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Question 1. Let {ai}ni=1 be a finite collection of points in Rn. Let µ be a Radon measure in Rn
whose support is contained in ∪ni=1ai. Prove that µ is a linear combination of the measures δai ,
where δai is the Dirac measure at ai.

Question 2. Let µ∗ be the Lebesgue outer measure on Rn. Denote by P(Rn) the set of subsets of
Rn. Let A ⊆P(Rn) be the set of subsets A ∈P(Rn) such that, for every E ⊆ Rn, it holds that

µ∗(E) ≥ µ∗(A ∩ E) + µ∗(Ac ∩ E),

where Ac is the complement of A, i.e., Ac = Rn\A. Prove that A is a σ-algebra on Rn.

Question 3. All measure related statements in this problem refer to the Lebesgue measure, which
will be denoted by µ. Let U ⊆ Rn be an open set and f : U ⊆ Rn → Rn a function. Let B ⊆ U be
measurable set, and A ⊂ U a negligible set (i.e., a set of zero measure).

(a) Prove that if f is a Lipschitz map, then f(A) is negligible.
(b) Prove that if f is a C1 map, then f(A) is negligible.
(c) Prove that if f is a C1 map, then f(B) is measurable.

Question 4. State and prove Carathédory’s criterion for determining when a measure is Borel.

Question 5. Let µ be a Borel measure on Rn that is finite on compact sets. Define f : Rn → R as
follows: for any x ∈ Rn, let f(x) = µ(B1(x)), where B1(x) is the open ball of radius one centered
at x. Prove that f attains its infimum on every compact set.

Question 6. Let µ be the Lebesgue measure on R and A ⊂ R a Lebesgue measurable set of finite
measure. Define f : R→ [0,∞) by f(x) = µ(A ∩ (−∞, x]). Prove that f is continuous.

Question 7. Let f : [a, b] ⊂ R → R be a function. Suppose that there exist a (not necessarily
Lebesgue measurable) set A ⊆ [a, b] and a constant C > 0 such that f is differentiable at every
x ∈ A and

|f ′(x)| ≤ C,
for every x ∈ A. Prove that

µ∗(f(A)) ≤ Cµ∗(A),

where µ∗ is the Lebesgue outer measure on R.

Question 8. Let A ⊂ R be a Lebesgue measurable set satisfying µ(A) > 0, where µ is the Lebesgue
measure. Prove that given ε > 0, there exists a bounded interval Iε = [a, b] with a < b such that

µ(A ∩ Iε) ≥ (1− ε)µ(Iε).

Question 9. Let µ be a Radon measure on Rn and define f : (0,∞)→ [0,∞] by

f(r) = sup
x∈Rn

µ(Br(x)),

where Br(x) is the open ball of radius r centered at x. Assume that f is R-valued and that

lim inf
r→∞

f(r)

rn
= 0.
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Prove that µ = 0.

Question 10. State the definition of the s-dimensional Hausdorff measure on Rn, 0 ≤ s ≤ n, and
prove that the Hausdorff measure is a Borel measure.

Question 11. Let f : [a, b] → Rn be a continuous map and denote by H1 the one-dimensional
Hausdorff measure on Rn. Prove that

|f(a)− f(b)| ≤ H1(f([a, b])).

Question 12. Let f : [a, b] → Rn be an injective Lipschitz map and denote by H1 the one-
dimensional Hausdorff measure on Rn. Prove that H1(f([a, b])) is finite.

Question 13. Prove that for every connected set A ⊆ Rn, it holds that H1(A) ≥ diam(A), where
H1 is the one-dimensional Hausdorff measure on Rn and diam(A) is the diameter of A.

Question 14. Let µ∗ be the Lebesgue outer measure on Rn and denote by
∫ ∗
f dµ the correspond-

ing upper integral of a non-negative real valued function f . Let V be a non-empty set of real valued
non-negative lower semi-continuous functions on Rn. Assume that V is directed with respect to
the relation ≤. Prove that ∫ ∗

sup
f∈V

f dµ = sup
f∈V

∫ ∗
f dµ.

Provide a counter-example showing that the result is not necessarily true if we do not assume the
functions in V to be lower semi-continuous.

Question 15. All measure related statements in this problem refer to the Lebesgue measure,
which will be denoted by µ. Let {gn}∞n=1 and {fn}∞n=1 be sequences of non-negative real valued
integrable functions on Rn, such that {gn}∞n=1 converges a.e. to an integrable function g, and
{fn}∞n=1 converges a.e. to a function f . Assume that for every n, 0 ≤ fn ≤ gn a.e. Suppose further
that

lim
n→∞

∫
gn dµ =

∫
g dµ.

Prove that f is integrable and that

lim
n→∞

∫
fn dµ =

∫
f dµ.

Question 16. State and prove the monotone convergence theorem.

Question 17. State and prove Fatou’s lemma.

Question 18. State and prove the dominated convergence theorem.

Question 19. Show that the dominated convergence theorem is not true for nets of functions.

Question 20. All measure related statements in this problem refer to the Lebesgue measure. Find
a bounded measurable function f : R→ R such that there does not exist any sequence of continuous
functions converging to f in L∞(R).
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Question 21. Consider the space Lp(Rn), 1 ≤ p ≤ ∞, defined with respect to the Lebesgue
measure, and denote the corresponding norm by ‖ · ‖p. Let {fn}∞n=1 ⊂ Lp(Rn) be a sequence of
functions such that, for some function f ,

lim
n→∞

‖ fn ‖p=‖ f ‖p,

and

lim
n→∞

fn(x) = f(x) a.e. in Rn.

Prove or give a counter-example: {fn}∞n=1 converges to f in Lp.

Question 22. All measure related statements in this problem refer to the Lebesgue measure, which
will be denoted by µ. Let f ∈ L1(Rn), and set

(Mf)(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f | dµ.

(a) Show that Mf is lower semi-continuous and that the set Aλ = {x ∈ Rn | (Mf)(x)| > λ} is
open for each λ > 0.

(b) Prove that there exists a compact set K ⊆ Aλ such that 2µ(K) ≥ µ(Aλ), and that for each
x ∈ K there exists a ball Bρ(x), where ρ depends on x, such that

1

µ(Bρ(x))

∫
Bρ(x)

|f | dµ > λ.

Show that there exist finitely many {Bρ(xi)}Ni=1 of the these balls that are pair-wise disjoint and
such that {B3ρ(xi)}Ni=1 covers K.

(c) Use parts (a) and (b) to conclude that

µ(Aλ) ≤ 2 · 3n

λ
N1(f).

Question 23. All measure related statements in this problem refer to the Lebesgue measure, which
will be denoted by µ. Let f ∈ L1(Rn) and K ⊂ Rn be a compact set. Prove that

lim
|x|→∞

∫
x+K
|f | dµ = 0.

Question 24. All measure related statements in this problem refer to the Lebesgue measure. Let
f : Rn → R be a uniformly continuous functions and assume that f ∈ Lp(Rn) for some p ∈ [1,∞).
Prove that

lim
|x|→∞

f(x) = 0.

Question 25. All measure related statements in this problem refer to the Lebesgue measure, which
will be denoted by µ. Let {fn}∞n=1 ⊂ L1(R) be a sequence such that {fn}∞n=1 converges almost
everywhere to a function f . Assume that for every ε > 0, there exist a measurable set A ⊆ R, a
non-negative function h ∈ L1(R), and an integer N ≥ 1 such that∫

Ac
|fn| dµ ≤ ε

for every n ≥ N , and |fn(x)| ≤ h(x) for every x ∈ A and every n ≥ N (Ac is the complement of
A). Prove that f ∈ L1(R) and that fn converges to f in L1(R).
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Question 26. All measure related statements in this problem refer to the Lebesgue measure. Find
a sequence of functions in Lp((0, 1)), with 1 ≤ p <∞, that converges weakly to zero but does not
converge to zero in Lp((0, 1)).

Question 27. Let X be a locally compact Hausdorff topological space. Denote by K (X;C) the
space of complex valued continuous compactly supported functions on X. Denote by K (X,A;C)
the space of all f ∈ K (X;C) such that supp(f) ⊆ A, where supp(f) denotes the support of f . For
each compact set K ⊆ X, endow K (X,K;C) with the topology of uniform convergence. Endow
K (X;C) with the inductive limit of locally convex topologies given by K (X,K;C) as K ranges
over all compact sets of X.

(a) Prove that a linear form µ on K (X;C) defines a complex Radon measure on X if and only if
for each K ⊆ X, there exists a constant MK such that for every f ∈ K (X;C) with supp(f) ⊆ K,
we have

|µ(f)| ≤MK sup
x∈X
|f(x)|,

where | · | is the absolute value in C.
(b) State the definition of a positive Radon measure.
(c) Let K (X;R) be defined as in (a), but with C replaced by R. Prove that any positive linear

form on K (X;R) defines a Radon measure on X.

Question 28. Let X be a locally compact Hausdorff topological space and µ a complex Radon
measure on X.

(a) State the definition of the restriction of µ to an open set U of X.
(b) Let {Uα}α∈A be an open covering of X. Suppose that for each α ∈ A, we are given a measure

µα on Uα. Assume that for each α, β ∈ A such that Uα ∩ Uβ 6= ∅, the restrictions of µα and µβ
to Uα ∩ Uβ agree. Prove that there exists a unique measure µ on X such that µ|Uα = µα for each
α ∈ A.

Question 29. Let X be a locally compact Hausdorff topological space. Prove that every real
Radon measure on X is the difference of two positive Radon measures.

Question 30. Let X be a locally compact metric space. Let {µn}∞n=1 be a sequence of Radon
measures on X. Prove that {µn}∞n=1 converges in the vague topology to a Radon measure µ if and
only if µn(A)→ µ(A) for all Borel sets A ⊆ X that are contained in a compact set and that satisfy
µ(∂A) = 0.

Question 31. Let X be a locally compact Hausdorff topological space and µ a Radon measure on
X.

(a) State the definition of an integrable set A ⊆ X.
(b) Let {An}∞n=1 be a decreasing sequence of integrable sets. Prove that

µ(

∞⋂
n=1

An) = lim
n→∞

µ(An).

(c) Let {An}∞n=1 be an increasing sequence of integrable sets. Prove that ∪∞n=1An is integrable if
and only if supn µ(An) <∞, and in this case

µ(

∞⋃
n=1

An) = lim
n→∞

µ(An).
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(d) Let G be a family of integrable closed sets directed with respect to the relation ⊇. Prove
that

A =
⋂
G∈G

G

is integrable, and that

µ(A) = inf
G∈G

µ(G).

Question 32. Let X be a locally compact Hausdorff topological space and µ a Radon measure on
X.

(a) State the definition of an integrable set A ⊆ X.
(b) Show that a set A is integrable if and only if for every ε > 0 there exists a compact set

K ⊆ A such that µ∗(A\K) ≤ ε, where µ∗ is the outer measure canonically associated with µ.

Question 33. Let X be a locally compact σ-compact Hausdorff topological space and µ a Radon
measure on X.

(a) Give the definition of L∞(X).
(b) Prove that L∞(X) is complete.

Question 34. Let X be a locally compact σ-compact Hausdorff topological space and µ a Radon
measure on X. Let g ≥ 0 be a locally integrable function. Set ν = gµ. Prove that f : X → R is
ν-integrable if and only if fg is µ-integrable, in which case∫

f dν =

∫
fg dµ.

Question 35. Let X be a locally compact σ-compact Hausdorff space. Let µ, λ, and ν be Radon
measures on X. Suppose that every µ-measurable set is λ-measurable and ν-measurable, that every
µ-negligible set is λ-negligible and ν-negligible, and that λ(X) = 1 = ν(X).

(a) Let Σ be the collection of all µ-measurable sets. Explain why the quantity

sup
A∈Σ
|λ(A)− ν(A)|

is a well-defined real number.
(b) Prove there there exist µ-integrable functions f and g, whose equivalence classes are uniquely

determined by λ and ν, respectively, such that

sup
A∈Σ
|λ(A)− ν(A)| = 1

2

∫
|f − g| dµ.

Question 36. State Rademacher’s theorem on the almost everywhere differentiability of Lipschitz
functions in Rn, and prove the result in the case n = 1.

Question 37. All measure related statements in this problem refer to the Lebesgue measure. Let
f ∈ Lp(Rn), 1 ≤ p <∞. Prove that, given ε > 0, there exists a smooth (i.e., infinitely differentiable)
function g such that ‖ f − g ‖p≤ ε.

Question 38. All measure related statements in this problem refer to the Lebesgue measure.
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Let U ⊂ Rn be an open and bounded domain, and f : U → R a locally integrable function. Let
ϕ : Rn → R be given by

ϕ(x) =

{
a exp

(
1

|x|2−1

)
if |x| < 1,

0 if |x| ≥ 0,

where

a−1 =

∫
B1(0)

exp

(
1

|x|2 − 1

)
dx,

and B1(0) is the open ball of radius one centered at the origin.
For ε > 0, define ϕε(x) by

ϕε(x) =
1

εn
ϕ(
x

ε
).

(a) Prove that f ∗ ϕε ∈ C∞(Uε), where

Uε = {x ∈ U | dist(x, ∂U) > ε},

dist means distance, and ∗ is the convolution.
(b) Prove that f ∗ ϕε converges to f in Lploc(U) as ε→ 0+.

Question 39. State and prove the open mapping theorem for Banach spaces.

Question 40. State and prove the inverse mapping theorem for Banach spaces.

Question 41. State and prove the closed graph theorem for Banach spaces.

Question 42. Let X be a Banach space and X ′ its dual.
(a) Define the weak topology on X and the weak-∗ topology on X ′.
(b) State and prove the Banach-Alaoglu theorem.

Question 43. Let X be a normed vector space and {xn}∞n=1 ⊂ X a sequence. Recall that the

formal series
∑∞

n=1 xn is called convergent if the sequence of the partial sums
∑N

n=1 xn converges in

X as N →∞, and absolutely convergent if the sequence of the partial sums
∑N

n=1 ‖ xn ‖ converges
in R as N →∞. Prove that X is a Banach space if and only if every absolutely convergent series
is convergent.

Question 44. Let H be a Hilbert space. Denote its inner product by 〈·, ·〉 and the corresponding
norm by ‖ · ‖. We adopt the convention that 〈·, ·〉 is linear in the second entry (and thus anti-linear
in the first entry). Let B : H×H → C be a map satisfying: (i) B(x, αy+βz) = αB(x, y)+βB(x, z),
(ii) B(αx + βy, z) = αB(x, z) + βB(y, z), and (iii) |B(x, y)| ≤ C ‖ x ‖‖ y ‖, for some constant C
and all x, y, z ∈ H, α, β ∈ C, where α is the complex conjugate of α. Prove that there exists a
unique continuous linear map A : H → H such that

B(x, y) = 〈Ax, y〉,

for all x, y ∈ H.
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Question 45. Let H be a Hilbert space. Let {xn}∞n=1 ⊂ H be a sequence that converges weakly to
an element x. Prove that there exists a subsequence {xnk}∞k=1 of {xn}∞n=1 such that the sequence
of arithmetic means:

{1

k

k∑
`=1

xnk}
∞
k=1,

converges to x in H.


