REAL ANALYSIS, HW 3

VANDERBILT UNIVERSITY

supp	Support of a function or a measure
$X^{}$	Locally compact (topological) space
K	Compact set in X
E	Locally convex (topological vector) space
$\mathscr{C}(X; E)$	Space of continuous functions from X to E endowed with the uniform topology
$\mathscr{C}_{c.o.}(X; E)$	Space of continuous functions from X to E endowed with the compact-open topology
$\mathscr{C}_{c}(X; E)$	Space of continuous functions from X to E with compact support endowed with the compact-open topology
$\mathscr{C}(K; E)$	Space of continuous functions from K to E endowed with the topology inherited from $\mathscr{C}(X, E)$
$\mathscr{K}(X; E)$	Space of continuous functions from X to E with compact support endowed with the inductive limit of locally convex topologies
$\mathscr{K}(X,A;E)$	Elements $f \in \mathscr{K}(X; E)$ such that $\operatorname{supp}(f) \subseteq A$
$\mathscr{K}(X,K;E)$	Elements $f \in \mathscr{K}(X; E)$ such that $\operatorname{supp}(f) \subseteq K$ endowed with the topology
	of compact convergence
$\mathscr{K}_+(X;\mathbb{R})$	Elements $f \in \mathscr{K}(X; \mathbb{R})$ such that $f \ge 0$
$\mathscr{K}(X)$	$\mathscr{K}(X;\mathbb{C})$ or $\mathscr{K}(X;\mathbb{R})$, with \mathbb{C} or \mathbb{R} understood from the context
$\mathscr{M}(X;\mathbb{C})$	Space of measures on X
$\mathscr{M}(X;\mathbb{R})$	Space of real measures on X
$\mathscr{M}_+(X;\mathbb{R})$	Space of positive measures on X
$\mathscr{I}_+(X;\mathbb{R})$	Space of positive (non-negative) lower semi-continuous functions on X
$\mu^*(f)$	Upper integral of f (with respect to the positive measure μ), also denoted $\int^* f d\mu$
χ_A	Characteristic function of the set A
$\mu^*(A)$	Outer measure of A (with respect to the positive measure μ)
$N_p(f)$	$(\mu ^*(f ^p))^{\frac{1}{p}}, 1 \le p < \infty$
$\mathscr{F}^{p}(X)$	Maps f from X to \mathbb{C} or \mathbb{R} such that $N_p(f) < \infty$, with topology given by the
	semi-norm N_p . Depending on the context, $\mathscr{F}^p(X)$ can denote maps defined a.e. such that $N_p(f) < \infty$, and also taking values in \mathbb{R}
$\mathscr{L}^p(X)$	Closure of $\mathscr{K}(X)$ in $\mathscr{F}^p(X)$
$L^p(X)$	Hausdorff space associated with $\mathscr{L}^p(X)$
$f \sim q$	Equivalence relation $f(x) = q(x)$ a.e.
\widetilde{f}	Equivalence class of f given by the equivalence relation \sim
ወ (አ)	

 $\mathscr{E}_F(\Phi)$ Set of Φ -step functions with values in F, where Φ is a Boolean ring and $F = \mathbb{R}$ or \mathbb{C} .

Recall that we also call the compact-open topology the topology of compact convergence. Unless stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class and denoted \leq , when such relation is well-defined. Recall that by a set of zero measure we mean a

HOMEWORK

set of zero outer measure. The topology on $\mathscr{F}^p(X)$ is called the topology of convergence of mean of order p, the L^p -topology, or yet the topology of convergence in L^p . Elements in $\mathscr{L}^p(X)$ are called p-integrable. This terminology is extended to functions defined a.e. and taking values in \mathbb{R} as done in class.

X will always denote a locally compact σ -compact space.

Question 1. Let μ and ν be positive measures on X. Prove that ν has a density relative to μ if and only if the following holds. For any $f: X \to \mathbb{R}$, $f \ge 0$, which is μ -integrable and ν -integrable, and for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if h is a function satisfying $0 \le h \le f$ and $\int_{-\infty}^{\infty} h \, d\mu \le \delta$, then $\int_{-\infty}^{\infty} h \, d\nu \le \varepsilon$.

Solution. Assume $\nu = g\mu$, where g is locally μ -integrable. Let us argue by contradiction. Suppose that there exist a function $f \ge 0$ that is μ and ν -integrable, and a real number $\varepsilon > 0$ such that, for any $n \in \mathbb{N}$, there exists a function $g_n, 0 \le g_n \le f$, satisfying

$$\int^* g_n \, d\mu \le 2^{-n}$$

and

$$\int^* g_n \, d\nu \ge \varepsilon.$$

From the definition of the upper integral we can replace g_n by $\inf(f, h_n)$ for some $h_n \in \mathscr{I}_+(X; \mathbb{R})$ without changing the previous inequalities, thus we can assume g_n to be μ and ν -integrable. Set

$$v_n = \sup_{\ell > 0} g_{n+\ell} \le \sum_{\ell=1}^{\infty} g_{n+\ell}$$

and

$$v = \limsup_{n \to \infty} g_n = \inf_n v_n.$$

 v_n is then μ and ν -integrable since $g_n \leq f$, thus an application of the dominated convergence theorem gives

$$\int v_n \, d\mu \le \sum_{\ell=1}^{\infty} \int g_{n+\ell} \, d\mu \le 2^{-n}.$$

Thus

$$\int v\,d\mu=0$$

and the assumption $\nu = g\mu$ implies that v is ν -negligible. But

$$\int v \, d\nu = \lim_{n \to \infty} \int v_n \, d\nu \ge \varepsilon,$$

giving a contradiction.

Reciprocally, notice that the statement implies that every μ -negligible set is ν -negligible. Under these circumstances we proved in class that ν has a density with respect to μ .

Question 2. Let μ be a measure on X and $A \subset X$ be such that $X \setminus A$ is negligible. Prove that $\mu = \chi_A \mu$.

Solution. Notice that A is μ -measurable thus χ_A locally μ -integrable. Set $\nu = \chi_A \mu$. Then for any $f \in \mathscr{K}(X; \mathbb{R})$,

$$\int f \, d\nu = \int f \chi_A \, d\mu$$

On the other hand, since A is μ -measurable,

$$\int f \, d\mu = \int_A f \, d\mu + \int_{A^c} f \, d\mu = \int f \chi_A \, d\mu,$$

establishing the result.

Question 3. Prove the \mathscr{L}^{p} - \mathscr{L}^{q} duality stated in class, p > 1.

Solution. If $q \in \mathcal{L}^q$, then we obtain a continuous linear form in view of Hölder's inequality.

Now let λ be a (non-trivial) continuous linear form on $\mathscr{L}^p(X)$. Then $|\lambda(f)| \leq MN_p(f)$ for all $f \in \mathscr{L}^p(X)$ and some M > 0. Thus λ is continuous on $\mathscr{K}(X)$ and defines a measure ν .

Since $|\chi_A|^p = \chi_A$, for any μ -integrable $A \subseteq X$,

$$|\lambda(\chi_A)| \le M N_p(\chi_A) = M \int \chi_A \, d\mu$$

As λ and ν agree on $\mathscr{K}(X)$, we see that any μ -negligible set is also ν -negligible and thus $\nu = g\mu$ for some locally μ -integrable function g.

For any $f \in \mathscr{K}(X)$,

$$\lambda(f) = \nu(f) = \int f \, d\nu = \int f g \, d\mu.$$

Therefore, the linear forms $f \mapsto \lambda(f)$ and $f \mapsto \int fg \, d\mu$ agree on $\mathscr{K}(X)$, thus on $\mathscr{L}^p(X)$. It remains to show that $g \in \mathscr{L}^q(X)$.

As in the proof of the dual of \mathscr{L}^1 , we can write |g| = hg where |h(x)| = 1. Let $A_n = \{x \in X \mid |g(x)| \le n\}$ and $f_n = \chi_{A_n} |g|^{q-1}h$. Then $|f_n|^p = |g|^q$ on A_n , and for any compact K,

$$\int_{A_n \cap K} |g|^q \, d\mu = \int \chi_K f_n g \, d\mu = \lambda(\chi_K f_n) \le M N_p(\chi_K f_n) = M \left(\int_{A_n \cap K} |g|^q \, d\mu \right)^{\frac{1}{p}}.$$

From the monotone convergence theorem and σ -compactness, we obtain $N_q(g) \leq M$.

Question 4. In this problem you have to show that there exist continuous linear forms on $\mathscr{L}^{\infty}(X)$ that are not of the form $f \mapsto \int fg \, d\mu$ for some function $g \in \mathscr{L}^1(X)$. Proceed as follows. (If you know a different proof than what is outlined below you are welcome to present it.)

Take X = [-1, 1] with μ to be the Lebesgue measure. Let $C^0(X)$ be the space of continuous real valued functions on X (we will take all functions to be real), and notice that $C^0(X) \subseteq L^{\infty}(X)$. Define a (linear) operator $\lambda : C^0(X) \to \mathbb{R}$ by $\lambda(f) = f(0)$. Show that this operator is continuous with respect to the topology induced on $C^0(X)$ from $\mathscr{L}^{\infty}(X)$. Invoking a theorem from last semester, conclude that λ extends to a continuous linear form on $\mathscr{L}^{\infty}(X)$. Suppose that λ could be written as $\lambda(f) = \int fg d\mu$ for a certain $g \in \mathscr{L}^1(X)$. Then, for any $f \in C^0(X)$ we have $\int fg d\mu = f(0)$. Show that for any $x \neq 0$ and $\varepsilon > 0$ such that $|x| > \varepsilon$, we can find a sequence of non-negative continuous functions $\{f_n\}_{n=1}^{\infty}$ supported on $[x - \varepsilon, x + \varepsilon]$ such that f_n converges in the \mathscr{L}^{∞} -topology to $\chi_{[x-\varepsilon,x+\varepsilon]}$. (We can assume $[x - \varepsilon, x + \varepsilon] \subset [-1, 1]$ upon taking ε small.) Conclude that

$$\lambda(f_n) = \int f_n g \, d\mu = 0$$

for all n, and that

$$\int f_n g \, d\mu \to \int \chi_{[x-\varepsilon,x+\varepsilon]} g \, d\mu$$

as $n \to \infty$. Next, invoke the following theorem which will be proven later in the course:

Theorem 1. (Lebesgue differentiation theorem) Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally integrable. Then for almost every $x \in \mathbb{R}^n$

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f \, d\mu \to f(x),$$

where $B_r(x)$ is the ball of radius r centered at x and $|B_r(x)|$ its volume.

Conclude that q(x) = 0 almost everywhere, thus $\lambda = 0$, which gives a contradiction.

Above, the continuous linear form λ defined on the whole of $\mathscr{L}^{\infty}(X)$ has an explicit formula when restricted to continuous function, but notice that $\lambda(f) = f(0)$ is not valid for arbitrary elements of $\mathscr{L}^{\infty}(X)$. Can you write an explicit formula for a continuous linear form on $\mathscr{L}^{\infty}(X)$ that is not given by integration against an $\mathscr{L}^1(X)$ function?

Solution. Notice that for any continuous function,

$$|\lambda(f)| = |f(0)| \le N_{\infty}(f).$$

Hence λ defines a continuous linear form on the subspace $C^0(X)$ with respect to the \mathscr{L}^{∞} -topology. By the Hahn-Banach theorem λ extends to a continuous linear form on the whole of $\mathscr{L}^{\infty}(X)$. Now we just follow the argument outlined in the statement of the exercise.

Recall that the Hanh-Banach was proven as a consequence of a separation theorem, which in turn relies on Zorn's lemma. As far as I know all proofs that there exist continuous linear forms on $\mathscr{L}^{\infty}(X)$ not given by integration rely on the Hahn-Banach or some similar proposition not provable in ZF, thus an explicit construction seems to be impossible.

Question 5. Prove that two measures μ and ν are singular with respect to each other if and only if $\inf(|\mu|, |\nu|) = 0$.

Solution. We can assume the measures to be positive, so $\mu = g\lambda$ and $\nu = h\lambda$ with $\lambda = \mu + \nu$. Then $\inf(\mu, \nu) = \inf(g, h)\lambda$. Thus, $\inf(\mu, \nu) = 0$ if and only if $\inf(g, h)$ is λ negligible. Letting M and N be the set of points where g and h do not vanish, respectively, $\inf(g, h)$ is λ -negligible if and only if $M \cap N$ is λ -negligible. Setting $M_1 = M \setminus (M \cap N)$ and $N_1 = N \setminus (M \cap N)$, the condition is then equivalent to $g = \chi_{M_1}g$ and $h = \chi_{N_1}h \lambda$ -almost everywhere. But $g = \chi_{M_1}g$ holds λ almost everywhere if and only if μ is concentrated on M_1 ; analogously for ν .