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Directions. Please read carefully the following directions:

• This exam contains three questions.
• Most problems require that you use results proven/stated in class/homework. When invok-

ing such results, you do not have to prove them, unless the question itself is asking you to
establish a result demonstrated in class or given as a homework. However, you do need to
state clearly the theorems/definitions you are using.
• While there is not an absolute standard to decide which results you should establish in

order to answer the questions versus those that you can quote from class/homework, you
are expected to demonstrate mathematical knowledge of the subject, and provide proofs
for the questions that you are being specifically asked.
• If the statement of a problem is not clear (for instance, you think there is a missing hy-

pothesis, the question is ambiguous, the notation is confusing, etc), state clearly how you
interpret it, and then solve it accordingly.
• A list of notations is provided at the end.
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Question 1 [30 pts]. Let X be a locally compact space and µ a measure on X.

a) State the definition of a µ-measurable function.

b) Let Y be a topological space. Prove that a function f : X → Y is µ-measurable if and only
if for every compact set K ⊆ X there exist a µ-negligible set N ⊆ K and a partition of K\N into
a sequence of compact sets {Kn}∞n=1 such that f |Kn

is continuous for each n.

c) Assume further that X is σ-compact. Prove that a map f : X → Y , Y a topological space, is
µ-measurable if and only if there exists a partition of X into a negligible set N and a sequence of
compact sets {Kn}∞n=1 such that f |Kn

is continuous for each n.

Solution.

a) Let Y be a topological space and f : X → Y . We say that f is µ-measurable if for every
compact set K ⊆ X and any ε > 0, there exists a compact set K ′ ⊆ K such that |µ|(K\K ′) ≤ ε
and f |K′ is continuous.

a) Let f be measurable and K ⊆ X a compact set. Then K is integrable (i.e., µ-integrable),
and by the characterization of integrable sets, given ε1 we can find an integrable open set U and a
compact set K ′1, such that K ′1 ⊆ K ⊆ U and |µ|(U\K ′1) ≤ ε1. Then

ε1 ≥ |µ|(U\K ′1) = |µ|(U)− |µ|(K ′1)

= |µ|(U)− |µ|(K) + |µ|(K)− |µ|(K ′1) ≥ |µ|(K\K ′1) ≥ 0.

By assumption, we can find K1 ⊆ K ′1 such that |µ|(K ′1\K1) ≤ ε1 and f |K1
is continuous. Consider

the set K\K1. It is integrable, thus mimicking the previous argument, given ε2, we can find a
compact set K2 ⊆ K\K1 such that f |K2

is continuous and

|µ|(K\(K1 ∪K2))| = |µ|((K\K1)\K2) ≤ ε2,

where we used that (K\K1)\K2 = K\(K1 ∪K2) since K1 ∩K2 = ∅. Continuing this process, we
construct a sequence {Kn}∞n=1 of pair-wise disjoint compact sets such that

|µ|(K\
k⋃

n=1

Kn) ≤ 1

k
,

and f |Kn
is continuous for each n. Setting Ak = K\

⋃k
n=1Kn and N =

⋂∞
n=1An we obtain the

desired partition.
For the converse, notice that it follows from the stated condition that |µ|(K) =

∑∞
n=1 |µ|(Kn),

so we can set K ′ =
⋃k
n=1Kn, choosing k such that |µ|(K\K ′) ≤ ε for a given ε > 0.

c) Write X =
⋃∞
n=1K

′
n, where the K ′n are compact and we can assume the sequence to be

increasing. Let L1 = K1 and Ln = Kn\Kn−1 for n ≥ 2, so that the sets Ln are pair-wise disjoint
and

⋃∞
n=1 Ln = X. Because each Ln is integrable, it can be written as

Ln = Nn ∪
∞⋃
m=1

Knm,

where Nn is negligible and the Knm’s are compact. Because f is measurable, by part b) each Knm

can be partitioned as

Knm = Nnm ∪
∞⋃
k=1

Knmk,

where Nnm is negligible and f |Knmk
is continuous, which implies the result.
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Question 2 [30 pts]. Let X be a locally compact σ-compact space with a measure µ on it.

a) State the definition of the essential supremum of a function.

b) Prove that L∞(X) is complete.

Solution.

a) For any measurable function,

M∞(f) = inf{α ∈ R | f(x) ≤ α almost everywhere.}.

b) Since the topology on L∞(X) is generated by a single semi-norm, it suffices to consider Cauchy
sequences. Let {fn}∞n=1 ⊂ L∞(X) be a Cauchy sequence. Given k ∈ N, we can find a Nk such that
N∞(fm−fn) ≤ 1

k for all m,n ≥ Nk. For each m,n ≥ Nk, set Amnk = {x ∈ X | |fm(x)−fn(x)| > 1
k}.

Then Amnk is negligible, and thus is their union A. It follows that {fn(x)}∞n=1 converges uniformly
on X\A; set f(x) to be its limit (defined almost everywhere). f is then bounded on X\A and by
Egoroff’s theorem it is measurable; hence f ∈ L∞(X). Because {fn}∞n=1 converges uniformly to f
on the complement on of a negligible set, we conclude (from the characterization of convergence in
L∞(X)) that {fn}∞n=1 converges to f in L∞(X). (Alternatively, we can use that N∞(f − fn) ≤ 1

k
for n ≥ Nk.)
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Question 3 [40 pts]. Let X be a locally compact σ-compact space. Let µ, λ, and ν be positive
measures on X. Suppose that every µ-measurable set is λ-measurable and ν-measurable, that every
µ-negligible set is λ-negligible and ν-negligible, and that λ(X) = 1 = ν(X).

a) Let Σ be the collection of all µ-measurable sets. Explain why the quantity

sup
A∈Σ
|λ(A)− ν(A)|

is a well-defined real number.

b) Prove there there exist µ-integrable functions f and g, whose equivalence classes are uniquely
determined by λ and ν, respectively, such that

sup
A∈Σ
|λ(A)− ν(A)| = 1

2

∫
|f − g| dµ.

Solution.

a) Since 0 ≤ λ(A) ≤ 1 and 0 ≤ ν(A) ≤ 1 for any A ∈ Σ, we have 0 ≤ |λ(A) − ν(A)| ≤ 2, thus
the result.

b) Since every µ-negligible set is also λ-negligible, the Radon-Nikodym derivative f = dλ
dµ exists.

f is a locally µ-integrable function whose equivalence class is uniquely determined. Since

1 = λ(X) =

∫
dλ =

∫
dλ

dµ
dµ =

∫
f dµ,

we see that f is µ-integrable. Similarly for g = dν
dµ . For any A ∈ Σ, it holds that

λ(A) =

∫
A
f dµ,

and

ν(A) =

∫
A
g dµ.

For any A ∈ Σ, we have

0 = λ(X)− ν(X) =

∫
(f − g) dµ

=

∫
A

(f − g) dµ+

∫
Ac

(f − g) dµ,

thus ∫
A

(f − g) dµ = −
∫
Ac

(f − g) dµ.

Therefore,

2

∣∣∣∣∫
A

(f − g) dµ

∣∣∣∣ =

∣∣∣∣∫
A

(f − g) dµ

∣∣∣∣+

∣∣∣∣∫
A

(f − g) dµ

∣∣∣∣
=

∣∣∣∣∫
A

(f − g) dµ

∣∣∣∣+

∣∣∣∣∫
Ac

(f − g) dµ

∣∣∣∣
≤
∫
A
|f − g| dµ+

∫
Ac

|f − g| dµ

=

∫
|f − g| dµ.



5

Hence,

|λ(A)− ν(A)| =
∣∣∣∣∫
A
fdµ−

∫
A
g dµ

∣∣∣∣ ≤ 1

2

∫
|f − g| dµ.

Since A ∈ Σ is arbitrary,

sup
A∈Σ
|λ(A)− ν(A)| ≤ 1

2

∫
|f − g| dµ.

Next, let A+ = {x ∈ X | f(x) − g(x) > 0}, A− = {x ∈ X | f(x) − g(x) < 0}, and A0 = {x ∈
X | f(x)− g(x) = 0}. Notice that A+, A−, and A0 are µ-measurable. Compute∫

|f − g| dµ =

∫
A+

|f − g| dµ+

∫
A−

|f − g| dµ

=

∫
A+

(f − g) dµ−
∫
A−

(f − g) dµ

= λ(A+)− ν(A+)− (λ(A−)− ν(A−))

≤ |λ(A+)− ν(A+)|+ |λ(A−)− ν(A−)|
≤ 2 sup

A∈Σ
|λ(A)− ν(A)|,

finishing the proof.


