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Introduction

In these lectures we will discuss

frree boundary
classical lie nonrelativistic fluids

elativistic fluids
Each topicwill contain subtopics eachof which can bestudied on itsown ant has recentlywitnessed

many developments But it is of interestinthese lectures to consider the unifying aspects ofthese subjects he ate heretwo such aspects

techniques the technique we will employ on all problems sharethe feature thatgeometry plays a prominentrole
modeling we can seeeachproblem to be studied asmodelingone aspectof an ultimate problem in the following sense
Consider Einstein's

equations EE

Rap LRgap t Agap Tap
Often in general relativity GR we study thevacuum EE Tap oThis is important because it helps us understandphenomena that areintrinsically due to gravity Indeed a very richandcomplex set














































































































of dynamic behaviors arise from the vacuum EE see Jared's and
Stefano's lecture But it is equally important to understand the case
with matte Tap o Is particular we can askwhatcan be saidabout the most realistic mattermodels One suchcasecomprise thestudy of stellar evolution

Typically one model a star as a compactfluid body with a dynamic
interface separating thefluid regionfroma vacuum

region Thus one wants to solve EE coupled to a fluid inthe fluid region and vacuum EE outside thefluid region with someappropriate boundary condition on the interface separating bothregions Suchinterface is not still but moves with the motion ofthefluid leading
therefore to a free boundary problem Moreover star

undergo many extreme
physical processes so we can expecttheformationofshocks as thefluidFurthermore we could like ourfluidmodel to include viscosity sisa real fluidsto have viscosity

We are very far from understanding thescenariooutlined above i eGh t free boundary t shock t viscousfluids However we can try tounderstandeach sual topic separately hoping to bring themtogether in somedistantfuture That is the motivationfor theselectures














































































































Notation
we will use standardnotation for functionspaceandtheirnormsThe 22 based sobolerspaces will be denoted Hkai H ca etc Manytimes we commit the function space argument eg L standsforLocaletcThe Soboler norm will be denoted by ill and if n is a domain

with boundary we write
s o for the Soboler norm as 91 Inparticular the L norm will be denotedby 11.110 Sometimes

we will beforced to work with fractional order Sobolerspaces whosehow we recall

s

fine12C It 1312 des
2

where it is the Fourier
transform of u Fractional Sobolerspace ondomains

manifolds etc can be defined with help of a partitionofunityRepeated indice will be summed In relativistic problems Grechindicesrange from 0 to n and Latin indicesfrom 1 to n where n is thenumberofspacedimensions Coordinates are written 1 0 x x T x xand we write if I do In classical problems indices razefrom 1 toand are denoted by Latin indices with exception of the
compressible free boundary Euler equation where we use Greek indices














































































































ranging from 1 to n and Latin indicesfrom 1 to n L
If h is a multi index in Cho a He D denotesthe partialderivative of order 121 dot ta five by

g 1 1D
J N 91150 91 4190

In classical problems multi indicesalways have a 0

We use both D or P to denote the deriveof a map a
function a vectorfield etc and 0ha symbolically denotes kouter derivatives of u many times we are interestedonly is thenumberof derivative

appearing in some expression Whendealing withclassical non relativistic problems Dand Valways denote spatialderivatives 9h represent both spaceand fine derivatives
we will adopt the philosophy that our quantities arc always shootseven though we are typically interested in a finite numberof derivativesAs it is customary in the field we obtain results that depend only

on say s norms and then use a limiting procedure Thisallows usto derive estimate in a more directway see Jared's lecture aswell
we included in these notes some arguments discussions calculations thatare likely to be commited from the lecturesfor thesakeof time These

parts of the text are written in gray














































































































References

We made no attempt in providing complete references on aliterature review In fact our reference are rather incompleteandmanyimportant or even foundational work are not cited we onlycitereferences when it directly complement something we say e j a referencefor an inequality that we used but didnot proof or to a termthat we did not define An exception will occur in the discussions ofrelativistic viscous fluid because as it will beseen a review of theliterature
is important to setup the problem














































































































TheincompressibleEirtions

The incompressible Euler equations I EE describe
the motion of an insiscil incompressible fluid I viscid
means that the fluid has no viscosity the latte beingthe degree towhich a fluid undean shear sticksto itself
Intuitively one can think of viscosity as the stickiness of
fluid e.g honey high viscosity water low viscosity

Incompressibility means that the fluid is volumepreserving
so it cannot expand on contract

e.g water at standard
conditions i well modeled as incompressible whereas air
is always compressible Needless to say thepropertiesofbeing inviscid and incompressible anc idealizations the classicalequation describing a fluidwith viscosity ane the Xavier Stokes
efuations














































































































The I EE au

fo t fo t Op O is O T x 1 IEEal
dir co O in O T x 1 CIEEb
o u O on O T x 71 IEEc

with initial conditions

010 it in A CIEEd
The notation is as follows A ER is a domain in R possibly
seem when 91 14 we will assume it tobe smooth for
simplicity vault x 0,11 1 M is thefluid's velocity
p pit x o T xd N is the fluid's pressure 0 is the
spatial derivative in the direction of O componentuise
ft vi

j
t a vectorfield in 1 Er is often written

as Kolo P is the gradient in N dir is the divergence
in Nh v is the unitouterhound to 91 and is the Euclidean
inner product Vo is a given divergencefree in light ofHEEb and tangent to 91 by IEEc rectorfield in R














































































































we will also use to denote the directional derivativeof a function
From the point of view of the initial value problem

the unknown in I EE is the velocity o The pressure p is
not an unknown note that there is no initial conditionfor pl The
pressure is determined

from the velocity as follows Tabiy divergence
of lIEEa and using IIEeb gives Dp dio fo RestrictingIEEa to the boundary taking the inner productwith v and usingIEEc produces fo V so p satisfies the Neuman problem

Dp Liv fo in a

9 fo u o on

Writing p Dj 1 01 to indicate a solution to this boundaryrakepnoblen a solution defined up to a constant we have that Vp iswell defined Thus the IEE equations can bewritten as
I o t O r 0Di 1 01 0

010 O
o

and we see that the pressure has been eliminated Vote that the
first equation implies that dioco is preserved by the time evolution
we see that the IEE are non local














































































































Remarle Any sufficiently regular rectofield in l can
be decomposed as a L orthogonal sum of a gradient plus a
divergence free ant tangent to an part The operator VDY isthe projection onto the gradient part See Leray Helmholttprojection

Somegeneralities

Physically equation lIEEa corresponds to Newton's law
i e conservationof momentum It is possibleto all an external
force to IEEa Equation IEEb is the incompressibility condition
To see this let 2 24 x be the flow of 0 so it satisfies
for each fixed x E s the ODE 9214 1 01424 1 LetJet x be the Jacobian of the map x Hylt x If a fluidis incompressible then Jct x 1 But

i JIT x Jit x diva t ut n
see MP 94 appendix 1.1 or ChB 02 section 1 s justifying theclaim














































































































Remarks The interpretation of dirt o as incompressibility
can also be seen from the formula

Lolol dire cool
where Lo is the Lie derivative in the directionof o and rod is
a volume forn see Ta 11 I chapter 2 thisformula is a
particular case of Lew Liew t izlaw

The IEE can be denied directly from Keeton's lawsee MP 94 section 1 I or from a variational
principle see Eb Is

Regarding the latter the Lagrangian is

L i t I lol
orwhich also correspond to the kinetic and total energy oftheflita quantity that is conserved there is no potential

energy associated withthe IEE There are other conservel quantities associated withthe IEEsee MD021 section I 7 as well as a large set of symmetric seeMD02 section 1.2
we are considering the IEE in AE R for simplicity butthey

can beformulated in a Riemannian manifold it will then be the
covariant derivative and the other operators in CIEE are interpreted
the context of Riemanniangeometry salta u i chapter 17














































































































Locdexistigueness
We will now adhere the basic question of existenceand

uniqueness starting Lith the latter

Theo uniqueness Let v and u be two smooth solutions
to the IEE and defined on the time interval Coit The

off och 4411 I 110101 null expftonroctill Lt

In particular r u if no him

proof Let 2 r u The

9 r t Ooo t Vp o

9th t Tun t 0pm O

Glo u t r lo ul Vu out Pcp put O

OfZ t f Z t q u t Pcp pu O in 9T x 1

io z D in O T x a

E v O on 0,13 71

where Po and pu ane the pressures associated with i and u

respectively














































































































Taking the inner product with 2 and integrating over r

f 1121 t fat Ya t µ E t fat 0lb put O

Integrating by parts equivalently usingthe divergence theorem

t ft µ t t till t t an
o o

fez out o
On

2 Vip put did lPo Pal t Ever Potso so

I t.hu fllVnllLaofglti ll0ullL.htHo2

Writing 129 H 9 tho tho9 t o dividing by 11211
which we can assume o and integrating in time

112 It111 11210111 E ft Vu Htha
o that 1124111 I 11210111 e xp fat11041L by Ghonwall's inequalityThe result follows from the fact that t E cost arbitrary La














































































































Theolexistence Let o E H'll s t I be a

divergence free rectorfield in it Then there exists a T 0
depending only on 11rolls and a

o E Col CoTA H cri l h c 0,77 H isn
satisfying the I EE ant taking the initial data Vo
shet fhep.fi The proof follow a similarlogic towhatis

donefor quasi linear wave equations relying on a combinationof a prioriestimate and the construction of approximating solution to a linearized
problem Recall Janet's lectures Hen we will restrict ourselves
to establishing a priori estimate for smooth solutions

Very roughly the idea is as follow Suppose we wantto
solve the following initialvalue problemfor a quasilinear wareequatio

fmlu.lu fo u flu.lu
U O do
9thlo n1

where
GMcyan indicate that g is a Lorentzianmetric that is














































































































a function of u and first derivative of u fcn.lu indicates
that the NHS is a function of u and thefirst derivativesof ain and in are gives initial conditions belonging to some appropriate
function space f u vary from O to n will Of

The equation is solved as follows Define a
sequence we

nductively upon solving the linear problem which is treated by standarlinear theory i

JMlue e fluet fine el

eh 10 I

ifhe10 I
with no noo Fon each e we have an energy estimate for the
e ti Using the energy estimate we can show that if we restrictnet to a sufficiently small time then the squaw net
converges in some appropriatefusatio space to a limit tha
is why the solution to quasi linear problem is guaranteed to exist
only on a small time interval Fu on the equation we see that

solves the quasi linear equation The crucial part in this
argument is the use of energy estimates to ensure convergence
Sec Ri 09 chart 9 for details














































































































That is one reason to study a priori estimate

Precisely the same logic constructing a sequence from linearproblem etc applies to fluids what is very different is thea priori estimates In fact this philosophy is applicableto many evolution equations hence the importanceof studying a prioriestimates

Apply 15 to LIEEa where a multiindex take the innerproduct with D o and integrate over 1 andSun ore kiss

II t.LI o I t.fisfj5e.b0p o

We have using Cauchy Schwart and integrating byparts

Dir Hiro'll5,41 µ 115401 reliant

Liesl I
ID o D l fo CD's














































































































where we used

No.ro're µ r

fib't 11154211

f D Do 0

I.LI D'r D 1 0 E D o
o 11151 01 quo'olllo

G 11011 11004 D'ollot HD uh hall

f G Hells 1100

where we used Moser's inequality CMD 02 oh 3 Ta II 3 oh 17

IIall D Iff f D'g4 Eci not D gift 5111,1411
with g t Do we also used D il OD

To estimate the term with Op recall that p satisfies
Dp dial fo in r
9

fo u on ar














































































































But dir r 9 vid ri by IEEb andsince is tangential to
91 v.v o fo u o fu Thus

Dp diriljo in 1
9 v fu on 71

Elliptic theory now gives for r so

pH E G 110in'd rill t 110 11
g g

Ci 1115 o 11,110011 t 11 v ft Art I
C 1115 ok 11roll t 11D ello fillet Hall 11 511
G 11011 Dr oHo

where we used the inequality Moser's
inequality same references as above

fgH f G D f g Lot fly 1115gHo
the restriction inequality HfHr g g

G f r r ta
se CPa 653 chapter E and we extended u to
a smooth vector field T i r this can be made by extending
v to a neighborhood of or with the helpof a portion of unity














































































































ant using a bumpfunction to make it zero awayfrom 91 Note
that the norms of 5 are absorbed into d Then

Ddr D Op I I 1115011,1115 11 s Cillo P121Es

G 11011,2 r
d

using the estimatefor p with res i

Combining the estimates
give 91110111 I G Hollo 11811,2

Using Gronvall's inequality after integrating in time
11911 f Hocolll e xp G f 11014

which is the basis a priori estimate that can beused as in the
case of quasi linear wave equations to construct solutions oh

Let's make some remarks about the proof

If n R or 1T then integrates by part
five

D r D Vp J D haircutD p z o
r














































































































by LIEEb The above proof with A a domainwith boundary
illustrate bow the introduction of boundaries causes difficulties
as will be the case for free boundary problems
The assunptio s It 1 is heeded because when he

construct solutions we have to band as in the case of quasilinearwave equations 110kg by dolls which is done using the Soboler
embedding theorem

hello E G r if s t 1
We can obtain a rough estimate to the time existence

as follows F on the inequality OfHok E Gholla 11011,2 and
Soboler embedding we have 9 e 11011,2 Thus if hellremains fi.it up to tinet Tod Et It so that

tu t T or ells s_ oh remain
I T11 11

finite as I Thralls which gives the rough estimate for thetime existence T
11

we finally turn to the question of continuation of solutionversus blow up Once again as is the case of quasi linear wave
equations we can use the estimate














































































































11911 f Hocolll e xp Ci Holle
to show that if linsylloctille Ln the the solution can4
be continued in Hs pas T what is remarkable in the caseof
the IEE and doesnot have an analogue in quasi linear wave etualions

is the famous Beale Kato Majda Bkln criterion which state that
olla can be controlled by why where w is the
oorticity of the fluid defined as fans2 or 3

w curl O

on in components ai Eijh9 oh where e'd't is the totally
anti symmetric symbol Levi Cirita symbol For n 2 we think
of it as a rotorfield 10,01 ER tha w is orthogonal to the
x x plane and can be identified with a function in 1122

see ND 02 chapter 3 or Ta 11 3 chapter 17for a
precise statementof the Bkln criterion
The 13km criterion is interesting because a it tie the

problem of global existence us blowup to the rorticity which is
a quantity with physical meaning and extremely relevant for thestudy of turbulence see ChB for a introduction to the mathematics














































































































of turbulence and b the oonlicity satisfies a transport like
equation that can be used to study it In particular

using such a
equation we can show that act x 40,21 t xD where ye is the
flow of r From this it follows that
solutionstothcEulenfgenzlsc.c MD for details Global
existence or blowupfor the IEE in n 3 is one of the bigopenproblemsin mathematical

fluid dynamics

Remand Thefact that w controls u can be seen from
the estimate

11 11 e G 11did Ill t curlcIllls t 11 I vH 1 t 11Ello
valid for any sufficiently smooth recto field I this estimate
is well known see Ccs17 for a modern proof Since disco soO V D and 11011 is conserved for 0 a solution to the I EE04ly curlco matters However here we need controlof cullet inH which is as hard as controlling it directly in Hs whereas
in the DK In criterion we only need to control curlers in E














































































































Eguatio.to tiity
Here we derive the equation for the vorticity mentioned

earlier Taking the curl of IIEEa
curl1 01 t curl 1 0 t curl Pp O

w
fourth dfw 0 since curl 0

Compute

curl root eijhg.lv h eijlljlvl9eoL
vl9e eijh9jvL teijh9jvldeoh

i

YujiThu

1 wit row t cii golder O

transport operator Cal go applied to w

Not the similarity of the first two terns withthe first twoterms of the IEE
In two dimensions andconsidering o o E R the term

qijhljolder vanishes For golder 0 whenever j or L 3 But
we also have














































































































thgolder 9older folder
Oo l o t 9,029,0 l o l o 0,029,0
d o t 9,02 9,02 9 u t go2 Yo o

w
0 0

Also only a is non zero for n 2 So in two dimensions the oorheitysatisfies a transport equation

9w t row O

giving wlt yety 40 y or ultry who 4 t n since theinverse of the nap ya ya µ is X Lity Mysql t.rs
It is useful to write the equation for the oorticity in a moregeometric fashion Considen

fo
1 lot Oilvere velire older old're oe ui

Compute

µ x w eijhojwh eijhq.eu der

But eijhehe eh Ehen Seishi deiOni

go w fieSJ fiedi oj o ohgio ulqui
We conclude the identity for grim oxo














































































































Tali the curl
curl Pro curlloxw Computing

curlloxu eiihdjcvxwshseijhlg.ly crew

qijhehlhdg.ve w t EijhEh redjwn
fie gin piegin grew filet pies redjw
d u w t deol wit vid w vj7jwiLm in

Io to

dwoli Wwii
Therefore

7th t Pow two 0

The precise estimate fon r in terms of a e

11011 G I t logt111011,1 wit t 1
see Fe93 where

logt 108 X x I

O X EL

The 11011 tan the above estimate is not a problem














































































































because in the energy estimate 11011C appears inside a fine
integral so we can use Gromwell like arguments

12 Hello can in fact be replaced by Hollway














































































































tpressibleEuleregvations

For the IEE the density of thefluid was constant sincethe
fluid could not contract or expand and was therefore conveniently setto
one in equations f EE If the fluid density is allowed to change
then we have tconpre Eeeg.ua CE

9 r t fo t IgPp O in 9T x 1 CEE a

9f t div fo O is O T x s CEEB

p pig in O T x 1 LEEc

V.v O on CO T ON CCEEd
with initial conditions

010 I do in A CEEe

glo I go in A
CEEf

Compared to the IEE the new element now is the densityof thefluid besit nico.tl xs Rt physically the density has to bepositive
we will discuss the possibility 5 0 when we study freeboundary problems
Another important difference is that now the pressure is not determined
by it but rather by equation Keey know asequationofstatei














































































































this is a give relation between the pressure and the density whose
nature depends on the natureof thefluid eg pls As'tB with
A B and p constants that are typically determined experimentally

From the pointof view of the initial valve problem theunknowns are r and s Alternative
using that p pig is invertiblefor physical equations of state we can take and p as unknownsand determine g by 5 Sip

Reina In view of l CEEa l CEEd the initial condition
oo and g cannot be arbitrary but need to satisfy compatibilities
Note also thatunlike the IEE here neednotto bedivergencefree
As an analogy say we want to solve htt thxx 0 is lo ixco i
no Xl yet Othox hex with boundary conditions hit01 0 ut 11 0Theng ml h have tosatisfy the compatibilycondition goosegonzo4101 4111 O

Remarly Equations CEE are sometimes called the isentropic
compressible Euler equations isentropic meaning that entropy is not includedin the equations

We need to make reasonable compatiblewithphysics assumptionabout the equation of state we will assume that pi looo cast is
a 1 I smooth strictly increasing function see ha84 for a discussion














































































































Compatibility conditions

Typically when solving the CEE we lookforsolution withfinite numberof derivatives say in Hs when the restrictionofderivative phoandDhf of r and g to 01 is well defined equations
EE impose relations between r and g Such relation haveto
hold in particular at tio thus for andso

The zeroth order compatibility condition is simply theboundary condition oo v O on 01

Differentiating KEEL awl setting to thus
go.vlt.jo so that

evaluating KEE a at te 0 restricting it to or and dotty willgires

Poirot k 9 v o

which is the first order compatibility condition
Differentiating eea with respect to t i
910 t fer t qq.otq.fr 0sttg09ts o

h r t foo t f fo t P Ots rg t 1g 0 5 0














































































































Using CEEB

q r t fer t 19.0 r diolsolOg t Odiolsu so

we will restrict this expression to 91 and dot it with v totethat 910.0 0 Introducing the secondfundamentalformof Or
KII 11 0 1 u I Ev

for I I tangent to 9h

Then Iusing that his symmetric

oo V t qq.r.ve 2h10 fo
and we obtain as the second order compatibility condition

2hm Poirot t.hs.ws 4 11dirls
t 1divcs.ro 0

we can continue and derive higher orden compatibility conditions
The l't order compatibility condition will involve up to l derivatives
of f and up to l l derivative of 0 and dioloo

To obtain solutions in H we need tooso to satisfy the
compatibility conditions up to order s t














































































































Local existence and uniqueness
We now investigate local existenceand

uniquenessfor CEE

The Let E H d g E H id s It 1 Assume thatVo and so satisfy the compatibility conditions up to order s 1Suppose that sr is bounded and that gzconstants o Let an equatioof state be given with the properties previouslystated Finallyassume that 1 1 1PL p'igdix for all x E r
Then there exists a 1 30 depending only on 11 11 and lollsand

unique

E C coital H c Inc cco I H si
g E C l 9 7 H Isn h c l 0,11 H II

satisfying Ha CEE and taking the initial data Looso

Shetoloftlepir Rewrite EEEa CEEB as

9 o t fo t 1gpkgPg 0

9S t f g t gdiolol 0

Multiplying the first equation by s and the second by Klsils
s 9 o t s fo t p gOf 0

PIGS 9g t Me dir o t P Vos O














































































































so that

I tt t.li i ll iH l
More explicitly

µ H H H
go o o o

t H H H HL

Written in this form the system form a quasi linear firstordersymmetric hyperbolic system for which known result can be invoked underthe assumptions of the theorem
67

Let us make some comments we recall that a first aleny ten of PDEs
Ao w u t A callin t Blul 0

is said to be symmetric hyperbolic for a function 4 if the














































































































matrix A'th is positive definite and the matrices A'tht and
Aichi are symmetric

There are many work addressing addressing existence and
uniqueness of quasi linear symmetric hyperbolic systems in 112 see egMa84 or Kats In the case of domain will boundary
the literature seems to be more restrictive but a proof of localwell posedness can be found a Eb 79 This brings us to the
assumption lool c p'tsos This is a technical assumption that is notheeded in m but is used is the case of bounded domains In anutshell one tries as usual to construct a map upon solving the associatlinear problem and then show that this map is a contraction To do sowe work in a space of function that have theproperty of satisfyingthe compatibility conditions at time zero The assumption 1 1 L pics isused to show that such space is not empty Obviously this issuedoes not arise in N This is another example of how the presenceofboundaries can cause difficulties while it is possible that theneedfor 1 14 pls can be an artifact of themethodused it is interestin
to note that it has a clean physical interpretation as follow

It can be showed seo Cha84 that corresponds to














































































































the soundspeed of the fluid i e the speed of propagation of soundwave within the fluid thus Hl L ptsdsays thatthefluid's velocityiseserywhere less than the fluid's sound speed at 0 not that thesound speed is a functionof time and space i e thefluid is sub sonicNote flat under our assumption pkg so so plied makes sense

Theiscompressiit
It is natural to ash how equation LIEE and CEE

are related Since physically CIEE describes a fluidwith 5 1 we
can expect that the CEE reduce to the I EE whos 5 1 Formallthis is the case since plugging g 1 into CEE gives

91.0 t Port Vp O and Lio o 0

which
seemingly produces the IEE This is not quite correcthowever This is a formal calculation that ignores thefact thatf pig Taking the equation of state into account we have setting

5 1 that p is constant so that Vp 0 and KEEa becomes

o t fo O

which is not CIEEa














































































































It is legitimate to ash whether there is a sense in whichCEE reduces to CIEE It is worth noticing that mathematically
these

equations are quite different As seen KEE can be written as
a first order symmetric hyperbolic system flu the CEE e joyfinite speed of propagation The IEE on the other hand an non
local due to the pressure as seen exhibiting infinite propagation
speed

The problem of the relation between equations CEE andLIEEis referred to as the incompressible limit aka the limit ofzero Mach number Sail a bit less vaguely the incompressible limitconsists in showing that solution to CEE convergeto a solutionto l I EE when some notion of compressibility goes to zeroThe corneal way of stating this is via the soul speed i e the
incompressible limit corresponds to the limit when the sound speed
goes to D so compressibility can be defined as 1µgSee Ma84 or DE 17 for a precise definition oftheincompressible limit The incompressible limit in 112 or 1T has beenstudied by many authors For a proof in the case of a boundeddomain see DE27 see DE177alsofor a review of theliterature














































































































The notion that the incompressible limit corresponds to
the sound speed going to a cone from the fact that stifferfluidhave larger sound speed For example

Material sound speed1ft
Air 1,117

Water 4,890
Glycerin 6 100

Ice 10 500

steel 16 600

source Wh Is














































































































Thefreeboundarigation

In many situations of interest the region or containing thefluid is not fixed but is allowed to move with the fluid

Oi O

fluid at tinet fluid at time t
In this case the domain containing the fluid becomes a timedependent object that depend on thefluid motion Examples ofthis situation are a liquid drop or star The equation describingsuch a scenario are thefreeboundanieguations

As in the case of a fixed domain the freeboundaryEuler equation can be considered for compressible or incompressiblefluids both situations are discussed below

Remain Strictly sepeaking thefree boundary Euler equationmodel a fluid region in vacuum The situation of for instance
a water drop in air is more correctly described by a














































































































tf In such case we have two fluids
waterand air interact throgl a common interface that moves
with the fluids Hoverer

given that the density of air ismuch smaller than that of water we can approximate this situation
by the case of a water drop in vacuum and thus employ the
free boundary Euler equations Note that the realisticsituation
of a water drop woult have to include the force ofgravity aswell but we will notdo it here These

simplification
notwithstandingit should be remarket thatmany of the idea we will discuss forfree boundary problem can beadapted to the study of twophase fluid

A related problem is the study of afluid interactingcitha structure typically an elastic bly is such a way that the
boundary of the structure moves according to theflow dynamics
An example is bloodflowing through an artery blood fluidartery structure Problems of this type are known asfluid
estructuneinteract The free boundary problems ideas thatwewill
present can also be adapted to fluid structure interaction problems

Conceptually the main difficult i dealing with free boundary














































































































problem comes from the moving domain we want to solve a system

ofPDEs but the very domain where the equation are defined depends
on the unknown thefluid velocity etc i e thudomainofdefiniti
of the PDE is also one of the unknowns of the problem

we will see we can reparametrize the mooing domainin such a way that the equation can be rewritten in terms ofa fixed domain But this will introduce her non linearitiesThe study of free boundary problems has some significant differencecompared to the study offluid equation in afixed domain on quasilinearwave equations For theseproblems local existence is established by thetraditional method of a prioriestimate plus iteration so we say looselyspeaking thatfor such equation existencefollowsfrom a priori estimates
The situation is radically differentfor thefree boundary Euler epations
The a priori estimate now depend on very specificfeatures of thecquatioand are therefore reiterations Consequently theassociated linearproblem typically does not provide a goodmodelforconstructing

approximating solutions

Furthermore the a priori estimate Henseler are challengingdue to the presenceof the moving boundary To close the estimates














































































































we

haoetoexpl.it Nno lieasttueoffeeyationsas
uderyiggemetry

We will illustrate thesepoints in twoways
First we will outline a proofof local existence anduniqueness

of the incompressible freeboundary Euler equation wherein thegeometry
plays a prominent role

Second we will stretch a derivationof a priori estimatesfor the compressible Euler equations highliting the special structure
involved we will also illustrate how the traditional

way of derivinga priori estimate roughly differentiating the equation and applying
a E energy inequality fail for the free boundary Euler equations














































































































The incompressible free boundary Euler equations

The incompressible free boundary Euler equations IFBEEare

if u t Qu t Pp O is D IF BEE a

diocu O is D IF BEEb

p OH on 9 D II FBEEc

9ft E T OD IIFBEEd
where

D U t x 14 IFBEEe
o ft Lt

with initial conditions
Ulo no IF BEEf
1101 No I FBEEg

The notation is as follows Act is the moving domain at time twhich has to be determined from the equation later on we willgivemore explicit description of rats that make its dependence on thefluid motion more apparent The dynamic the domain of definitionof the equations takesplace in D For comparison had the equations














































































































been defined in a fixed domain 1 we would have D 9T x 1
The difference between the twosituation is illustrated in the

following picture

t
I ret

III IEEE

a Cisco
fixed domain moving domain

hault x D R p pit x D M are the velocity and
pressure of the fluid the notation It x E D being that for eachf E O T we have X E htt O is a non negative constant known
as coefficientof surface tension It is the neas curvature of theembeeling of 9h41 into R TOD is the tangent bundle ofJD he is a

giver divergence free byCIFBEeb vectorfieldin Io and do a fiver domain
From the pointof view of the initial value problem the unknowns

are U p µ or equivalently 141














































































































Remain A fundamental difference between the IEE and the
IFBEE is thatfor the latter the pressure is a honest unknown

The quantity oH is called the surface tension of thefluidThe IFBEEbehaveverydifferentlydepe.li whtheo20which we refer to a theIFBEE wit fE Here we willdeal with the case no Thinking of the exampleof a water trapin air the surface tension results from thufact that the force ofattraction
among water molecule is greater than the attraction betweenwater and air molecules so that thesurface tension is responsibleforthe cohesion of the liquid drop

Equation IF DEEd says that 014 moves at a speedequal to thenormal component of thefluid's velocity

ni Ii
l n

io














































































































Remarhi A fluid is called irrational if wecurlla o Thiis a condition that is propagated by theflow i e WH O if wlosso
In this case the IFBEE are called thewater.ua

tions.Lagrangiancoordina
As already mentioned we will rewrite equations IFBEE is

a fixed domain This can be done with thehelpof Lagrangian
coordinates defined as follows

Let y be the floc of u i e let z solve theODE

9 hit x hit yet n

110 x X
X E Slo Then q is a one parameterfamily of volume preserving
embedding of no into M 2 is theflowof a crotonfield henceit is a one parameter family of diffeomorphisms of n o to its
image throyl y these diffeomorphisms are volume preserving because
u is divergencefree Using 2 we can write 14 explicitly as

141 yet at utter
This last equation shows exactly how rett or D depends on thesolution since 2 of course depends on u














































































































Rema Physically yet x corresponds to the position
at time t of the fluid particle that at time zero was
at x

Ict

Got
µ tt o

OGr roses
we can write the equation defining y as

9th n 2

Ilo id
where we henceforth adopt the following notation

Notation When we write compositio witty italwaysmeans
composition in the spatial variable only For example if f i flf xthen foe means lfozllt.yj flt.aty

We can now rewrite equation IFBEE in terms of zThey real














































































































JIy t Vpof O in 9T x do IF BEE La
dirlfty of 01 0 in 9T x no IF BEE Lb

Poy rHoy on O T x 910 1 IF BEE L c
with initial conditions

0 id in 10 IF DEE Ld
01.110 o in 10 IF DEE Le

where id is the identity diffeonorphisn in lo and I is the inverseofthe map x 11tix t fixed By construction q is invertible
Equations IF BEE L are known as theincompressible

free boundary Euler equation in Lagrangian coordinates abbreviated IFDEEL
Equation IFBEE are sometimes

referred to as the equation is Euleriacoordinates y is called the Lµiap
Renart since q is for each t a diffeonorphisn between doand 141 it does correspond to a change ofcoordinates This changeofcoordinates however depends on the solution n Thus Lagrangian coordinatesare coordinates adapted to the solution compared to Jared's lecture

and the discusso of coordinates in GR














































































































The advantage of CIFBEE L is tht these equations are definedin a fixed domain The disadvantage is that it introduces complex
nonlinearitiesco position with 2 2 If he is sufficiently regular a solionto IF BEE L yield a solution to CIFBEE upon definining u OfLoyRemarkj The Lagrangian map a L Lagrangian coordinate canbe definedfor the I EE and the CEE as well

Localexistunigeness
We now restrict ourselves to n 3

The Let 1 be bounded domain in 1123withsmooth connected
oundary Let n E HCry bea divergencefree vectorfield where s t 2
Assume that r o Then there exists a T and a unique solutionYip to IF DEE L defined on the time interval cost thesolutionsatisfies

Y E C Coit I A 1h11 THE L CC9TH H'm
OfL E Elco Tx Hs Ill p E L costa H I critilwhere Act yet r Moreover DICE is H regular














































































































Because we work in Lagrangian coordinates the domain is fixedthus we wrote 1 for so in the statement of the theorem
Vote the factors s z This comes fnon the fact toc explained below that fo the IFBEE Of scale roughly as
l fo oso all that follow is for r o

The statement that Mitt is It regula say thatuh boundary is more regular than a naive country suggests Firstnot that since 2 is in Hs 7141 will in general notbesmooth even if it is smooth at t o Indeed since 2 E HIM
21g E H Carl tho we expect out to be H t regular
However

using the mean curvature chichi gives an elliptic operator
we can improve the boundary regularity This extra regularity of9141 is crucial for the proof I tote however that It will givean equation with soboler regular coefficients so the situation is morecomplicated than standa dad elliptic theory

Our strategy is to derive a good equation for themotion of the boundary This is done
as follows suppose

that we can unite y as lucuill justifythis late














































































































I

z lid to flop
where p is a volume

preserving diffeomorphishof it and f isa real valued fhol.io defined o s In particular flan 01so the motion of the boundary is governed by Vf Ssa JCµ Jcq1 where J is the Jacobian

Il Cid tof op Jlidtrf Icp flidtrf L
Expanding JCidt Of L we find

f t weft O i r
where Ucf contains terns that are quadratic and cubic is D2f
the 1 cancel with Jlid If f is small al we prescribe
flan b the the problem

Df t wtf 0 i th

Elliptic flf i h o Or
is a perturbation of the Diriohlet problem Thus by the implicit
function theorem f is completely determined by its boundary oralve
h Assuming that pco ail we have Of101 0 Then bycontinuity














































































































in time f will be small for small time of course this says
that Vflf is small togo fron of to we work moduloconstants This
is an issue that has to be dealt with but we will ignore in
this lectures

We conclude that it sufficie to know flan Thus weseek

an equation for flow To to so roughly we differentiate
yiddtrfloptwice in time

plug it into II FBEE La restrict the resultingexpression to 91 and invoke the boundary conditios IF BEE Lewe find

Oif r 21021,0 f F in Lett or CEroe ftL O f 93 is a third order pseudo differential operator with
coefficient depending on at most second derivative off It comesfrom the mean curvature H i secondorder in 2 4dtryop thothird order in f To top order and at the linear level L is
given by

L Ilineartop














































































































where TJ is the Laplacia o Or will respect to the Euclidean
metric induced on 71 and O is the normal derivative 9 depend
on the interior rakes off revealing the pseudo differentialnature
of L More precisely 159 and similarly L is thoughtof asa Diniolletto Neuman type ofmap as follows Gives a smallhi Or R 1 4 is computed by ail solving Elliptic f ii
calculating 9ft liii taking the boundary haplacianof TeflonIn par tianya.EfbatbesocptoCE.ie fThe term I i Errol f I contain lower order terms
whom form matters but will not be discussed here

We think of Errol fl as a wave like equations on orwhere the Laplacia has been replaced by L Egusto Carolfl is thecrucial equation to establish the theorem

Renate Below we will repeatedly use thefact that a vectorfield in 1 can bedecomposed as a divergence free andtangent to 9h partand a gradient part
sh.to profotteonen
let Pluo be the projection of u onto its divergencefreeandtangent to the boundary part thus we subtractfrom a its normal

component Let 3 be the Lagrangian flow of thesotto to the
I EE in 1 with initial data Pln Set 2 p 3 fo o














































































































and define yet pet feb inductively as follows

stop Let ye be a given curve of H embeddingof itinto 1123 such that yco it Let Djcsi be the space of volume
preserving diffeomorphism of se It is a fact thatfilm is an infinitedimensional Riemannian

manifold that 4 a smooth normal bundle V Dr'm
inside Hslr and a smooth exponential

map that map that maps
Dien diffeomorphically onto a neighborhood U of D cm in H'm

Dion
oter f f f n

qq.FI Di'sr t t t tul.li t t t
A tangent onto at R E Dfw is given by crop with diverkoand a normal vector by Vg or for some creator field Oand sone

functiong Therefore we conclude that if he is sufficiently closeto wile Thu if time is small there exist a function age and a
re ED he such that he lil togelore Set pet re














































































































Remarle Note that we donot tale f from this decomposition
This is because

age has no connectionwith the boundarycondition

Technical note TrlDesert is gin by elements of the
form crop with divineo If o u E TrlDylan their innerproto
is given by the L inner product v w you word The

normal bundle is normal in the L sense and at P and it is given by
r Dj diop HIM which is smooth in p shoo dig H H

and DrDj H H am both smooth i p see lento Thus
the normal bundle is smooth in H ere though it is normal only in
the L sense similarly for the exponential map Above L is definedas LplE Ll top 1 op

Steph

A pint et Liv Vienne in lilt Vfelopels
Pint lt O ou all idt Vfelefeld

where he is a divergence free vectorfield in lilt ofe openconstructed out of the inductive quantities at step l seebelow
The idea fortheequationfor piyet is that wecan write p pint top
where pint is zero on the boundaryandpitis the harmonic extension
of the mean curvature compare to the I EE














































































































Let us comment on the reason to introduce ire whose definition
is given below he is an embedding that is notnecessarilyvolume
preserving see the definition of yet below Thus while 92 202forn l l esome vector fiell u defined in yen diving o maynot hold notI lthat we didnot say in step 1 that ye is volumepreserving Wedoneed a divergence free vectorfield though in order togetthe correct
regularity for pintet we need lair rain not to involvesecond derisatiren eof u we have therefore to correct 9th by constructing anappropriate diverge free vectorfield in the domain dtrfe o fellNote also flat the domains

filtrfelopels and zees mightnotbeequal again see the definition of yet beta
steps Using pet and pintet into CEool f we sakethe

corresponding linear equation for f with initial conditions fco 1 0Off10 Quo 1g when Q is the projectionof no ontoits gradient part which is not necessarily zero since uo is not
necessarily taught to the boundary We call thesolution fetwe comment below on how to solve equation Errol f which we recall
is Sobel coupled to Elliptic fl














































































































Steph Define hey by solving

the 0 in lilt Pfet r in lilt ofµ cry
4091,1 re tenton tent in
on 9 id trfet Csl

where vet is defined by 9pet demopet and Jet is theouterunit normal to 0Lidtofet s

To motivate this equation note thatif we bare a solution tothe IFDEE we can decompose u in its divergencefree and tangentto the boundary part a l its gradient part u past Ph
Taking divergence we see that h is harmonic Using 2 44Oflopand lty hey we can compute 9 in termsof f andp which
gives the above boundary condition

Steps Define jet idtofu ope this is notyet2 1By construction it is volume preserving this the velocity tree givesby Often hey Jet is divergencefree Def.se a rectafield














































































































Zet in 1 by solving

9ten QuietHentienltet't Pie He.it
iyI0hetiIettltPHetiIetin Catlin

with initial condition 2 o Plus P and Q are respectively theoperators that project a vectorfield at its divergence free andtangent to the boundary part and its gradient part in the domain fetishThe operator sub Ie are defined asfollows If L is anoperator acting on map defined in
et Irl the Lige acts on maps wdefined in 1 by Liefur ill cwoiii.it oIet Finally He solves

DHet 0 I l't

11 Petite.it l't'ietiten Ii't
fie ten ten Jet Teach

The idea for finding the equation for zey is to see which equation
Plul satisfies and then reinterpret it from the point of viewof the iteration














































































































Technicalnote 0Hey appear because andthe projection
bothwith respectto the moving domain do notcommute

It can be shown that the equationfor 2 can be writtenas an ODE is an Pge l PH Jean Afterfinding a solutionten we can estimate and c Ie Iii to show that 2et isin fact H regular

The above steps dfire fet pet he awl 2et We now set

Yet id t f Eet t OhenocidtOfet tolet
with this definition u have

9Let Yetikidtofetioleti t thet lil tofu tofu
from which we define

et Eet Cid Ofet I Petit t the
With the above sefuence at hand the nextsteps are as follows

a we use the several equation introduce above including toot fto obtain estimate that can beused to show that the sequences lyet Ipae te convenge














































































































b we show that the limit quantities satisfy etuation IFDEE L
To do so we use that the pressure has a interior and a boundarypart see step2 The boundary part isgiven by the harmonic extension
of the mean curvature hence it is determined by thegeometry Thelatten in turn is constructed outof the squadof domain Kltofelope

Let us make a briefcomment on how equation Errolf is treatedThe very rough idea is that we thinkof Errol fl as a rare elevationtho we multiply it by off and integrate byparts Butsince is thirdorden we integrate by part 31 derivatives obtainingan estimate ofthetype

tflli.at r i f Elijah It t t
As in the can of wave equations we can also derive higherorder energyestimates Such estimates are the nut to construct solution to CarolfFinally letuscomment on the regularity of044 stated in thetheorem Since plan Or the regularity of the boundary is determinedby the regularity of Vf From the above estimatefo f wesee thatf gain derivative with respect to the source 7 Usingthisgainofregularity we can show that Pf is derivatives more regular than
h Thus Of1g is in H t c 91 if u E H la which gives














































































































that 9141 is H regular

Technicalnote Even though I involve Pa it also involveDv so the regularityof F is notwhatwegetfrom a naive derivative
counting

This extra regularity of the boundary is veryimportantfor theproofAs seen we are solving several elliptic boundary value problems in ourconstructions and for this we need the boundary to be sufficiently regular
We refer to DE 16 for detailsof theproof Et
From the above discussion we see that uponclosing theestimatesforf u will get an estimateof the type

tflls t 0 f stg E d
Thissuggests that if r is very large tho f is verysmall Since fcontrols the motion of th boundary it mean that0h41ha smallamplitudeThis is the content of thefollowing theorem
They informalversion when i so solution to the IFBEE coneeyeto solutionsof the I EE in thefixed domain d
See DE16 for a precise statement aswell as for a discussionofhow or correspond to a well studiedsituationof constrainedmotion inmechanics














































































































The above
proof involves several ideas thatdifferconsiderably thanthe standard approach illustrated by quasilinear war equations Thereareother way to approach the IIBEE seereference is DE163 butthepoint to keep in mind is that essential new ingredients as compared toknown

approaches to study fluidequation are needed to treat the IFBEE
we hadmentionedthat not only the constructionof solution for thefree boundary Euler equations is significantly different than theflatequation in a fixed domain for thanquasi linearwave equations butthat the methodfor deriving a prioriestimate also contain hey newaspectswe will illustrate this next for the compressiblefreeboundary Eulerequations

Reina when 0 0 the IFBEE are ill posed However

they are locally well posed if plo satisfies 9poo
p constant co

04 91 known as Taylor sign condition Thiscondition can bethoughtof as a physical condition pshould be positive is the interior














































































































The compressible free boundary Euler equation

cysibfree.baEqiosFBE aregiven by
9th t run t IgPp O i D CFBEEa
if 5 t Vug t fdivin O in D CCFBEEb

p pls in D C FDEE o

p TH on 8D CFB EEd

f t u G TC 8D CFB EEe

where D U f x Act CF EEfOct 2T
with initial coalition

UCO no CFBEEg
flo So CFBEEh
110 1 CFDEE it

The meaning of all quantifiesin CF EE is a is equation CEEand IFBEE
wewillheuceforflass.meobewonhiugiathrfspatial dimensions i e h 3

we didfor the IFDEE we will rewrite the equation inthe fixed domain do by introducing Lagrangian coordinates














































































































Let q be the flow of u and define
0 92 12 502 of poz

we are using the samenotation forcomposition as donefor the IFBEE i ecomposition is on the spatial variable only J R andg are calledrespectively the Lagrangian velocity Lagrangian density and Lagrangian
pressure We will write it for l from now on In terms of v Rand g equations CEBEE read

129,0 t af 29 of O in 9T x di CFBEE La
9th t N af go O in 9T x CF EE Lb

9fam t a rdrop all 0 in Catlin CFDEE Lc

Y it t ftor in 01T rn CF BEE L d

of ofCR in oil x 1 CF DEE Le

Faf N t r latNIDogg O on 0,11 91 CF DEE Lf
0 I no in 1 CF BEE Lg1210 So in R CCFBEE L 4

Thenotation variables are as follows Greekindicesrunfrom 1 to 3 Indicewill be raisedand lowered with the Euclidean metric de is a matrix
given by a DL where Dy is the inverseof thematrix Dyrecall that D denote derivative i the spatial variable only














































































































Y is the unit outer normal to be at is the transposeof thematrix a Dg is the Laplaca on 91 with respect to the metric
g induced on the boundary by the enbeeling 2 In coordinates such
that au tangent to or great

Jij Oil 9jLp i j 42
and Dg is given by

Agilitydiligigiig c s
Latin indices vary from 1 to a Ig l is the determinantofg andg'sis the inverse of g In CFBEE L f Ag acts componentwise on 2Observe thatfrom cFBEE Ld we have yo it so that alot Iidentitymatrix

1 Compared to IF BEE L here we have chosen towrite the equations in a way that avoids carrying rightcompositionwill
1 such as Op 2 in IFDEE La which can bedone by introducing
the Lagrangian densityand pressure This lead to the presence of thematrix a

Remarh As in the case of equation CEE the initial
data for the CFDEE has to satisfy compatibility conditions














































































































The following are two important identitiesfor solutionsof CFBEE4
The first identity is as follows Let

J dateDy
Note that I so for small time Then

R J so density J
For the second identity define

A Ja
Then

Af 0 a I 2,3 Biola

This last identity is known as Piola's identity seeLeo101trapten 8

The CIBEE behavedifferentlydepending on thefollowing distinctions
1 o soounl

no surface tensionn go with surface tension

i F

So allow co ga with no 4 gas with surfaceo vanish

gas
surface tension tension














































































































Cases a Cb co and d are different notonly with respect
to their physical contents but also regarding the techniquesused
to study then.lt Ufaoca Cb all cases penhap
with exception of d are physically relevant

It is sometimes convenient to write CFBEE La moreexplicitlyin terms of R uponusing CFDEE Le

1291 O t g R af d R O in 9T x 1 CFBEE La l
It is also convenient to multiply CFBEE Lf by J obtaining
gAt N t r Tgidayy o in 0,7 01 CFBEE Lf

where we used the identity J lat NI IT

Anattemption ate
we now turn to the questionof a prioriestimate forfuations CFDEE L Let us starting asking what kindof regularity

we can naively expect Heuristically equation CFBEE La and
CFDEE Lb suggest it on VR and 01.12 n Po Basel also on
our experience with the CEE we naively expect it P i e one
time derivative corresponding to one special derivative differentlythawhat happens to the IFBEE And takingagain CEE as motivation














































































































we expect to be able to close estimates at the same regularitylevelfor v and R Therefore we seek to close the estimate with
s iE H R E H 9 v E H 9R E H

The ideas in the last paragraph are very heuristic and should be
n ctaken only as a vague motivation Ourguessfor theregularity properties

of solution relic more on hindsight and experience than anything else
Let us now see what difficulties arise if we try the standardapproachfor deriving a priori estimates recalltheprevious discussions

Let us write 0 to mean modulo teams that are not top order
n derivativesTaking D of CFBEE La and contractingwith D

RD v if D O t qtr D v an qD R 0

we will integrate over 1 but we see that afarcontainstoomanyderivatives Thu we need to integrate 4 by parts To avoidpickingextra derivative when doing so it is convenient to multiply by J so thatwe can use Piola Thus

J R D OfD o t 1µmD v AI l D R n 0 CED trial 1

Integrating 9 by pants in the second integral and using Pila














































































































so Al l D Re Lg AMY's's D t
qRID'sAI N D R

From CFB EE Lb

OfD R t Raf'd D ra n O

so that 1 40 12
mD raAFf D R 9121 J OfD il D R t 4 DsoAYN D R

R

Using this last expression and density J into CFB trial 1

12 1 115012 t ta9 91 Jc N t
gang'omb'sAMYD r no

CFB trial 2

The firsttwo ferns will produce to toporder 11011 and R after
integration in time not that glintJ In S O unden reasonable assumption
on the equationof state Therefore to closethe estimates we need

to bound the boundary term in terms of Noll and R Let us
look at this form more closely

An immediate difficulty is the following since we want
to bound the boundary integral by 11011 and 1112lb we need to














































































































bound D vIo and D121g by dollsand RNs This does notseen
to be directly possible even using the most economic inequality
in the sense that it doesnot add any derivatives to v ou R

Jaylon
DsoAMY D R E 1144121All Dolla D R

we cannot find the desired band since there is no general inequality
of theform

D f Hog f Cillflls
sail differently forgeneric f E Hs Dsf E L but no better
so Dsfl might not be well defined

Our only hope seen here is to use that v and R satisfyCFBEE L and use the structure of these equations It is natural toinvoke the boundary condition CFBEE L f For this we revertback to Yi
g cri D R D 7

so that the boundary integral becomes

Dso Ar N D of
are

we now invoke F DEE L f to get














































































































Ar N D g N rightDgD'T Ccf's trial 3
so that the boundary integral is now

jgi Dso DgD y
This is still not good enough since we still cannotsound D'o
and we seem to have too many derivatives At thispoint we might
suspect that we cannot close the estimates by taking Ds of the
equation and proceeding a in usualcases

Remarhy Another problemwith theaboveargument is the following
When we wrote the equation 0 we indicated the mostobvious toporder
terms But there ane other terns that also contribute to top ordel that
have been ommited and need to be handled

Adifferentapproacly suppose that in theabove argument
instead of D we use 9D this is consistent with our expected

regularityin view of 9 n V Then the boundary form becomes

ofJgStD o
DydeD y

Or

we now use that 92 o so that 9D z D o and integrate
by part the Larlacian to get














































































































0µg9 D o
DydeD I n r 9VgD o gD o

trot 10gD ol
Or

Vg is the covariant derivative in themetricg
Returning to CFB trial 2 with the charge D n 9D he hare

1 419 ol t ta9.11 I l't n't r µg ol n O

energy trialThis basically says that we can control tolls 9R s cands l11 D ell
g g notice the importanceof having thecorrect sign inCFB trial 3 However a closer look reveals that there is a problem

with this argument In LcFB trial 3 we differentiated the boundarycondition
Naturally we can only do this if the derivatives are tangentialto the boundary

Therefore instead of 9D we need to use 95where we use the following notation

Notation We will nu D to denote derivatives constructed
with vector fields that are tangent to all For example if re is
five by x o the we can take 15 0 or 92 If n is a ball
we can take D do or 04 properly smoothed outnear theorigin














































































































There is another importantpoint that requiresattention When we
differentiate the boundary condition now using D we produce extra
forms ommital above that are not lower order For example when we
commute

9is bye n Dgotis I
we have term when all derivative fall on the coefficient of Agsince the coefficientsof Ag inroloc one derivative ofgand ginvolve one derivation of q we obtain ternsofthe form

if I 52g Ty o

which have too many derivative o r recall we wantto bout oils H
In order to get around this difficulty we need to rewrite the boundary
coalition in a differentway and invoke severalgeometric aspectsofthe problem The net effect will be that we will not be able
to bount H D r 11 a suggested above but only the corresponding
normal component i e we will get an estimatefor 115 o t1
or alternatively 110 tellsg

Remote Note that an estimatefor Ho yields onlya band for 110lls
g g The fact that we can bound o

says that the normal component of v enjoys better regularity














































































































properties than what we would naively expect This extra regularity
is coming from the mean curvature

We make two more observations

First the interior bounds we discussed above become usden th
aye D H D estimatesfor 119D oh and HOf D R o Since
D does not involve all derivative of orders butonly those thataretangential to 91 11 5 oh and 119.15 1211 donotgive controlover 1191.011 and 11 1211 la suggestedwhen we had Ds

Second we can repeat the above reasoningwith 92D s 2 qD 3etc i e all operators of the form 9th'D h I s ke s
Summing up we have concluded thefollowing
we need to differentiate the equations with operatorsofthe form 9thTss h when I f ke s we need to to be at least

one because otherwise we cannotcontrol the boundary integral Inparticular we need to time differentiate the equations This is adifferent situation than what we have in say quasi linear waveequations or fluid in a fixed domain
This procedure produces estimates for

a9thDshello 119115 hello and 11 6 o P
s h 1,0














































































































These estimates are significantly weaker than what we want recall
that we want to bound halls andhalls Wewill see next how
these estimates can be improved to give the bounds that we want

Aprioriestimates

Here we will derive a priori estimate for equation CFDEELwe will make thefollowing simplifying assumptions they can be removewith some extra work

Let us assume that 1 12 10,1 with coordinates cxl.mxThus the motion of the boundary is in the vertical direction and we cantake a tangential differential operators
or

in 0141 Sometimes we impose the
L____

boundary conditio O µ on the

a f it
f waves in the ocean

1 1
L x x

we also make the following assumptions on the equationof state Beside the assumptions we hadfor the CEE we assume














































































































hat for some a b a o t that 5 in E Ca b for all Gsr
we have q CR
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