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supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
K (X) K (X;C) or K (X;R), with C or R understood from the context
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Np(f) (|µ|∗(|f |p))
1
p , 1 ≤ p <∞

F p(X) Maps f from X to C or R such that Np(f) <∞, with topology given by the
semi-norm Np. Depending on the context, F p(X) can denote maps defined a.e.
such that Np(f) <∞, and also taking values in R

L p(X) Closure of K (X) in F p(X)
Lp(X) Hausdorff space associated with L p(X)
f ∼ g Equivalence relation f(x) = g(x) a.e.

f̃ Equivalence class of f given by the equivalence relation ∼
EF (Φ) Set of Φ-step functions with values in F , where Φ is a Boolean ring and F = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class
and denoted ≤, when such relation is well-defined. Recall that by a set of zero measure we mean a
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2 HOMEWORK

set of zero outer measure. The topology on F p(X) is called the topology of convergence of mean of
order p, the Lp-topology, or yet the topology of convergence in Lp. Elements in L p(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

Below, X will always be a locally compact σ-compact space.

Question 1. Prove that L∞(X) is complete.

Solution. Since the topology on L∞(X) is generated by a single semi-norm, it suffices to consider
Cauchy sequences. Let {fn}∞n=1 ⊂ L∞(X) be a Cauchy sequence. Given k ∈ N, we can find
a Nk such that N∞(fm − fn) ≤ 1

k for all m,n ≥ Nk. For each m,n ≥ Nk, set Amnk = {x ∈
X | |fm(x) − fn(x)| > 1

k}. Then Amnk is negligible, and thus is their union A. It follows that
{fn(x)}∞n=1 converges uniformly on X\A; set f(x) to be its limit (defined almost everywhere). f
is then bounded on X\A and by Egoroff’s theorem it is measurable; hence f ∈ L∞(X). Because
{fn}∞n=1 converges uniformly to f on the complement on of a negligible set, we conclude (from the
characterization of convergence in L∞(X)) that {fn}∞n=1 converges to f in ⊂ L∞(X).

Question 2. If 1 ≤ r < p < q ≤ ∞, then L r∩L q(X) ⊂ L p(x) and Np(f) ≤ (Nr(f))θ(Nq(f))1−θ,

where 1
p = θ

r + 1−θ
q , 0 < θ < 1.

Solution. The cases where an exponent is ∞ follow from the mean value inequality. Otherwise,
apply Hölder’s inequality with P = r

θp and Q = q
p(1−θ) , since 1

P + 1
Q = 1.

Question 3. Let µ be a positive measure on X and g ≥ 0 be a locally integrable function. Set
ν = gµ. Then f : X → R is ν-integrable if and only if fg is µ-integrable, in which case∫

f dν =

∫
fg dµ. (1)

Solution. We proved in class that f is ν-measurable if and only if fg is µ-measurable. We also
proved that for any numerical function h ≥ 0,∫ ∗

h dν =

∫ ∗
hg dµ.

Recall that for a function to be integrable it is necessary and sufficient that it be measurable and
its upper integral be finite, hence the equivalence of integrability conditions. The equality of the
integrals follows from f = f+ − f−.

Question 4. Let µ be a positive measure on X and g ≥ 0 be a locally integrable function. Set
ν = gµ. Then ν is bounded if and only if g is µ-integrable, and ν = 0 if and only if g is µ-negligible.

Solution. The first statement follows at once from (1) applied to the constant function f = 1.
For the second statement, if g is µ-negligible, then for any f ∈ K (X) we have, again from (1),
ν(f) =

∫
fg dµ = 0, thus ν = 0. Reciprocally, suppose that g is not negligible. Then, since g ≥ 0,

the (measurable) set A = {x ∈ X | g(x) > 0} has positive µ-measure. Using that A is measurable
and of positive measure, and that g is measurable, we see that we can find a compact set K ⊆ A
such that g is strictly positive on K. Let f be a non-negative continuous function with compact
support that is identically equal to one on K (such function exists by a corollary of Urysohn’s
lemma). Then, from (1) ∫

f dν ≥
∫
K
f dν =

∫
K
fg dµ =

∫
K
g dµ > 0,

thus ν 6= 0.


