
REAL ANALYSIS, HW 5

VANDERBILT UNIVERSITY

The notation used below follows the one used in class and should be self-explanatory. Directions
similar to those of previous homework assignments continue to hold, in particular (i) sometimes
a definition that has not been given in class is used in an exercises. It is expected that students
will be able to figure out the obvious interpretation, but you can always consult the literature if
necessary; (ii) problems are written in an understandable, but loose fashion. When necessary or
convenient, first make a precise statement of what is being asked before presenting your solution.

Unless stated otherwise, the following notation is adopted throughout (which is the same used
in class):

supp Support of a function or a measure
X Locally compact (topological) space
K Compact set in X
E Locally convex (topological vector) space
C (X;E) Space of continuous functions from X to E endowed with the

compact-open topology
C (K;E) Space of continuous functions from K to E endowed with the

topology inherited from C (X,E)
K (X;E) Space of continuous functions from X to E with compact support endowed

with the inductive limit of locally convex topologies
K (X,A;E) Elements f ∈ K (X;E) such that supp(f) ⊆ A
K+(X;R) Elements f ∈ K (X;R) such that f ≥ 0
M (X;C) Space of measures on X
M (X;R) Space of real measures on X
M+(X;R) Space of positive measures on X

Recall that we also call the compact-open topology the topology of compact convergence. Unless
stated otherwise, the ordering on K (X;R) and M (X;R) is as defined in class and denoted ≤.

Question 1. In this problem, you are asked to prove several natural properties of measures.
Show that the map

(f1, f2) ∈ K (X;R)×K (X;R) 7→ f1 + if2 ∈ K (X;C)

is a topological isomorphism. Let µ ∈ M (X;C) and µ0 be its restriction to K (X;R). Show
that µ0 ∈M (X;R), and that every measure on X can in fact be identified with its restriction to
K (X;R).

Let µ ∈M (X;C). Define its complex conjugate µ by

µ(f) = µ(f).

Show that µ is a measure. Next, define a measure to be real if µ = µ. Show that this definition is
equivalent to the definition of real measures given in class.
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2 HOMEWORK

Finally, show that the measuresRe(µ) and Im(µ) defined by (µ+µ)/2 and (µ−µ)/2i, respectively,
are real. They are called the real and imaginary parts of µ, respectively.

Question 2. Prove that every positive linear form on K (X;R) is a positive measure.

Question 3. Let µ ∈M (X;C). Show that for every f ∈ K+(X;R), the non-negative number

L(f) = sup
g∈K (X;C)
|g|≤f

µ(g)

is finite. Show that if f1, f2 ∈ K+(X;R), then L(f1 + f2) = L(f1) + L(f2) (recall that we did
something similar in class). Conclude, by an argument similar to the one used in class, that L can
be extended uniquely to a positive measure on X. Denote this measure by |µ|. It is called the
absolute value of µ. Show that ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | d|µ|,
for every f ∈ K (X;C). Show also that |µ + ν| ≤ |µ| + |ν| and that |µ| = |µ|, where µ and ν are
measures on X.

Question 4. Recall that in class we proved that M (X;R) is a lattice (= an ordered set such that
every two elements have a supremum and infimum). We showed this by proving first that sup(µ, 0)
is well-defined for any µ ∈ M (X;R), and that this then implied that sup(µ, ν) and inf(µ, ν) are
well-defined for any two real measures µ and ν. The proof done in class is a particular case of the
following more general result: let E be an ordered vector space such that sup(x, 0) exists for every
x ∈ E. Then E is a Riesz sapce (= an ordered vector space that is also a lattice). The proof of this
statement is identical to the one given in class because, once we had showed that sup(µ, 0) always
exists, the remaining of the proof relied only on the order structure of M (X;R). In this exercise
you are asked to prove the following alternative characterization of a Riesz space.

Let E be an ordered vector space, and E+ the subset of x ∈ E such that x ≥ 0. Then, E is
a Riesz space if and only if the following happens (i) E+ generates E, i.e., every x ∈ E is of the
form x = x1 − x2, where x1 and x2 belong to E+; and (ii) sup(x, y) always exists for every pair of
elements x, y ∈ E+.

Question 5. Let {Uα}α∈A be an open covering of X. Suppose that for each α ∈ A, we are given
a measure µα on Uα. Assume that for each α, β ∈ A such that Uα ∩Uβ 6= ∅, the restrictions of µα
and µβ to Uα ∩ Uβ agree. Prove that there exists a unique measure µ on X such that µ|Uα = µα
for each α ∈ A.

Question 6. Show that a measure is zero if and only if its support is empty. Let µ ∈M (X;C).
Show that supp(µ) = supp(|µ|). If µ is a real measure, show that its support is the union of the
supports of µ+ and µ−.

Question 7. Let µ ∈M (X;C). Prove that µ is a discrete measure (defined in class with a family
β) if and only if supp(µ) is a discrete closed subset of X.

Question 8. Let {xi}ni=1 be a set of distinct points in X, and µ a measure whose support is
contained in ∪ni=1{xi}. Prove that µ is a linear combination of the measures δxi , where δx is the
Dirac measure at x.

Question 9. Let X and Y be locally compact spaces, and λ and µ measures on X and Y ,
respectively. Let K ⊆ X and L ⊆ Y be compact sets. Prove that for every function

f ∈ K (X × Y,K × L;C),
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the function

y 7→ h(y) =

∫
f(x, y) dλ(x),

belongs to K (Y,L;C). Use this then to prove the existence and uniqueness of the product measure
λ⊗ µ stated in class.

Question 10. Let λ ∈M (X;C) and µ ∈ K (Y ;C). Show that |λ⊗ µ| = |λ| ⊗ |µ|. If λ and µ are
real measures, then show that

(λ⊗ µ)+ = λ+ ⊗ µ+ + λ− ⊗ µ−,
and

(λ⊗ µ)− = λ+ ⊗ µ− + λ− ⊗ µ+.


