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supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
K (X) K (X;C) or K (X;R), with C or R understood from the context
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Np(f) (|µ|∗(|f |p))
1
p , 1 ≤ p <∞

F p(X) Maps f from X to C or R such that Np(f) <∞, with topology given by the
semi-norm Np. Depending on the context, F p(X) can denote maps defined a.e.
such that Np(f) <∞, and also taking values in R

L p(X) Closure of K (X) in F p(X)
L p
loc(X) Functions f : X → C such that fχK ∈ L p

loc(X) for every compact set K ⊆ X.
Lp(X) Hausdorff space associated with L p(X)
f ∼ g Equivalence relation f(x) = g(x) a.e.

f̃ Equivalence class of f given by the equivalence relation ∼
EF (Φ) Set of Φ-step functions with values in F , where Φ is a Boolean ring and F = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class
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2 HOMEWORK

and denoted ≤, when such relation is well-defined. Recall that by a set of zero measure we mean a
set of zero outer measure. The topology on F p(X) is called the topology of convergence of mean of
order p, the Lp-topology, or yet the topology of convergence in Lp. Elements in L p(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

Below, the measure µ on Rn is always the Lebesgue measure.

Question 1. Recall that in class we defined the Hardy-Littlewood maximal operator M as follows.
Given f ∈ L 1

loc(Rn), set

(Mf)(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f | dµ.

Show that Mf is lower semi-continuous and that the set Aλ = {x ∈ Rn | (Mf)(x)| > λ} is open for
each λ > 0.

Question 2. Continuing from question 1, and assuming now that f is integrable, show that there
exists a compact set K ⊆ Aλ such that 2µ(K) ≥ µ(Aλ), and that for each x ∈ K there exists a
ball Bρ(x), where ρ depends on x, such that

1

µ(Bρ(x))

∫
Bρ(x)

|f | dµ > λ.

Show that there exist finitely many {Bρ(xi)}Ni=1 of the these balls that are pair-wise disjoint and
such that {B3ρ(xi)}Ni=1 covers K.

Remark. Question 2 is an intermediate step to prove the inequality of question 3, which is
trivial if f is not integrable. So we assume f ∈ L 1(Rn). (To put this in context, recall that
problem 3 was left as an exercise in the proof of Lebesgue’s differentiation theorem.)

Question 3. Continuing from question 2, conclude that

µ(Aλ) ≤ 2 · 3n

λ
N1(f).

Question 4. Let f : U ⊆ Rn → Rn be a C1 map, where U is open, and let A ⊂ U be a negligible
set. Show that f(A) is negligible.

Question 5. Let f : U ⊆ Rn → Rn be a C1 map, where U is open, and let A ⊆ U be measurable
set. Show that f(A) is measurable.


