
REAL ANALYSIS, HW 1

VANDERBILT UNIVERSITY

supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
K (X) K (X;C) or K (X;R), with C or R understood from the context
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Np(f) (|µ|∗(|f |p))
1
p , 1 ≤ p <∞

F p(X) Maps f from X to C or R such that Np(f) <∞, with topology given by the
semi-norm Np. Depending on the context, F p(X) can denote maps defined a.e.
such that Np(f) <∞, and also taking values in R

L p(X) Closure of K (X) in F p(X)
Lp(X) Hausdorff space associated with L p(X)
f ∼ g Equivalence relation f(x) = g(x) a.e.

f̃ Equivalence class of f given by the equivalence relation ∼
EF (Φ) Set of Φ-step functions with values in F , where Φ is a Boolean ring and F = R or C.

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class
and denoted ≤, when such relation is well-defined. Recall that by a set of zero measure we mean a
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set of zero outer measure. The topology on F p(X) is called the topology of convergence of mean of
order p, the Lp-topology, or yet the topology of convergence in Lp. Elements in L p(X) are called
p-integrable. This terminology is extended to functions defined a.e. and taking values in R as done
in class.

Question 1. Prove the following properties of measurable sets: (i) every integrable set is measur-
able; (ii) the open and closed sets are measurable; (iii) the measurable sets for a σ-algebra.

Solution. Let us prove (i). Recall that we showed:

Claim 1. A set A ⊆ X is measurable if and only if K ∩A is integrable for every compact K.

Assume that A is integrable. Since any compact set is integrable and the (countable) intersection
of integrable sets is integrable, we conclude that A ∩K is integrable for any compact K, hence A
is measurable.

Let us prove (ii). If A is closed and K is any compact set, then A ∩ K is compact, hence
integrable. Thus A is measurable by claim 1. Next, let A be a measurable set. Then, for any
compact K, Ac ∩K = K\(A ∩K). Since A ∩K is integrable because A is measurable, we have
that Ac ∩K is the difference of two integrable sets, hence integrable, and we conclude that Ac is
measurable by claim 1. In particular the open sets are measurable.

Let us prove (iii). Let {An}∞n=1 be a sequence of measurable sets and set A = ∩nAn. For any
compact K, K ∩An is integrable by claim 1, thus A∩K is the countable intersection of integrable
sets, hence integrable. We conclude, again by claim 1, that A is measurable. Since we showed that
Ac is measurable as well, ∪nAn is measurable.

Question 2. Prove that a set A ⊆ X is negligible if and only if it is locally negligible and has
finite outer measure. Prove that every locally negligible open set is negligible. Finally, show that
every locally negligible set is negligible if the space X is σ-compact.

Solution. Let A be negligible, then clearly any x ∈ A has a neighborhood that is negligible.
Conversely, assume that A is locally negligible and |µ| ∗ (A) < ∞. Because A has finite outer
measure, we can find an open set U ⊇ A such that |µ|∗(U) < ∞. Hence U is integrable, and
thus there exist a negligible set N ⊆ U and a sequence {Kn}∞n=1 of compact sets such that U =
N ∪ (∪nKn). A ∩N is negligible. Recall that we showed that

Claim 2. A set A ⊆ X is locally negligible if and only if A ∩K is negligible for every compact set
K ⊆ X.

Thus A ∩Kn is negligible for all n, and we conclude that A is the countable union of negligible
sets, hence negligible.

To prove the second statement, let U be a locally negligible open set. By claim 2, |µ|(K) = 0
for any compact set K ⊆ U . Recall that |µ|∗(U) = {sup |µ|(K) |K ⊆ U, K compact }, hence the
result.

To prove the last statement, let X = ∪nKn, where the Kn’s are compact. Let A be locally
negligible. Since A = ∪n(A ∩Kn) and each A ∩Kn is negligible by claim 2, we have that A, being
the countable union of negligible sets, is negligible.

Question 3. Let f : X → Y be measurable, Y a topological space. If g : X → Y is locally almost
everywhere equal to f , then g is measurable.

Solution. Let N be the set of points x ∈ X such that f(x) 6= g(x), which is locally negligible by
hypothesis. For any x ∈ X, let Kx 3 x be a compact (hence integrable) neighborhood of x (which
exists by local compactness). Then Kx ∩N is negligible by claim 2. If we define fx = f , we have
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that g = fx almost everywhere in Kx, and the result follows from the following claim proved in
class:

Claim 3. Let f : X → Y , Y a topological space. Assume that for every x ∈ X there exist an
integrable neighborhood Vx 3 x and a measurable function gx : X → Y such that f(y) = gx(y)
almost everywhere in Vx. Then f is measurable.

Question 4. Let {fn}∞n=1 be a sequence of measurable numerical functions. Prove that supn fn,
infn fn, lim supn→∞ fn, and lim infn→∞ fn are measurable.

Solution. Recall that the sup of finitely many measurable functions is measurable. Hence gn =
sup(f1, . . . , fn) is measurable, and supn fn(x) = limn→∞ gn(x). Hence supn f is measurable by
Egoroff’s theorem. This then implies that hn = sup` fn+` is measurable, hence lim supn→∞ fn
is measurable by Egoroff’s theorem in that lim supn→∞ fn(x) = limn→∞ hn(x). (Notice that the
pointwise limits of g and h exist because these functions are increasing and decreasing, respectively).
The inf statements are similar.

Question 5. Let f : X → Y , Y a metric space with a countable basis. Prove that f is measurable
if and only if f−1(Br(p)) is measurable for every r ∈ Q and every p belonging to a dense countable
subset of Y . Conclude that a numerical function is measurable if and only if {x ∈ X | f(x) ≥ q} is
measurable for every q ∈ Q.

Solution. Notice that Y has a countable dense subset D: pick a point in each basis element.
If f is measurable then f−1(Br(p)) is measurable because the inverse image of a closed set under

a measurable function is measurable (discussed in class).
To prove the conserve, enumerate the set D and write D = ∪∞n=1{yn}. Given a compact set

K, let An,m(K) = {x ∈ K | d(f(x), yn) ≤ 1
m}, m ∈ N, where d is the metric on Y . In other

words, An,m(K) = f−1(B 1
m

(yn)) ∩K. Since f−1(B 1
m

(yn)) is measurable by assumption and K is

integrble, hence measurable, we have that An,m(K) is measurable (σ-algebra property). We have
K = ∪∞n=1An,m(K) for each fixed m. For, given m ∈ N and x ∈ K, there exists a sequence of
points in D converging to f(x) since D is dense in Y . Thus, there exists a yn ∈ D such that

d(f(x), yn) ≤ 1
m , and we have x ∈ An,m(K). The reverse inclusion holds because ∪nB 1

m
(yn) = Y .

Define, inductively, A′n+1,m(K) = An+1,m(K)\(∪n`=1A`,m(K)), with A′1,m(K) = A1,m(K). Then

the sets A′n+1,m(K) are disjoint (it is useful to draw a picture to see this) and their union equals K

since K = ∪∞n=1An,m(K), as noted above. Also, A′n+1,m(K) is measurable since it can equivalently

be written as A′n+1,m(K) = An+1,m(K) ∩ (∪`≤nA`,m(K))c. (Some of the A′n+1,m(K) might be

empty, but at least A′1,m(K) is not).

For each k ∈ N, defineBk,m(K) = ∪kn=1A
′
k,m(K). ThenBk,m(K) is measurable. Bk,m(K) is never

empty since at least A′1,m(K) 6= ∅. We have that K = ∪∞k=1A
′
k,m(K) = Bk,m(K)∪∪∞n=k+1A

′
n,m(K)

for each fixed m.
Fix z ∈ Y and define fk,m : X → Y by

fk,m(x) =

{
z if x ∈ X\Bk,m(K),

yn if x ∈ A′n,m(K) for some (unique by disjointness) n ∈ {1, . . . , k}.

It is useful to note that X\Bk,m(K) = (X\K)∪∪∞n=k+1A
′
n,m(K). Notice that fk,m is a measurable

step function, hence measurable.
Let us investigate the limit, as k → ∞, of fk,m. If x ∈ X\K, then fk,m(x) = z for every k, so

limk→∞ fk,m(x) = z. If x ∈ K, then x ∈ A′n,m(K) for a unique n, and fk,m(x) = fn,m(x) = yn for
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all k ≥ n, thus limk→∞ fk,m(x) = yn. Therefore, if we define fm : X → Y by

fm(x) =

{
z if x ∈ X\K,
yn if x ∈ A′n,m(K) for some (unique) n,

we obtain that fk,m converges pointwise to fm. By Egoroff’s theorem, fm is measurable.
Next, we want to compute the limit limm→∞ fm. Let x ∈ K. Then, for any m ∈ N, x ∈ A′n,m(K)

for some n. If k ≥ n, we have that fk,m(x) = fn,m(x) = yn. Hence, by construction of A′n,m(K)

and definition of An,m(K), we have 1
m ≥ d(f(x), yn) = d(f(x), fn,m(x)) = d(f(x), fk,m(x)), k ≥ n.

Since fm is the limit as k → ∞ of fk,m, we have d(f(x), fm(x)) ≤ 1
m , thus fm(x) → f(x) as

m→∞. If x ∈ X\K, then fm(x) = z for all m ∈ N. We conclude that fm converges pointwise to
the function fK : X → Y given by

fK(x) =

{
z if x ∈ X\K,
f(x) if x ∈ K.

Since fm is measurable, so is fK by Egoroff’s theorem. Invoking claim 3 and the fact that X is
locally compact, we conclude that f is measurable.

Let us move to the second statement, focusing on sufficiency. So assume that f is a numerical
function and that {x ∈ X | f(x) ≥ q} is measurable for every q ∈ Q. Given y ∈ R, we have {x ∈
X | f(x) ≥ y} = ∩q∈Q,q≤y{x ∈ X | f(x) ≥ q}, which is a countable intersection of measurable sets,
hence measurable. By the σ-algebra property of measurable sets, {x ∈ X | f(x) < y} is measurable.
If y 6= ±∞, then {x ∈ X | f(x) ≤ y} = ∩m≥1{x ∈ X | f(x) < y + 1

m}, which is a countable
intersection of measurable sets, thus measurable. If y = −∞, then {x ∈ X | f(x) ≤ −∞} =
∩m∈Z{x ∈ X | f(x) < n}, which is again a countable intersection of measurable sets. Finally, if
b = +∞, {x ∈ X | f(x) ≤ +∞} = X, hence measurable. We conclude that {x ∈ X | f(x) ≤ y}
and {x ∈ X | f(x) ≥ y} are both measurable for any y ∈ R. In order to invoke the first part of the
problem, we need to recall the structure of the closed balls in R. The topology on R is generated by
the open intervals on R. It follows that R is homeomorphic to [−1, 1]. If we define z(x) = x/(1+|x|)
for x 6= ±∞, z(−∞) = −1 and z(+∞) = 1, then z is an order-preserving homeomorphism of R onto
[−1, 1]. A metric on R compatible with its topology is given by d(x, y) = |z(x) − z(y)|. Thus the
closed balls in R are of the form z−1(I) where I is a closed sub-interval of [−1, 1]. From the previous
arguments we then conclude that the closed balls in R are the intersection of two measurable sets,
hence measurable. f is thus measurable by the previous result. The other direction is immediate.


