REAL ANALYSIS, HW 7

VANDERBILT UNIVERSITY

supp	Support of a function or a measure
X	Locally compact (topological) space
K	Compact set in X
E	Locally convex (topological vector) space
$\mathscr{C}(X; E)$	Space of continuous functions from X to E endowed with the uniform topology
$\mathscr{C}_{c.o.}(X; E)$	Space of continuous functions from X to E endowed with the compact-open topology
$\mathscr{C}_c(X; E)$	Space of continuous functions from X to E with compact support endowed
	with the compact-open topology
$\mathscr{C}(K;E)$	Space of continuous functions from K to E endowed with the topology
	inherited from $\mathscr{C}(X, E)$
$\mathscr{K}(X;E)$	Space of continuous functions from X to E with compact support endowed
	with the inductive limit of locally convex topologies
$\mathscr{K}(X,A;E)$	Elements $f \in \mathcal{K}(X; E)$ such that $\operatorname{supp}(f) \subseteq A$
$\mathscr{K}(X,K;E)$	Elements $f \in \mathscr{K}(X; E)$ such that $\operatorname{supp}(f) \subseteq K$ endowed with the topology
	of compact convergence
$\mathscr{K}_+(X;\mathbb{R})$	Elements $f \in \mathcal{K}(X; \mathbb{R})$ such that $f \ge 0$
$\mathscr{K}(X)$	$\mathcal{K}(X;\mathbb{C})$ or $\mathcal{K}(X;\mathbb{R})$, with \mathbb{C} or \mathbb{R} understood from the context
$\mathcal{M}(X;\mathbb{C})$	Space of measures on X
$\mathcal{M}(X;\mathbb{R})$	Space of real measures on X
$\mathcal{M}_+(X;\mathbb{R})$	Space of positive measures on X
$\mathscr{I}_{+}(X;\mathbb{R})$	Space of positive (non-negative) lower semi-continuous functions on X
$\mu^*(f)$	Upper integral of f (with respect to the positive measure μ), also denoted $\int f d\mu$
χ_A	Characteristic function of the set A
$\mu^*(A)$	Outer measure of A (with respect to the positive measure μ)
$N_p(f)$	$(\mu ^*(f ^p))^{\frac{1}{p}}, 1 \le p < \infty$
$\mathscr{F}^p(X)$	Maps f from X to \mathbb{C} or \mathbb{R} such that $N_p(f) < \infty$, with topology given by the
	semi-norm N_p . Depending on the context, $\mathscr{F}^p(X)$ can denote maps defined a.e.
	such that $N_p(f) < \infty$, and also taking values in $\overline{\mathbb{R}}$
$\mathscr{L}^p(X)$	Closure of $\mathscr{K}(X)$ in $\mathscr{F}^p(X)$
$L^p(X)$	Hausdorff space associated with $\mathscr{L}^p(X)$
$f \sim g$	Equivalence relation $f(x) = g(x)$ a.e.
\widetilde{f}	Equivalence class of f given by the equivalence relation \sim

Recall that we also call the compact-open topology the topology of compact convergence. Unless stated otherwise, the ordering in the function spaces and spaces of measures is as defined in class and denoted \leq , when such relation is well-defined. Recall that by a set of zero measure we mean a set of zero outer measure. The topology on $\mathscr{F}^p(X)$ is called the topology of convergence of mean of

HOMEWORK

order p, the L^p -topology, or yet the topology of convergence in L^p . Elements in $\mathscr{L}^p(X)$ are called p-integrable. This terminology is extended to functions defined a.e. and taking values in $\overline{\mathbb{R}}$ as done in class.

Question 1. Prove that any subset of a set of zero measure has zero measure, and that a countable union of zero measure sets has zero measure.

Question 2. Prove that a lower semi-continuous function $f \ge 0$ is negligible if and only if f is zero on the support of μ . *Hint:* First prove that if $f \in \mathscr{K}(X; \mathbb{C})$ vanishes on $\operatorname{supp}(\mu)$, then $\mu(f) = 0$. Next, show that if μ is a positive measure on X and $f \in \mathscr{K}_+(X; \mathbb{R})$ is such that $\mu(f) = 0$, then f vanishes on $\operatorname{supp}(\mu)$. Use these two statements to conclude the result.

Question 3. Let $f \ge 0$ be a numerical function defined on X. Prove that if $|\mu|^*(f) < \infty$, then f is finite a.e.

Question 4. Let $f \ge$ and $g \ge 0$ be numerical functions defined on X. Prove that if f(x) = g(x) a.e., then $|\mu|^*(f) = |\mu|^*(g)$.

Question 5. Establish the statements below. All functions are assumed to be numerical functions on X defined a.e.

(a) $f \sim g$ if and only if f(x) = g(x) a.e. on $\operatorname{supp}(\mu)$.

- (b) The sum and product of functions finite a.e. are finite a.e.
- (c) The ordering relation $f \leq \tilde{g}$ between equivalence classes as stated in class is well-defined.

(d) If $\{\widetilde{f}_n\}_{n=1}^{\infty}$ is a sequence of equivalence classes of functions with values in $\overline{\mathbb{R}}$, then $\sup_n \widetilde{f}_n$, $\inf_n \widetilde{f}_n$, $\lim_{n \to \infty} \widetilde{f}_n$ and $\lim_{n \to \infty} \widetilde{f}_n$ are well-defined.

Question 6. Show that the complement of the support of μ is the largest negligible open set in X. Use this result to show that if f and g are continuous functions from X to \mathbb{C} , then they are equivalent if and only if f(x) = g(x) for every $x \in \text{supp}(\mu)$.

Question 7. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $\mathscr{F}^p(X)$ such that $\sum_{n=1}^{\infty} N_p(f) < \infty$. Show that the series $\sum_{n=1}^{\infty} f_n$ converges absolutely a.e. Define f to be equal to the value of this series at points x where it converges and zero otherwise. Prove that $f \in \mathscr{F}^p(X)$, and that

$$N_p(f - \sum_{k=1}^n f_k) \le \sum_{k=n+1}^\infty N_p(f_k).$$

Conclude that f is the sum of the series $\sum_{n=1}^{\infty} f_n$ in $\mathscr{F}^p(X)$.

Question 8. Let μ and ν be positive measures on X and $\lambda > 0$ a number. Show that $(\lambda \mu)^* = \lambda \mu^*$ and $(\mu + \nu)^* = \mu^* + \nu^*$. Show also that if $\mu \leq \nu$ then $\mu^* \leq \nu^*$.

Question 9. Give examples that show the following statements to be true: (i) A Cauchy sequence in $\mathscr{L}^p(X)$ may not converge at any point of X. (ii) If $f \in \mathscr{L}^p(X)$, it is not always the case that there exists a sequence $\{f_n\}_{n=1}^{\infty} \subset \mathscr{K}(X)$ such that $\{f_n(x)\}_{n=1}^{\infty}$ converges everywhere to a function that is almost everywhere equal to f(x). (iii) If $f_n(x) \to f(x)$ a.e., it does not follow that f_n converges to f in $\mathscr{L}^p(X)$.

Question 10. Show that $L^p(X)$ with an order relation induced from $\mathscr{F}^p(X)$ is a Riesz space.