
REAL ANALYSIS, HW 6

VANDERBILT UNIVERSITY

The notation used below follows the one used in class and should be self-explanatory. Directions
similar to those of previous homework assignments continue to hold, in particular (i) sometimes
a definition that has not been given in class is used in an exercises. It is expected that students
will be able to figure out the obvious interpretation, but you can always consult the literature if
necessary; (ii) problems are written in an understandable, but loose fashion. When necessary or
convenient, first make a precise statement of what is being asked before presenting your solution.

Unless stated otherwise, the following notation is adopted throughout (which is the same used
in class):

supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the uniform topology
Cc.o.(X;E) Space of continuous functions from X to E endowed with the compact-open

topology
Cc(X;E) Space of continuous functions from X to E with compact support endowed

with the compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the topology

inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K (X,K;E) Elements f ∈ K (X;E) such that supp(f) ⊆ K endowed with the topology

of compact convergence
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X
I+(X;R) Space of positive (non-negative) lower semi-continuous functions on X
µ∗(f) Upper integral of f (with respect to the positive measure µ), also denoted

∫ ∗
f dµ

χA Characteristic function of the set A
µ∗(A) Outer measure of A (with respect to the positive measure µ)

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering on K (X;R) and M (X;R) is as defined in class and denoted ≤.

Question 1. Discuss the relations between the spaces C (X;E), Cc.o.(X;E), Cc(X;E), and
K (X;E), providing proofs of your statements. For instance, which is finer/coarser than each?
Do they induce the same topology on K (X,K;E)? How do you state convergence of nets in each
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2 HOMEWORK

of these spaces? How would your statements change/be refined if X is compact? Idem if the
topology of E is given by a norm.

Question 2. Let X be compact. Let V be a set in C (X;R) which is directed for the relation ≤.
Suppose that for any f2, f2 ∈ V , there exists f3 ∈ V such that f1 ≤ f3 and f2 ≤ f3. Assume that
the upper envelope f of V is finite and continuous. Prove that f can be uniformly approximated
by functions in V .

Question 3. Assume the same hypotheses of question 2 and suppose that V is given by V =
{fα}α∈A. Then there exists a A′ ⊆ A such that

lim
α∈A′

‖ fα(x)− f(x) ‖= 0,

where as usual

‖ g ‖= sup
x∈X
|g(x)|.

Question 4. Show that f is lower semi-continuous if and only if −f (minus f) is upper semi-
continuous.

Question 5. Prove that µ∗ is increasing on I+(X;R), µ∗(λf) = λµ∗(f), λ > 0, and that µ∗(f +
g) = µ∗(f) + µ∗(g), f, g ∈ I+(X;R).

Question 6. State the definition of the Lebesgue measure. Let f : R→ R be given by

f(x) =

{
1, if x ∈ (R\Q) ∩ [0, 1]

0, otherwise.

Show that ∫ ∗
f dµ = 1,

where µ is the Lebesgue measure. Conclude that the outer measure of the set of irrational numbers
between 0 and 1 is equal to one.

Question 7. In this problem you will be asked to prove some properties of the Cantor set, defined
as follows.

Let C0 = [0, 1]. Let C1 be the set obtaining by removing the open middle-third interval of C0,
i.e.,

C1 = C0\(
1

3
,
2

3
) = [0,

1

3
] ∪ [

2

3
, 1].

Define Cn inductively by removing the open middle-third of each interval of Cn−1. For instance,

C2 =

(
[0,

1

3
]\(1

9
,
2

9
)

)
∪
(

[
2

3
, 1]\(7

9
,
8

9
)

)
= [0,

1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1].

The Cantor set C (C for Cantor) is defined as the set of points in [0, 1] that belong to Cn for every
n.

(a) Show that the Cantor set is not empty and contains no open interval.
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(b) Show that

C = [0, 1]\
∞⋃
i=1

3i−1−1⋃
j=0

(
3j + 1

3i
,
3j + 2

3i
).

(c) Show that

C =
∞⋂
i=1

3i−1−1⋂
j=0

(
[0,

3j + 1

3i
] ∪ [

3j + 2

3i
, 1]

)
.

(d) Show that ∫ ∗
χC dµ = 0,

where µ is the Lebesgue measure. Conclude that µ∗(C) = 0.

Question 8. This problem shows that the construction of the Cantor set can be modified so that
µ∗(C) > 0. In such cases C is sometimes referred to as a fat Cantor set. The ensuing construction
is modeled after that of exercise 7, thus make sure you understand problem 7 first.

Fix a number z such that 0 < z < 1
3 , and let F0 = [0, 1]. Let F1 be the set obtained from

F0 by removing an open interval of length z from the middle of F0, i.e., F1 = F0\U1,1, where
U1,1 = (12 −

z
2 ,

1
2 + z

2). Notice that F1 is the union of two closed intervals. Define F2 by removing

from F1 two open intervals U2,1 and U2,2 of length z2 each, with U1,1 removed from the middle
of the first closed interval that forms F1 and U2,2 removed from the middle of the second closed
interval that forms F1. Thus F2 is the union of four closed intervals. Define Fn+1 inductively by
removing 2n open intervals Un+1,1, . . . , Un+1,2n of length zn+1 from the middle of the 2n closed
intervals that form Fn.

Set

F =
∞⋂
n=0

Fn.

(F for fat).
(a) Show that F is not empty and contains no open interval.
(b) Let G = [0, 1]\F . Show that ∫ ∗

χG dµ < 1,

where µ is the Lebesgue measure. Conclude that µ∗(G) < 1 and that µ∗(F ) > 0.
(c) Obviously, the above construction depends on the number z we have chosen. Prove that

given ε > 0, there exists a z ∈ (0, 13) such that µ∗(F ) > 1− ε. I.e., we can make µ∗(F ) as close to
one as we want.

Question 9. Let N be a countable subset of R. Prove that µ∗(N) = 0, where µ is the Lebesgue
measure. In particular, µ∗(Q) = 0.

Question 10. (not really a question, just something for you to think about) As discussed in class,
the (outer) Lebesgue measure of a set is a generalization of the usual notion of volume or length.
Let us thus agree to call the Lebesgue outer measure of a set its volume. Problem 9 shows that the
volume of a countable set is zero, and problem 6 that the volume of the set of irrational numbers
between zero and one is equal to one. We might be tempted to think then that uncountable sets have
positive volume. To see that this is not necessarily the case, convince yourself that the Cantor set
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C is uncountable, although its volume is zero as showed in question 7. Therefore, uncountability
is not sufficient to guarantee positive volume. The volume of the fat Cantor set (which is also
uncountable) on the other hand, is positive, as showed in question 8. Reflect on the fact that the
fat Cantor set is an uncountable closed set that contains no open interval but whose volume is as
close to one as we want. Reflect also on the fact that Q is a dense subset of the real line whose
volume is zero. What do these things tell you about measure theory?


