
can beseen moreeasily in coordinate such thatgon 2 go I 0 Ni Chocoosince the initial data involves prescribing of art Ofof o2T since Einstein's equations are second order on g we see
that the initial data is constrained i e it cannotbeprescribed arbitrarily but it has to satisfy



Rep targa t.A.gg td TepN a 27

The existence of such constraints can be usLevstood geometrically
If we have a solution to Einstein's equations and I is a

hypersurface embedded in spacetime where initial data is given
the the induced metric on I which agrees by assumption withthe
metric gives a data cannot be arbitrary but has to satisfy
certain relations known as the Gauss Codazzi equations These
equations also involve the secontftf.no Iembedded in the spacetime Roughly the secondfundamentalfoamrelates the intrinsic geometry of 27 with thatof thespacetimewhere it embeds

we also note that since I is three dimensionalthe initial metric gives on I should be a metric on a
three dimensional space i e g j with nine component ratherthan gap with 16 components On the other hand we do
want to solve Einstein's equation for the full spacetimemetric i.e ya with 16 components

In view of our signature convention ttt themetric gives initially on 2T is Riemannian
These considerations lead to the following definitions



Def An initiate for Einstein's equation
consists of a three dimensional manifold 2T a Riemannian
metric go on 27 a symmetric two tensor ti o Zi initial
data I fo the matte fields such that the Einstein
constraintions gives by

o 2 e

Rg Ing High12 25

ie
Og togi diog.li j

are satisfied I Above
Rog 0g tug diogo a l 1.1g are

respectively the scalar curvature covariant derivative trace
divergence as 1 norm of the metric go The quantities j andj are respectively a function an one forma I with the
property that Tcr ti a j and TIN j where T is
the energy momentum tensor whenever I embed with second

fundamental form h into a spacetime when Einstein's equation
are satisfied

The constraint equation are the relations needed to be
satisfied by the initial data as discussed above The tenson
I play the hole of 9g It i strictly sneaking we cannot



talk explicitly about ItgIt since It is a coordinate

dependent operator Moreover It would be transversalto
2T but it does not make sense talk about transom
sality to 2T before having 2T embedded into a

spacetime

Def Solving Einstein's equation with a given initialset I E go hi yo consists of finding a four
dimensional manifold M a Lorentzian metric g field 7and a embedding it 2T M such that

i Einstein's equation with Tap y am satisfiedin M

ii i Ig go it c 41 yo when it is the pullback via i

iii the second fundamental form of the e beddingit I M equals K

Taking the trace of Einstein's equation and using tha
g'tga 4 we find

R t 4th g't Tap



Using this expression to substitutefor R we see that we
can write Einstein's equations as

Rap Tap 1aGMTr ga t A gap
which is more convenient for our purpose

We will construct solutions to Einstein's equationfor a given initial data set We will consider Tap _0
for simplicity as the ideas we will present apply tothe case Tap to a well we henceforthassume as initialdata set to be given

Embed 2 i to 112 2 and fix p E I We will
initially construct a solution in a neighborhood of P Cosidacoordinates yal defined on an ope set about p with
yi coordinate or IAU yo ol Anon that p
corresponds to coordinates 90,90 In these coordinates theRicci tensor reads using theformula for Rap
Raf Lgm 99 ga taipan 99geo 99gal

t Fl g Ogde
when Fl g 7g represents terns involving at moot onxp



derivation of g We thinkof Rap as a second orderdifferentialoperator o y giro by the above expressius and we want
to solve Rap D Thu no need to understand the operator Rap
so we look at it principal symbol symbol linearizing Rap is
the direction of a symmetric two tensor we find
Ochiai l Lgm 3,3 hap t 3 sphm sis he 3ps hav

Thus if we take ha i 3,3 we find ochiai b 0 with
h 40 Therefone.eu nectoschatetfo Ricci
operator and he cannot solve Ra 0 with Rapgivenby
the above expression Note exactly the same issue happens when
one studio Ricciflow Thi degeneracy is ofgeometriccharacter it is a consequence of the fact that Rap is inoamastUh Lon diffeomorphisms Ricci g Ricci y cgi fodiffeomorphisms4 In other words Einstein's equation turn out toan underdetermined systemof PDEs

We can remove the degeneracy of Rap by choosingsuitable coordinates as follows Define function X x xand X by solving the following initial value problem is 4
we write to indicate that the index in x 4 is



simply a label for these four functions it is not meantto
be a tensor index were a tale x to be function ofy y y y

Dg x 0 in U
wi lo y y y yi

yo
t 194 Y y 1 0

f ou i L 2,3 and

Igx O i U
X co y y y 0

fry lo y y y L

where we recall that Bg is the wave operator appliedto
a scalar function Sisco the function x agree with the
coordinate function ya o Inu we conclude that the x 4
give rise to a system of coordinate o U possibly shrinkingU if needed thus we unite xd and now

x'II is a Coo dinate system about p On the other
hand

Dg x Dg xD is coordinate independent so



we also have Bg Xd 0 when Bg is expressed relative
to the coordinate f a thus we have using one ofthe expressions for Bg

DgxD griff xd grinthixify t o

where we write gmc x and I cx to emphasize that
these are the metric a L Christoffel symbol expressed
relative to 1 41 coordinates But xd 8 and

fj Xd 0 so we conclude

Id 0
where Id gruff

Def The coordinates x'Ifso where It 0 are

called t.es

we stress that by construction wave coordinates depend
o n

g
It can be showed that relative to wave coordinate

gmc.gg 99 99 1 0



so that Rap 0 reduce to

Rap tagmorouga t Fa ly og 0

This is a system of quasi linear equations which can be
solved by standard technique see the roughnotesosnoi l.ie
wavceguatins However the problem is thataearctuyi.gr
oprovcexisteuccofgwhereasuavccoovdinatesueguig to be given To overcome this problem he will do
the following We solve the equation that we know hou tosolve i e tzgmqlog.pt Faplgog 0 Then we

try to show that this solution in fact solves Einstein'sequations Thus it is convenient to introduce

Def The reduced Nicitor of g is

Nta tagmqlug.pt FeelgOgdefined in U The r

Einstein arc

Ra't 0 in U
We thus consider R 0 in U Let us now



provide initial conditions for this equation Recall thatthe initial data is gin o Inu yet 01
Since we are glue go on 27 we havegi.jo gijWe need to prescribe goal01 and we choose

go.co L
Joico 0 We also need to prescribe 9gCpo In suitable
coordinate the second

fundamentalform is given by the Lqgjso we prescribe dfgig.co 2big It remains to prescribe
lyGogol It can be verified flat combinedwith the choice we
made so far we can choose Ofgo such that our coordinates ly II oane wa we coordinate 0,251 i e we can choose Ofgo so
that

1401 I 1
0

0

Having prescribed initial data we now obtain a solution
gap to R 0 in U possibly after slashing U By
continuity gap is in fact a Lorentzian metric in U

Now we want to show that g is a solution to Einstein'sequation i.e its Ricci tensor
satisfies Rap O Thwartthe case if I 0 in U sisco in this case the



coordinate 14411 0 will in factbe wave coordinates for the
metric

g ee found in which case Rap Ratp and Hc
Rg O We have that Id 0 on EMU so we have

to prove that the vanishing of I o Inu can bepropagate
to U

Sisco g is a Lorentzian metric its Riemann tensor satisfies
the Bianchi identities which imply after some calculations

D
g Id t HCI Ot o is U

where Hlf 91 represent terns involving at most one derivative
of f This is a homogeneous system of wave equations for Id
for which one of the initial conditions is 19101 0 Uniqueness

f on wave efuation give that

I 0 in U if 7ft Col def I O
Inu

we now invoke the followingfact see CCB

the 9ft Col 0 if and only if the constraint
equation are satisfied

Since is as initial dataset the constraints are satisfiedby assumption we finally conclude that we have found a mature
g in U such that Rap 0 in U



It remains to obtain a solution global in space i e

valid in a neighborhood of2T in 112 27 This can be done by
using the domainofdependence property of the wave operatorgMq0v
and uniqueness for wave equations toglue solution constructed in different
open set u u i

h
Uniqueness

Caution although the argument forgluing those solutionsis not complicated it is not as straightforward as the abovepiotuna
may suggest as we need to construct a system ofcoordinate validon the intersection region in order to compare the two solutionsfromU an 1 U

This beautiful result on existence of solution to vacuumEinstein's equation was first proved by Cloquet Bulat in 1952CFB a result that can be considered the birth of mathematicalgeneral relativity although Einstein himselfdidnot seem to be
impressed see Pa p 291



It is not difficult to see thatplain uniquenessfailsfor Rep 0 Let M C e El x 2T be a spacetime constructed
as above and E M 7M be a diffeomorphism that is not the
identity but agrees aith the identity is a neighborhood of2T
The the metrics g and y cg are twodifferentmetrics in M but
both inducing the same initial data on 2T and both solving
Einstein's equations since Riccicg Ricci y cyst Thisdoesnotcontradict the uniqueness neededfor the aboveglutyargument since there
we are talking about uniqueness is wave coordinates i e fo the operator
generous

The problem with the above example is that the metric
y and 4kg are isometric Thus the manifold M g ail MqHpshould not be distinguished in the categoryof Lorentzian manifolds
Thus if we consider equivalence classesofmanifolds i.e up to
isometry 44 g a I 44,9kg are the same Nevertheless we
can still produce non uniqueness by cons la a proper subset HCM
that contains Ii since M gl and Mg are not isometric

It is possible to construct however the largest
spacetime that solve Einstein's equations with thegiven initialdata
callcthcmaxibuybypeblioftiit.aedataand this manifold be



we can now investigate the Einstein Eulersystem Theabove arguments depend essentially on properties of the Ricci tensorand geometric considerations and it is not difficult to see that
they apply to the case with matter as well provide u cansolve the couplet system in U In the case of the EinsteinEuler system we only need to add Einstein's equation to the
system we have already derived for the relativistic Euler equationwe obtain

LGM99gap Balog w s
wd9 s 0

Vq rap 1319g w Os htr

Ig f le c fur qq.org Bldg du 03,91w4wT o

when we aor wrote 2 ash We can doenergy estimates as befonotofist
J µ z E G 0111µm t J Bl d luta w

µ s
µ

µ E µ tf C u
ne ion

111
µ E Riot 11

µ t J Bl g µ w
µ d

µ



H wit
µ E wt

µ It B of lutz µ 1 µ z A
µ

and once again we observe that these estimates close leading
to existence of solution We leave the formulation of a precise
statement of existence and uniqueness in thedove sense to
students or see e s Dil

Regarh Because of the indeterminacy ofEinstein's
equations we had a great deal of freedom in choosing ourcoordinatesand initial data for the spacetime metric This freedom
which was crucial to obtain solution is known in the physic
literature as gauge

frcelonnem.nl The characteristics of the Einstein Elesystem are the same as the relativistic Euler equations plus
the characteristic

coming from Einstein's equations namely
JPes 9 O which correspond to gravitational waves

Initialdat
We havenot so far address the question of whetherinitial data set to exist i e whether it is possible to



find initial data satisfying the constraints This is a research

problem in itself we need to solve the constraint equation
fo og ant hi when appropriate formulated the constraint
equation turn out to be an elliptic system for g art hi
and the topology of I play a role on whether or not

this elliptic system admits solution while in many situations
of interest it does this is not always the case See
C C P



Newformulationativisticleequation

The equation we derived in order to obtain local
existence and

uniqueness for the relativistz Euler equations
involve operators that make the role of the characteristic
manifest Nevertheless such equation are not yet good enough
f a more refined applications such as the study of shoolformation
in the relativistic Euler equations Here we will presentyetanother

way of writing the relativistic Euler equations Aswe
will explain this nee formulation of the equation exhibit
several remarkable features making it aneneable to certain
application in a way that other formulation are not

Auxiliaryie
we continue to use the same notation as beforefor therelativistic Euler equations and her we introduce several new

quantities that will be useful in whatfollows Throughout
we denote by earn the totally antysynchro symbol normalized
by q

0123 I



Assumption For simplicity in our new formulation ofthe relativistic Euler equation we will assume that the spacetimemetric is the Minkowski metric The coordinates HI so willbe standard rectangular coordinates

Recall that a is the fluid's soul speed
DCI we introduce
the dimensionless tpy
I log 4th

when I is some fixed reference constantvalue

The u.at oottyofaouefoeV
or th v Ift rupdrug

The u orthogondooh.ci yocoafie
wd voutdlhul

The topygradient one fan
S Is

TL difiedvoticityofthcooticity
Cd vortdcwItcs 2e4rrup9pIIr

co off150 h t co Iftu's II co goals g Iue



thcmodi.fi gccoLh.cetnoygradieut
D I 9 s t f shih 152Shih

The modified quantities C and D conc about because ofthe
following Is the application we will discuss we need to
estimate norface and 9St but a good estimate is not
available for these quantities However adding therightcombination of variable to outhou and I s we obtain
quantities coast D that satisfy equation with a good
structure for which estimates can be derived

The n orthogonal vorticity E is related to 1 bydualityId L hiCtr µ where r is the Hole dual of 1 given byA
xp theapp AM The roleof E is to provide the vorticity

as a vector rather than a a twoform as is the classical case
Assumption In the previous definition as well asin the ensuing discussion of the newformulation of the relativisticEuler equations it is assumed that Is anL s are the fundamental

thermodynamic variables with h n O f E and p being
function of th and s We also assume ou construction to be
such that O L as csih.SI E L



Def For 0 L c E L the acoustical is

definedby Gap 42gap t L CT help whose inverse i

C f c g't Ch c u't

The characteristics associated with C are called soo
cones

them We have already seen that Gap is in facta Lorentzianmetric provided that high L which is thecase

Def The null form relative to C are thefollowing quadratic
forms

Q't le 41 C f Oakley
Q pl9,41 9 90,4 Opie 24

The use of null form ha a long history in hyperbolic PDEs and
we will highlight their properties below

Theneutation
We can now state the new formulation of the relativisticEuler equations As the actual statement of the menformula

tin is quite long we will give only a schematic statement
We will use to denote up to hameless terms where
harmless here mean from the point of view of the application
we discuss further below



Theo Assume that Ch s n is a C solution to
the relativistic Euler equations Tha CT s U also verify the
following system of equations

us

Deh e D t Q OtOu t LCI
Dead T C t QLOI.lu t Loi Ont

Des E D t L Coil

Transport equation r

ut ly s O

u I s L Ou

uh 9 i e LL 91,94
Transport dir cure equation i
ut d D Ct QCOS OT du t L124,94
or ta S O

o i LI oil
uh 9yd I C t D tacos 90,0104

t L Os di di du
Above Ll Of Ofm denotes linear combinations of



term that are at most linear in dfi whence
Q1 Dfa Ofw denotes linear combinationsof the nullform
relative to G DG is the wave operator v r t G and in

DG ud the wave operator acts on ad treated as a

scalar function

proofi see CDs B

One new result we can prove using the newfoundation
is that the entropy and n orthogonal vorticity can be prove
to one degree more regular than what is given by standard
theory

Theo The relativists Euler equations are locally
well posed i.e existence

uniqueness all continuous dependence
on the data with this u E I E Htx Htt H H
W Iz t L

proof see DST A

standard theory e.g symmetric hyperbolic system o the

Mitel orderformulation we derived earlier gives o.ly
h s n ai C It t H Ht x H t



Remark The above theorem assume that the initial
data enjoys the extra regularity scot C Htt and a cot C It
otherwise the result cannot be true since Hao is no smoothing
in time for hyperbolic equations Thepoint is that standard
theo ygivess.CH Vandw EHt 1eveuifsuo4extr
regrlaityfo.thdata

The above extra regularity ultimately come fromthe dir curl part of the system we point out however
that this is not immediate as it may sound since the
div cure system is for the spacetime dir and art fromwhich he need to extract three dimensional regularity

The extra regularity is an intersting result in
itself but it is in fact one of the important ingredients
in the study of shock in relativistic Eden which we
discuss next

Thestudyotfourtion
Roughly a shoot or fo shout is a

J on is spacetime f on which the solution remain bounded but
one of its derivatives blows up



while it is known that shocks can fo n fo threlativistic Euler equation I see eg GSI forsmoothinitial data we are interested in the problem ofconstrut.ve

ofstfomatiouittsymnetassumption
in more than one spatial dimension

henceforth referred to
simply as the problem of shool formation by which we
mean i

Shoots four for an ope set 13 of small initial data
usually perturbation of constant solutions stability

B contains arbitrary initial data i.e not restricted
to a symmetry class

Proofs are constructive so that we canget a precisedescription of the shoolprofile Neededfor continuing the solution
past the shock in a weak sense

The framework needed to establish proof of stool
formations involve the followingingredients.INeutoenolineageomctricoptnos This is don
by introducing an e f oiU which is a solution to
the eihonalequation

Gdf 9 UTU O



with appropriate initial condition The eihonalfunction play
two crucial roles

First the level set of U are the characteristics
associated with the metric C which are the soundcases
Is this regard we note that U is adapted to the wavepart
of the system and not to the transport part This choice is
based on the fact that the transport part corresponds to
the evolution of the vorticity and entropy and there are
no known blowup results for these quantities On the other
hand the only known meo4a f for relativistic
Euler is the iitenseotionoftlesoudco.es In particular

this shows the importance in the contextofstock formation
of not treating the transport and soul part of the system
together as it is done in the first order symmetric hyperbolic
formalism The intersection of the sound cones is measuredby
the inveracity y defined as

r
1

c Polat qu
which has the property that y 0 corresponds to



the intersection ofthe characteristics
Second in order to detect the blow up we need to

identify precisely in which directionis the solition blowsup
and which direction it remains bounded This is done withthe
introduction of a nullf.name

e es k Ll
adapted to the sound cones Here L and K are hull vectors
with respect to G satisfying Elk L e 2 and

eyed is an orthonormal with respect to G frame on

the topological spheres fires by the intersection

ta constant A U constant

We also have that Glen L O CCea E A 1,2

rt us
constant

eat
t constant



We can decompose quantities w.at this null frameI identify that blow up occurs in the L direction whilederivative of the fluid variables in the other direction remainbounded To carry out the analysis we also introduce a geometric
systemof coordinates adapted to the soul characteristic

t U o oat
where VA Ai 1,2 a a coordinate o the sphere t constant A
U constant they are constructed upon solving
C df 9,49 VA 0 with appropriate initial conditions

Ingredient two nonlinear null structure The basic
philosophy for the proof of shock formation is to show
that relativetothegeonetcoordinate It U vi oil
the s.lu remaiballwayttw In thisway
we transform the problem of shool formation into a more

traditional one where the goal is to derive long time estimates
for the solution relative to the geometric coordinates The
blow up of the solution a r t the original coordinates is
removed by showing that the geometric coordinate system



degenerates in a precise fashion relative to the original
coordinates since the characteristics are intersecting at the
shock we expect the geometric coordinates to degenerate Herc

A crucial aspect of those constructions is that the
n ameandtgeome.ca depenthc fluid
solution since they the null frame at thegeometric

coordinates are constructed out of U which depends on G

in broal philosophical terms this resembles the approach
to Einstein's equations where the wave coordinates depend
on the solution i.e or the spacetime metric Therefore in order
to implement these ideas we have to show that thegeometric
coordinates remain regular all way up to the shocks AL to
do so we need to obtain precise estimates for thefluidvariables showing in particular that the derivatives tangent
to the soul con do not produce singularities the latter
coming from derivatives is the L direction as mentioned

In practice this is done by showing that the dynamics
can be decomposed into a Riocat type term thatdrives
the blowup recall that the Riccati ODE is date Eh what



blows up in finite time and error terns that do not
significantly alter the high frequency behaviorof theRiccati tem Such terns appear as follow we will illustratewith h similar statement holdfor u Expanding thecovariantwave operator relative to the null franc u find that theequation for h reads schematically

LC htt e Kil't Q
where Q denotes linear combinations of null forms relative
to C and we omit harneless terms eg terms lineau r

n n 2derivatives The equation th E th is the

Riccati equationfor the variable Lt since he isdifferentiationin the direction of L this L I for a suitable
parametrization of the floc line of L Thus we need

to show that Q is a perturbation that does not
significantly alter the Ricca ti behavior This is problematicbecause Riccati terns are generally unstable under perturbationsHowever and here is where the role of null fo n is
important Riccati teams are stable upon perturbation by
null fours Relative to the hull frame we have



Q 109,041 Tice 04 t Tittle
when T is differentiation tangent to the soul cones
This implies that even though Q i quadratic it never
involves terms quadratic in the direction the system wants toblow up Specifically in our case we then have

nL I Ell e KH t Timah
so that the first tern on the Nts is the only ten

n rquadratic is 1h If listed of Echl ee had 04
then we would get a 4 2 term Affe decomposing is a
null frame this 04 could produce a LF that cancel
or nearly cancels the 1451 team from the Riocatpart thus working against the blow up and preventing usfrom proving that shock form The term T.ci 0i on theother hand is at moot lines i LL so that

11th I Lil't Teil IhSince the tangential derivatives remain bounded the firstternon the RHS dominates over the last term leading to theblow up of LI



Remark A straw man 0DE analogyof the above isthe following Consider the two following perturbationsofthe Riccati ODE e'i left E't et tf 2 tee 2101 So
so small Thefirst equal.io still blows up and it does it atthe same rate as the original one For the second perturbationdependingon the sign the solution will either existfor all time onit will blow up at an entirely different rate tho effectively

altering the blowup The null form are the PDE analogof
the ey perturbation

Ingredient three energyestimate and regularity The
previous arguments assumes that we can in fact close estimate
establishing several elements needed in the above discussion

e.gthat tangential derivative do in fact remain bounded Thus
we need to derive estimate not onlyfor thefluidvariable butalso for the eihonal function sincethe regularityof the nullframeis tied to that of U

Energy estimatesto thefluid variables are obtainedby commuting the equation with derivatives but order tavoid in
generating uncontrollable source terms we need to



commute the equations with certain vectorfield that are adaptedto the sound characteristics This leads to vector fieldsof the form Z n du 0 Commuting through eg the equationfor I i
2 Dgb n Dgth t

Dg94Th

Dg th t 934.91
so the etuationfor I five

Dg Et n O U Oi t

Since U solves a fully non linear transport equation
standard regularity theory for transport equation give thatN is only as regular as the coefficients of the equationwhich in this case is C and since C C I s nd we find03U 2 G O I t On the other hand standard

energyestimates fon wave equations give that from Dgc2til we obtaincontrol of 9124 n 02h so in the end we are tryingto control 92T in termsof O Ts and tho have a
derivative loss



It turns out that we can overcome the regularityloss by exploiting some delicate tensorial properties of
the eihonal equation and of the nave equation relative to
geometric coordinates Together these properties can be used
to show that certain geometric tensor constructed out of
U enjoyextranegularityindirectionstangentfothes

Carefully accounting for the precise structure
of the aforementioned O'Udh term we can show that it
is precisely one of such fans citt extra regularity
It turns out that all term that seen to exhibit lossof
regularity are of this four a I can thus be controled

Remnant The special structures mentioned a above thatare used to prevent lossof regularity of the e honal functionane tiel to the geometry of thesound cones The improvedestimates without regularity loss fo U are not based directatlyon the eihonal equation but rather a evolution equation forgeometricquantities the null sea.nlfundamentalfan near curvature etcof the sound cones
To close the estimates we also need to use the

Xtra regularity that we obtained for s and I to closethe estimates To see this let us do a naive derivative
counting From the equationfor a we have Ign C



so we can control du E C But cruortci now From
the transport equationfo I uld Indu we can control

n du so is the end we are controlling On E O n which
has a lossof a derivative This loss of regularity can

be avoided however by using the extra regularity
for I mentioned earlier Something similar happen with
some estimates involving s

Finally we mentioned that the energy estimatesthat are needed are in fact weighestinates where the
weight is given by the inverse foliationdensity f Sisco

O at the shoot we end up with energies that are
singular at top order This is a major technical
point that involve a complex bootstrap argument toclose the estimates

The above ingredients seem to be needed to establish
Proofs of shoolformation and are used in all known such proof Cin
22 see below The crucial point for us here is that all
scolingredientsanepresentinthenenformulation
theresa tins



ttf shocks

The ingredients outlined above have not all being
introduced in CDs They are the culminationof a seriesof
beautiful idea developed by a series of authors Fo the
sake of time we will not review this history here but we
refer to the introduction of CDs

when the fluid is i rotational the new equations reduce
significantly a I agree with thosefoul by Christodoulou Cch27
The inclusion of vorticity causes several new dificulties and it
is quite remarkable that the vorticity case presents

many ofthe good structure found and needed in the innotational case
Finally we mention that in one spatial dimension the

picture is compellingly simpler in 11 we can rely essentially
on the method of characteristics while this is essentially the
same as introducing a e loyal functional in Id we can dispenseith all the geometric machinery discussed above Also wedo not need to carry out energy estimates Instead oneuses estimates in Dv bounded variation spaces It is passislto prove that such Dv estimate do not generalize to twoor more spatial dimensions Ra



Relativistiliticosity
So far we only discussed perfect relativisticfluidsThere are important applications in physics where it is knownthat

viscosity plays a key role One such instance is in the studyof the quark gluon plasma an erotic type ofmatter modeledas a fluid thatfan in heavy ios collisions such as those
formel at the Large Hadron Collider Another example isin the study of neutron star mergers These are very active
fields of research and we refer to CBDto2,1243for more discussion

what is stainhi about the studyof relativisticviscous fluids is that ifthat it is not settled what thecorrect equations are There are several different models ofrelativistic viscous fluids in the literature The abundanceofmodels is due to the fact that as it turnsout it is
extremelydiffittmodelsofrelativistic
oiscousfluidsthatincorp.ua eneleuantphysicsanta
aausalandsta causality is a fundamental postulate
of relativity stating that no information propagates faster
than the speed of light Stability here means mode stabilityof the linearized equations



For the sake of Tine we will not discuss her
the difficulties in constructing modelsof relativisticviscous
fluids nor will we review the several models available
in the literature We refer to CBDN1 RZ for such
discussions

The first theory of relativistic viscousfluids thatwas showed to be causal and stable art to have a solution
to the Cauchy problem couplet to Einstein's equations is the
theory introduced in CBDN1 see Did for theproofs

Unfortunately the model introduced in CBDrn is limeted
to co formal fluids for which in particular the equationofstate is always p I s Moreover existence and uniqueness ofsolution for this model has been established only in Gerreyspaces which are too restrictive for application such as the numericalstudy of its equations

Despite the existence of several different approaches tothe problem there exists one theory of relativisticfluids the MuelleriIsrael stewauttery column that is widely used in
physics This is because the NIS has been used to construct
successful models of the quarkgluon plasma The MI5 equation



have been showed to be stable and to respect causality at
the linearized level

For the studyof neutron star mergers one needs to
couple the fluid equation with Einstein's equations It is not known
whether the MIS ca also be used to study neutron starmergersThis is because no lineartie are expected to play a major rolein such mergers and as mentioned only the linearized MI equationshave been proven to be causal but see below

Moreover only recently using state of the art numericalsimulation CADHRs it has become clean that viscous effectscannot be neglected in neutron star mergers Interestingly such simulatio
also indicate that it is bulk viscosity as opposed to sheaviscosity that plays a major note in the mergersofneutronstarsIt is sensible therefore to study the MI5 equation with bull viscosityand noshear

viscosity in which case theequation couplet to Einstein'sequations become

energy nonenton tensor

of a perfectfluid
Rep Rg t Agap Tap CptStuxnetpgap t MitapK nuh O

C u k Tt t Tt t l T t 3bud O



Above IT is a new variable incorporating the dynamic
of bulk viscosity in the h IJ Hwy the viscous contritubutis one

fire by newvariables rather than by an expression in the velocity and
density as is theclassical tavier Stoke equations The lastequationis the equationofmotionfor IT since this new variable has beenintroduced we need a new equationof motion as well and I andI am known functionsof g and n It is also assumed thatan equation of state p pig is give and that high L

the Under mild and physically reasonable assumptionthe Cauchy problemfor Einstein's equations coupled to the MI5
equation only wits bulk viscosity as above can be solved
for initial data in Sobolev spaces Moreover the system iscausal

proof see BDN2 for a precise stament andits proof Er
There is much more to be said about relativistic viscous

fluids This brief discussion is intended only as an illustration
of the following fact the study of relativistic viscousfluidsis a very active area of research in physics However verylittle is known about the mathematical properties ofmodelsof relativistic fluidswith viscosity anda.greatde.to basic
physically relevant and important mathematicalquestion remain

2
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