
REAL ANALYSIS, HW 3

VANDERBILT UNIVERSITY

supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
K (X) K (X;C) or K (X;R), with C or R understood from the context
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Np(f) (|µ|∗(|f |p))
1
p , 1 ≤ p <∞

F p(X) Maps f from X to C or R such that Np(f) <∞, with topology given by the
semi-norm Np. Depending on the context, F p(X) can denote maps defined a.e.
such that Np(f) <∞, and also taking values in R

L p(X) Closure of K (X) in F p(X)
Lp(X) Hausdorff space associated with L p(X)
f ∼ g Equivalence relation f(x) = g(x) a.e.

f̃ Equivalence class of f given by the equivalence relation ∼
EF (Φ) Set of Φ-step functions with values in F , where Φ is a Boolean ring and F = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class
and denoted ≤, when such relation is well-defined. Recall that by a set of zero measure we mean a
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set of zero outer measure. The topology on F p(X) is called the topology of convergence of mean of
order p, the Lp-topology, or yet the topology of convergence in Lp. Elements in L p(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

X will always denote a locally compact σ-compact space.

Question 1. Let µ and ν be positive measures on X. Prove that ν has a density relative to µ if
and only if the following holds. For any f : X → R, f ≥ 0, which is µ-integrable and ν-integrable,
and for every ε > 0, there exists a δ > 0 such that if h is a function satisfying 0 ≤ h ≤ f and∫ ∗
h dµ ≤ δ, then

∫ ∗
h dν ≤ ε.

Solution. Assume ν = gµ, where g is locally µ-integrable. Let us argue by contradiction. Suppose
that there exist a function f ≥ 0 that is µ and ν-integrable, and a real number ε > 0 such that, for
any n ∈ N, there exists a function gn, 0 ≤ gn ≤ f , satisfying∫ ∗

gn dµ ≤ 2−n

and ∫ ∗
gn dν ≥ ε.

From the definition of the upper integral we can replace gn by inf(f, hn) for some hn ∈ I+(X;R)
without changing the previous inequalities, thus we can assume gn to be µ and ν-integrable. Set

vn = sup
`>0

gn+` ≤
∞∑
`=1

gn+`

and

v = lim sup
n→∞

gn = inf
n
vn.

vn is then µ and ν-integrable since gn ≤ f , thus an application of the dominated convergence
theorem gives ∫

vn dµ ≤
∞∑
`=1

∫
gn+` dµ ≤ 2−n.

Thus ∫
v dµ = 0

and the assumption ν = gµ implies that v is ν-negligible. But∫
v dν = lim

n→∞

∫
vn dν ≥ ε,

giving a contradiction.
Reciprocally, notice that the statement implies that every µ-negligible set is ν-negligible. Under

these circumstances we proved in class that ν has a density with respect to µ.

Question 2. Let µ be a measure on X and A ⊂ X be such that X\A is negligible. Prove that
µ = χAµ.
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Solution. Notice that A is µ-measurable thus χA locally µ-integrable. Set ν = χAµ. Then for any
f ∈ K (X;R), ∫

f dν =

∫
fχA dµ.

On the other hand, since A is µ-measurable,∫
f dµ =

∫
A
f dµ+

∫
Ac

f dµ =

∫
fχA dµ,

establishing the result.

Question 3. Prove the L p–L q duality stated in class, p > 1.

Solution. If g ∈ L q, then we obtain a continuous linear form in view of Hölder’s inequality.
Now let λ be a (non-trivial) continuous linear form on L p(X). Then |λ(f)| ≤ MNp(f) for all

f ∈ L p(X) and some M > 0. Thus λ is continuous on K (X) and defines a measure ν.
Since |χA|p = χA, for any µ-integrable A ⊆ X,

|λ(χA)| ≤MNp(χA) = M

∫
χA dµ.

As λ and ν agree on K (X), we see that any µ-negligible set is also ν-negligible and thus ν = gµ
for some locally µ-integrable function g.

For any f ∈ K (X),

λ(f) = ν(f) =

∫
f dν =

∫
fg dµ.

Therefore, the linear forms f 7→ λ(f) and f 7→
∫
fg dµ agree on K (X), thus on L p(X). It remains

to show that g ∈ L q(X).
As in the proof of the dual of L 1, we can write |g| = hg where |h(x)| = 1. Let An = {x ∈

X | |g(x)| ≤ n} and fn = χAn |g|q−1h. Then |fn|p = |g|q on An, and for any compact K,∫
An∩K

|g|q dµ =

∫
χKfng dµ = λ(χKfn) ≤MNp(χKfn) = M

(∫
An∩K

|g|q dµ
) 1

p

.

From the monotone convergence theorem and σ-compactness, we obtain Nq(g) ≤M .

Question 4. In this problem you have to show that there exist continuous linear forms on L∞(X)
that are not of the form f 7→

∫
fg dµ for some function g ∈ L 1(X). Proceed as follows. (If you

know a different proof than what is outlined below you are welcome to present it.)
Take X = [−1, 1] with µ to be the Lebesgue measure. Let C0(X) be the space of continuous real

valued functions on X (we will take all functions to be real), and notice that C0(X) ⊆ L∞(X).
Define a (linear) operator λ : C0(X) → R by λ(f) = f(0). Show that this operator is continuous
with respect to the topology induced on C0(X) from L∞(X). Invoking a theorem from last
semester, conclude that λ extends to a continuous linear form on L∞(X). Suppose that λ could
be written as λ(f) =

∫
fg dµ for a certain g ∈ L 1(X). Then, for any f ∈ C0(X) we have∫

fg dµ = f(0). Show that for any x 6= 0 and ε > 0 such that |x| > ε, we can find a sequence of
non-negative continuous functions {fn}∞n=1 supported on [x−ε, x+ε] such that fn converges in the
L∞-topology to χ[x−ε,x+ε].(We can assume [x− ε, x+ ε] ⊂ [−1, 1] upon taking ε small.) Conclude
that

λ(fn) =

∫
fng dµ = 0
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for all n, and that ∫
fng dµ→

∫
χ[x−ε,x+ε]g dµ

as n→∞. Next, invoke the following theorem which will be proven later in the course:

Theorem 1. (Lebesgue differentiation theorem) Let f : Rn → R be locally integrable. Then for
almost every x ∈ Rn

lim
r→0

1

|Br(x)|

∫
Br(x)

f dµ→ f(x),

where Br(x) is the ball of radius r centered at x and |Br(x)| its volume.

Conclude that g(x) = 0 almost everywhere, thus λ = 0, which gives a contradiction.
Above, the continuous linear form λ defined on the whole of L∞(X) has an explicit formula when

restricted to continuous function, but notice that λ(f) = f(0) is not valid for arbitrary elements
of L∞(X). Can you write an explicit formula for a continuous linear form on L∞(X) that is not
given by integration against an L 1(X) function?

Solution. Notice that for any continuous function,

|λ(f)| = |f(0)| ≤ N∞(f).

Hence λ defines a continuous linear form on the subspace C0(X) with respect to the L∞-topology.
By the Hahn-Banach theorem λ extends to a continuous linear form on the whole of L∞(X). Now
we just follow the argument outlined in the statement of the exercise.

Recall that the Hanh-Banach was proven as a consequence of a separation theorem, which in
turn relies on Zorn’s lemma. As far as I know all proofs that there exist continuous linear forms on
L∞(X) not given by integration rely on the Hahn-Banach or some similar proposition not provable
in ZF, thus an explicit construction seems to be impossible.

Question 5. Prove that two measures µ and ν are singular with respect to each other if and only
if inf(|µ|, |ν|) = 0.

Solution. We can assume the measures to be positive, so µ = gλ and ν = hλ with λ = µ + ν.
Then inf(µ, ν) = inf(g, h)λ. Thus, inf(µ, ν) = 0 if and only if inf(g, h) is λ negligible. Letting M
and N be the set of points where g and h do not vanish, respectively, inf(g, h) is λ-negligible if and
only if M ∩N is λ-negligible. Setting M1 = M\(M ∩N) and N1 = N\(M ∩N), the condition is
then equivalent to g = χM1g and h = χN1h λ-almost everywhere. But g = χM1g holds λ almost
everywhere if and only if µ is concentrated on M1; analogously for ν.


