REAL ANALYSIS, HW 3

VANDERBILT UNIVERSITY

supp Support of a function or a measure

X Locally compact (topological) space

K Compact set in X

E Locally convex (topological vector) space

¢ (X F) Space of continuous functions from X to E endowed with the uniform topology

%c0.(X;E)  Space of continuous functions from X to E endowed with the compact-open
topology

C.(X; F) Space of continuous functions from X to E with compact support endowed
with the compact-open topology

C(K;F) Space of continuous functions from K to E endowed with the topology
inherited from %' (X, F)

H (X F) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies

H(X,A;E) Elements f € 2 (X; E) such that supp(f) C A

A (X,K;E) Elements f € #(X; F) such that supp(f) C K endowed with the topology
of compact convergence

4 (X5 R) Elements f € 2 (X;R) such that f >0

H(X) H(X;C) or #(X;R), with C or R understood from the context

C) Space of measures on X
AM(X;R) Space of real measures on X
My (X;R) Space of positive measures on X

S+ (X;R) Space of positive (non-negative) lower semi-continuous functions on X
w(f) Upper integral of f (with respect to the positive measure p), also denoted [* f du
XA Characteristic function of the set A
w*(A) Outer measure of A (with respect to the positive measure p)
1
Np(f) (lul*([fIP))7, 1 <p < oo
FP(X) Maps f from X to C or R such that N,(f) < oo, with topology given by the

semi-norm Np. Depending on the context, #?(X) can denote maps defined a.e.
such that N,(f) < oo, and also taking values in R

ZLP(X) Closure of #(X) in Z#P(X)

LP(X) Hausdorff space associated with Z7(X)

f~g Equivalence relation f(z) = g(z) a.e.

]? Equivalence class of f given by the equivalence relation ~

Ep(D) Set of ®-step functions with values in F', where ® is a Boolean ring and F' = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless

stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class

and denoted <, when such relation is well-defined. Recall that by a set of zero measure we mean a
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set of zero outer measure. The topology on .#P(X) is called the topology of convergence of mean of
order p, the LP-topology, or yet the topology of convergence in LP. Elements in £?(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

X will always denote a locally compact o-compact space.

Question 1. Let p and v be positive measures on X. Prove that v has a density relative to pu if
and only if the following holds. For any f: X — R, f > 0, which is p-integrable and v-integrable,
and for every ¢ > 0, there exists a § > 0 such that if h is a function satisfying 0 < h < f and
[ hdp <4, then [“hdv <e.

Solution. Assume v = gu, where g is locally u-integrable. Let us argue by contradiction. Suppose
that there exist a function f > 0 that is u and v-integrable, and a real number £ > 0 such that, for
any n € N, there exists a function g,, 0 < g, < f, satisfying

*
/ gndp <277

/ gndv > €.

From the definition of the upper integral we can replace g,, by inf(f, h,,) for some h, € Z(X;R)
without changing the previous inequalities, thus we can assume g, to be p and v-integrable. Set

and

0o
Up = SUP gptr < Zgn—I—Z
>0 —

and

v = limsup g, = inf v,,.
n—00 n

vp is then p and v-integrable since g, < f, thus an application of the dominated convergence
theorem gives

oo
/vn dp < Z/gn+zdu <27
(=1

/vd,u:()

and the assumption v = gu implies that v is v-negligible. But

Thus

/vdu: lim [ v,dv > &,

n—oo

giving a contradiction.

Reciprocally, notice that the statement implies that every u-negligible set is v-negligible. Under
these circumstances we proved in class that v has a density with respect to pu.
Question 2. Let p be a measure on X and A C X be such that X\ A is negligible. Prove that
H= XA
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Solution. Notice that A is y-measurable thus x 4 locally p-integrable. Set v = x ap. Then for any

f e (X;R),
[tav= [ pxadn

On the other hand, since A is p-measurable,
Jrau= [ fans [ an= [ rxadn

Question 3. Prove the .£P— %7 duality stated in class, p > 1.

establishing the result.

Solution. If g € Z?, then we obtain a continuous linear form in view of Holder’s inequality.

Now let A be a (non-trivial) continuous linear form on Z?(X). Then |A(f)| < MN,(f) for all
f € ZP(X) and some M > 0. Thus A is continuous on .# (X) and defines a measure v.

Since |xalP = x4, for any p-integrable A C X,

IA(xa)] < MNp(xa) = M/XA dy.

As X and v agree on (X ), we see that any p-negligible set is also v-negligible and thus v = gu
for some locally p-integrable function g.
For any f € #(X),

N =) = [ rav= [ tgdn.

Therefore, the linear forms f — A(f) and f — [ fgdu agree on £ (X), thus on .Z?(X). It remains
to show that g € Z4(X).

As in the proof of the dual of #!, we can write |g| = hg where |h(z)] = 1. Let 4, = {z €
X ||g(z)| <n} and f, = xa,|g|? 'h. Then |f,|P = |g|? on A,, and for any compact K,

%
lg|? du

From the monotone convergence theorem and o-compactness, we obtain Ny(g) < M.

/ |g’qu:/XKfngd/L:)‘(XKfn)SMNp(XKfn):M</
AnNK A

nNK

Question 4. In this problem you have to show that there exist continuous linear forms on .£*°(X)
that are not of the form f +— [ fgdu for some function g € £!(X). Proceed as follows. (If you
know a different proof than what is outlined below you are welcome to present it.)

Take X = [—1,1] with p to be the Lebesgue measure. Let CY(X) be the space of continuous real
valued functions on X (we will take all functions to be real), and notice that C°(X) C L*®(X).
Define a (linear) operator A : C%(X) — R by A(f) = f(0). Show that this operator is continuous
with respect to the topology induced on C°(X) from .Z°*°(X). Invoking a theorem from last
semester, conclude that A extends to a continuous linear form on .£°°(X). Suppose that A could
be written as A(f) = [ fgdu for a certain g € £'(X). Then, for any f € C°(X) we have
[ fgdp = f(0). Show that for any z # 0 and € > 0 such that |z| > €, we can find a sequence of
non-negative continuous functions { f, }>; supported on [x — ¢, z +¢] such that f,, converges in the
ZL*°-topology t0 X[g—z z+e]-(We can assume [z — ¢, 7 +¢] C [~1, 1] upon taking ¢ small.) Conclude
that

) = / fagdu =0
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for all n, and that

/ fngdup — / X[z—e,a+e]d At

as n — 0o. Next, invoke the following theorem which will be proven later in the course:

Theorem 1. (Lebesgue differentiation theorem) Let f : R™ — R be locally integrable. Then for
almost every x € R"

1
lim ——— fdu— f(x),
P 1B @) (=)

where By (x) is the ball of radius r centered at x and |B,(x)| its volume.

Conclude that g(x) = 0 almost everywhere, thus A = 0, which gives a contradiction.

Above, the continuous linear form A defined on the whole of .Z°°(X) has an explicit formula when
restricted to continuous function, but notice that A(f) = f(0) is not valid for arbitrary elements
of £*°(X). Can you write an explicit formula for a continuous linear form on .£°°(X) that is not
given by integration against an #!(X) function?

Solution. Notice that for any continuous function,
A = 1F(0)] < Noo(f)-

Hence A defines a continuous linear form on the subspace C°(X) with respect to the .#*°-topology.
By the Hahn-Banach theorem A extends to a continuous linear form on the whole of .Z*°(X). Now
we just follow the argument outlined in the statement of the exercise.

Recall that the Hanh-Banach was proven as a consequence of a separation theorem, which in
turn relies on Zorn’s lemma. As far as I know all proofs that there exist continuous linear forms on
Z%°(X) not given by integration rely on the Hahn-Banach or some similar proposition not provable
in ZF, thus an explicit construction seems to be impossible.

Question 5. Prove that two measures p and v are singular with respect to each other if and only
if inf (||, |v]) = 0.

Solution. We can assume the measures to be positive, so y = g\ and v = hA with A = p + v.
Then inf(u,v) = inf(g, h)A. Thus, inf(u,v) = 0 if and only if inf(g, h) is A negligible. Letting M
and N be the set of points where g and h do not vanish, respectively, inf(g, h) is A-negligible if and
only if M N N is A-negligible. Setting My = M\(M N N) and N; = N\(M N N), the condition is
then equivalent to g = xar, 9 and h = xn,h A-almost everywhere. But g = xar, 9 holds A almost
everywhere if and only if i is concentrated on M;; analogously for v.



