VANDERBILT UNIVERSITY, REAL ANALYSIS MIDTERM, SPRING 2016

Name:

Directions. Please read carefully the following directions:

- This exam contains three questions.
- Most problems require that you use results proven/stated in class/homework. When invoking such results, you do not have to prove them, unless the question itself is asking you to establish a result demonstrated in class or given as a homework. However, you do need to state clearly the theorems/definitions you are using.
- While there is not an absolute standard to decide which results you should establish in order to answer the questions versus those that you can quote from class/homework, you are expected to demonstrate mathematical knowledge of the subject, and provide proofs for the questions that you are being specifically asked.
- If the statement of a problem is not clear (for instance, you think there is a missing hypothesis, the question is ambiguous, the notation is confusing, etc), state clearly how you interpret it, and then solve it accordingly.
- A list of notations is provided at the end.

Question	Points
1	
2	
3	
Total:	

Question 1 [30 pts]. Let X be a locally compact space and μ a measure on X.

a) State the definition of a μ -measurable function.

b) Let Y be a topological space. Prove that a function $f: X \to Y$ is μ -measurable if and only if for every compact set $K \subseteq X$ there exist a μ -negligible set $N \subseteq K$ and a partition of $K \setminus N$ into a sequence of compact sets $\{K_n\}_{n=1}^{\infty}$ such that $f|_{K_n}$ is continuous for each n.

c) Assume further that X is σ -compact. Prove that a map $f: X \to Y$, Y a topological space, is μ -measurable if and only if there exists a partition of X into a negligible set N and a sequence of compact sets $\{K_n\}_{n=1}^{\infty}$ such that $f|_{K_n}$ is continuous for each n.

Solution.

a) Let Y be a topological space and $f: X \to Y$. We say that f is μ -measurable if for every compact set $K \subseteq X$ and any $\varepsilon > 0$, there exists a compact set $K' \subseteq K$ such that $|\mu|(K \setminus K') \le \varepsilon$ and $f|_{K'}$ is continuous.

a) Let f be measurable and $K \subseteq X$ a compact set. Then K is integrable (i.e., μ -integrable), and by the characterization of integrable sets, given ε_1 we can find an integrable open set U and a compact set K'_1 , such that $K'_1 \subseteq K \subseteq U$ and $|\mu|(U \setminus K'_1) \leq \varepsilon_1$. Then

$$\varepsilon_1 \ge |\mu|(U \setminus K_1') = |\mu|(U) - |\mu|(K_1')$$

= $|\mu|(U) - |\mu|(K) + |\mu|(K) - |\mu|(K_1') \ge |\mu|(K \setminus K_1') \ge 0.$

By assumption, we can find $K_1 \subseteq K'_1$ such that $|\mu|(K'_1 \setminus K_1) \leq \varepsilon_1$ and $f|_{K_1}$ is continuous. Consider the set $K \setminus K_1$. It is integrable, thus mimicking the previous argument, given ε_2 , we can find a compact set $K_2 \subseteq K \setminus K_1$ such that $f|_{K_2}$ is continuous and

$$|\mu|(K \setminus (K_1 \cup K_2))| = |\mu|((K \setminus K_1) \setminus K_2) \le \varepsilon_2,$$

where we used that $(K \setminus K_1) \setminus K_2 = K \setminus (K_1 \cup K_2)$ since $K_1 \cap K_2 = \emptyset$. Continuing this process, we construct a sequence $\{K_n\}_{n=1}^{\infty}$ of pair-wise disjoint compact sets such that

$$|\mu|(K \setminus \bigcup_{n=1}^{k} K_n) \le \frac{1}{k}$$

and $f|_{K_n}$ is continuous for each *n*. Setting $A_k = K \setminus \bigcup_{n=1}^k K_n$ and $N = \bigcap_{n=1}^\infty A_n$ we obtain the desired partition.

For the converse, notice that it follows from the stated condition that $|\mu|(K) = \sum_{n=1}^{\infty} |\mu|(K_n)$, so we can set $K' = \bigcup_{n=1}^{k} K_n$, choosing k such that $|\mu|(K \setminus K') \leq \varepsilon$ for a given $\varepsilon > 0$.

c) Write $X = \bigcup_{n=1}^{\infty} K'_n$, where the K'_n are compact and we can assume the sequence to be increasing. Let $L_1 = K_1$ and $L_n = K_n \setminus K_{n-1}$ for $n \ge 2$, so that the sets L_n are pair-wise disjoint and $\bigcup_{n=1}^{\infty} L_n = X$. Because each L_n is integrable, it can be written as

$$L_n = N_n \cup \bigcup_{m=1}^{\infty} K_{nm}$$

where N_n is negligible and the K_{nm} 's are compact. Because f is measurable, by part b) each K_{nm} can be partitioned as

$$K_{nm} = N_{nm} \cup \bigcup_{k=1}^{\infty} K_{nmk}$$

where N_{nm} is negligible and $f|_{K_{nmk}}$ is continuous, which implies the result.

Question 2 [30 pts]. Let X be a locally compact σ -compact space with a measure μ on it.

a) State the definition of the essential supremum of a function.

b) Prove that $\mathscr{L}^{\infty}(X)$ is complete.

Solution.

a) For any measurable function,

$$M_{\infty}(f) = \inf\{\alpha \in \mathbb{R} \mid f(x) \le \alpha \text{ almost everywhere.}\}.$$

b) Since the topology on $\mathscr{L}^{\infty}(X)$ is generated by a single semi-norm, it suffices to consider Cauchy sequences. Let $\{f_n\}_{n=1}^{\infty} \subset \mathscr{L}^{\infty}(X)$ be a Cauchy sequence. Given $k \in \mathbb{N}$, we can find a N_k such that $N_{\infty}(f_m - f_n) \leq \frac{1}{k}$ for all $m, n \geq N_k$. For each $m, n \geq N_k$, set $A_{mnk} = \{x \in X \mid |f_m(x) - f_n(x)| > \frac{1}{k}\}$. Then A_{mnk} is negligible, and thus is their union A. It follows that $\{f_n(x)\}_{n=1}^{\infty}$ converges uniformly on $X \setminus A$; set f(x) to be its limit (defined almost everywhere). f is then bounded on $X \setminus A$ and by Egoroff's theorem it is measurable; hence $f \in \mathscr{L}^{\infty}(X)$. Because $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on the complement on of a negligible set, we conclude (from the characterization of convergence in $\mathscr{L}^{\infty}(X)$) that $\{f_n\}_{n=1}^{\infty}$ converges to f in $\mathscr{L}^{\infty}(X)$. (Alternatively, we can use that $N_{\infty}(f - f_n) \leq \frac{1}{k}$ for $n \geq N_k$.)

Question 3 [40 pts]. Let X be a locally compact σ -compact space. Let μ , λ , and ν be positive measures on X. Suppose that every μ -measurable set is λ -measurable and ν -measurable, that every μ -negligible set is λ -negligible and ν -negligible, and that $\lambda(X) = 1 = \nu(X)$.

a) Let Σ be the collection of all μ -measurable sets. Explain why the quantity

$$\sup_{A \in \Sigma} |\lambda(A) - \nu(A)|$$

is a well-defined real number.

b) Prove there there exist μ -integrable functions f and g, whose equivalence classes are uniquely determined by λ and ν , respectively, such that

$$\sup_{A \in \Sigma} |\lambda(A) - \nu(A)| = \frac{1}{2} \int |f - g| \, d\mu.$$

Solution.

a) Since $0 \leq \lambda(A) \leq 1$ and $0 \leq \nu(A) \leq 1$ for any $A \in \Sigma$, we have $0 \leq |\lambda(A) - \nu(A)| \leq 2$, thus the result.

b) Since every μ -negligible set is also λ -negligible, the Radon-Nikodym derivative $f = \frac{d\lambda}{d\mu}$ exists. f is a locally μ -integrable function whose equivalence class is uniquely determined. Since

$$1 = \lambda(X) = \int d\lambda = \int \frac{d\lambda}{d\mu} d\mu = \int f \, d\mu,$$

we see that f is μ -integrable. Similarly for $g = \frac{d\nu}{d\mu}$. For any $A \in \Sigma$, it holds that

$$\lambda(A) = \int_A f \, d\mu,$$

and

$$\nu(A) = \int_A g \, d\mu$$

For any $A \in \Sigma$, we have

$$0 = \lambda(X) - \nu(X) = \int (f - g) d\mu$$
$$= \int_A (f - g) d\mu + \int_{A^c} (f - g) d\mu,$$

thus

$$\int_A (f-g) \, d\mu = -\int_{A^c} (f-g) \, d\mu.$$

Therefore,

$$\begin{split} 2\left|\int_{A}(f-g)\,d\mu\right| &= \left|\int_{A}(f-g)\,d\mu\right| + \left|\int_{A}(f-g)\,d\mu\right| \\ &= \left|\int_{A}(f-g)\,d\mu\right| + \left|\int_{A^{c}}(f-g)\,d\mu\right| \\ &\leq \int_{A}|f-g|\,d\mu + \int_{A^{c}}|f-g|\,d\mu \\ &= \int |f-g|\,d\mu. \end{split}$$

Hence,

$$|\lambda(A) - \nu(A)| = \left| \int_A f d\mu - \int_A g \, d\mu \right| \le \frac{1}{2} \int |f - g| \, d\mu.$$

Since $A \in \Sigma$ is arbitrary,

$$\sup_{A \in \Sigma} |\lambda(A) - \nu(A)| \le \frac{1}{2} \int |f - g| \, d\mu.$$

Next, let $A_+ = \{x \in X | f(x) - g(x) > 0\}$, $A_- = \{x \in X | f(x) - g(x) < 0\}$, and $A_0 = \{x \in X | f(x) - g(x) = 0\}$. Notice that A_+ , A_- , and A_0 are μ -measurable. Compute

$$\begin{split} \int |f - g| \, d\mu &= \int_{A_+} |f - g| \, d\mu + \int_{A_-} |f - g| \, d\mu \\ &= \int_{A_+} (f - g) \, d\mu - \int_{A_-} (f - g) \, d\mu \\ &= \lambda(A_+) - \nu(A_+) - (\lambda(A_-) - \nu(A_-)) \\ &\leq |\lambda(A_+) - \nu(A_+)| + |\lambda(A_-) - \nu(A_-)| \\ &\leq 2 \sup_{A \in \Sigma} |\lambda(A) - \nu(A)|, \end{split}$$

finishing the proof.