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supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
K (X) K (X;C) or K (X;R), with C or R understood from the context
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Np(f) (|µ|∗(|f |p))
1
p , 1 ≤ p <∞

F p(X) Maps f from X to C or R such that Np(f) <∞, with topology given by the
semi-norm Np. Depending on the context, F p(X) can denote maps defined a.e.
such that Np(f) <∞, and also taking values in R

L p(X) Closure of K (X) in F p(X)
L p
loc(X) Functions f : X → C such that fχK ∈ L p

loc(X) for every compact set K ⊆ X.
Lp(X) Hausdorff space associated with L p(X)
f ∼ g Equivalence relation f(x) = g(x) a.e.

f̃ Equivalence class of f given by the equivalence relation ∼
EF (Φ) Set of Φ-step functions with values in F , where Φ is a Boolean ring and F = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class
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and denoted ≤, when such relation is well-defined. Recall that by a set of zero measure we mean a
set of zero outer measure. The topology on F p(X) is called the topology of convergence of mean of
order p, the Lp-topology, or yet the topology of convergence in Lp. Elements in L p(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

Below, the measure µ on Rn is always the Lebesgue measure.

Question 1. Recall that in class we defined the Hardy-Littlewood maximal operator M as follows.
Given f ∈ L 1

loc(Rn), set

(Mf)(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f | dµ.

Show that Mf is lower semi-continuous and that the set Aλ = {x ∈ Rn | (Mf)(x)| > λ} is open for
each λ > 0.

Solution. Let

fr(x) =
1

µ(Br(x))

∫
Br(x)

|f | dµ.

We claim that fr is a continuous function.
Fix 0 < r < R and let m = µ(Br(0)) (which of course is equatl to µ(Br(z)) for any z ∈ Rn).

Since fχBR(0) is integrable, we can find a continuous compactly supported g such that

∫
| f
m
χBR(0) − g| ≤ ε,

for a given ε > 0. Notice that this implies

∫
BR(0)c

|g| =
∫
BR(0)c

| f
m
χBR(0) − g|

=

∫
| f
m
χBR(0) − g|χBR(0)c

≤
∫
| f
m
χBR(0) − g| ≤ ε,

and thus,

∫
BR(0)

| f
m
− g| =

∫
| f
m
− g|χBR(0)

≤
∫
| f
m
χBR(0) − g|+

∫
|g − gχBR(0)|

=

∫
| f
m
χBR(0) − g|+

∫
BR(0)c

|g| ≤ 2ε.
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Consider x and y such that Br(x) ∪Br(y) ⊂ BR(0). Then

|fr(x)− fr(y)| =
∣∣∣∣∫ (

f

m
χBr(x) −

f

m
χBr(y))

∣∣∣∣
≤
∫
| f
m
χBr(x) − gχBr(x)|+

∫
|gχBr(x) − gχBr(y)|+

∫
|gχBr(y) −

f

m
χBr(y)|

=

∫
| f
m
− g|χBr(x) +

∫
|g||χBr(x) − χBr(y)|+

∫
|g − f

m
|χBr(y)

≤
∫
| f
m
− g|χBR(0) +

∫
|g||χBr(x) − χBr(y)|+

∫
|g − f

m
|χBR(0)

=

∫
BR(0)

| f
m
− g|+

∫
B
|g|+

∫
BR(0)

|g − f

m
|,

where B = (Br(x) ∪ Br(y))\(Br(x) ∩ Br(y)). We have seen that the first and third integrals are
≤ 2ε. Applying the mean value inequality to the second integral we have∫

B
|g| ≤ sup

x∈Rn
|g(x)|µ(B),

which can be made as small as we want by taking x and y sufficiently close, and the claim is proven.
So Mf is the supremum over a family of continuous functions thus it is lower-semicontinuous. This
implies that Aλ is open.

Question 2. Continuing from question 1, and assuming now that f is integrable, show that there
exists a compact set K ⊆ Aλ such that 2µ(K) ≥ µ(Aλ), and that for each x ∈ K there exists a
ball Bρ(x), where ρ depends on x, such that

1

µ(Bρ(x))

∫
Bρ(x)

|f | dµ > λ.

Show that there exist finitely many {Bρ(xi)}Ni=1 of the these balls that are pair-wise disjoint and
such that {B3ρ(xi)}Ni=1 covers K.

Remark. Question 2 is an intermediate step to prove the inequality of question 3, which is
trivial if f is not integrable. So we assume f ∈ L 1(Rn). (To put this in context, recall that
problem 3 was left as an exercise in the proof of Lebesgue’s differentiation theorem.)

Solution. Let us start with the following claim: Assume that L ⊂ Rn is compact and let
{Brα(xα)}α∈A be a covering of L by open balls. Then there exits a finite sub-collection {Bri(xi)}Ni=1

of pair-wise disjoint balls such that {B3ri(xi)}Ni=1 covers L.
We can take the original cover finite to begin with. Let Br1(x1) be the (not necessarily unique)

ball with the largest radius. Let Br2(x2) be the ball with largest radius among those that are
disjoint from Br1(x1) (again, Br2(x2) does not have to be unique). Continue inductively until this
process ends in N steps. It suffices now to show that Brα(xα) ⊆ ∪Ni=1B3ri(xi) for any α. Fix α
and notice that if α = i for some i in {1, . . . , N} then there is nothing to be showed. If α 6= i
for all i = 1, . . . , N , let i∗ be the first index i in {1, . . . , N} such that Bri∗ (xi∗) ∩ Brα(xα) 6= ∅,
which must exist since otherwise the process would not have stopped. Then ri∗ ≥ rα because
otherwise Bri∗ (xi∗) would have been incorrectly selected. Invoking the triangle inequality we see
that Brα(xα) ⊆ B3ri∗ (xi∗)

Remark. The above claim (and variants of it) is sometimes called Vitali’s covering theorem.

Next, consider a compact set L ⊆ Aλ. The definition of Mf implies that for each x ∈ L, there
exists a rx such that λ < fr(x). The corresponding balls Brx(x) (in the definition of fr) cover L,
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thus by the previous claim we can find a finite collection {Bri(xi)}Ni=1 of pair-wise disjoint balls
such that {B3ri(xi)}Ni=1 covers L. Thus

µ(L) ≤
N∑
i=1

µ(B3ri(xi)) = 3n
N∑
i=1

µ(Bri(xi)) ≤
1

λ

∫
L
|f | dµ.

Now, since Aλ is measurable, it can be written, up to a negligible set, as the disjoint union of a
family of compact sets. By the foregoing, µ(Aλ) < ∞ (recall that f ∈ L 1(Rn)), and thus the
existence of the desired compact set K is immediate.

Question 3. Continuing from question 2, conclude that

µ(Aλ) ≤ 2 · 3n

λ
N1(f).

Solution. This follows from the construction of problem 2.

Question 4. Let f : U ⊆ Rn → Rn be a C1 map, where U is open, and let A ⊂ U be a negligible
set. Show that f(A) is negligible.

Solution. It all comes down to show that if R is a cube contained in U , then f(R ∩ A) is
negligible. This is immediate if R ⊂ U in light of the similar statement proven in class for Lipschitz
functions, since f is then Lipschitz on R. In the general case, we can write R as a countable union
of concentric closed cubes, hence the result.

Question 5. Let f : U ⊆ Rn → Rn be a C1 map, where U is open, and let A ⊆ U be measurable
set. Show that f(A) is measurable.

Solution. Since A is measurable, we can write A = N ∪ ∪nKn, where N is negligible and the
Kn’s are compact. f(N) is negligible by question 4, hence the result as f is continuous.


