
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

Test 2

NAME: Solutions.

Directions. This exam contains four questions. Make sure you clearly indicate the pages where
your solutions are written. Answers without justification will receive little or no credit. Write
clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an equal sign
if two expressions are equal; say that one expression is a consequence of another when this is the
case, etc.).

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (25 pts)
2 (25 pts)
3 (25 pts)
4 (25 pts)
TOTAL

1
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Question 1. Answer the questions below. Justify your answers.

(a) Is the method of separation of variables guaranteed to always give a solution to a PDE?

(b) What is the difference between a formal solution and an actual solution to a PDE?

(c) Can a formal solution also be a classical solution? Can it be a generalized solution?

(d) Let f be a function defined on (−L,L), L > 0, and F.S.{f} its Fourier series. Is it true that
for any x ∈ (−L,L) we have that f(x) = F.S.{f}(x)?

(e) Let f : (−4, 4)→ R be defined by

f(x) =


1, −4 < x ≤ −2,

−1, −2 < x < 0,

x+ 1, 0 ≤ x ≤ 2

x, 2 < x < 4.

Let F.S.{f} be its Fourier series. Find F.S.{f}(−2), F.S.{f}(−1), F.S.{f}(0), and F.S.{f}(3),
i.e., the values of the Fourier series of f at the points x = −2,−1, 0, 3.

Solution 1. (a) The method of separation of variables consists in attempting to solve a PDE
by supposing that the unknown function is a product of functions of single variables, each of
which depends on one of the independent variables of the problem. Thus, if the unknown is
u = u(x1, . . . , xn), one tries a solution of the form u(x1, . . . , xn) = X1(x1) · · ·Xn(xn). Since it is
based on the educated guess u(x1, . . . , xn) = X1(x1) · · ·Xn(xn) and not every solution to a PDE is
of this form, the method is not guaranteed to produce a solution.

(b) A formal solution is an expression that provides a candidate for a solution. It typically consists
of a formula involving a series, with no further information on the convergence of the series or
other information that makes the expression mathematically well-defined. An actual solution is an
expression that solves the PDE pointwise or in the generalized sense.

(c) Yes in both cases. If a formal solution given as a series converges to a Ck function (respectively
piece-wise Ck), with k greater or equal to the order of the equation, then the formal solution yields
a classical (respectively generalized) solution. The type of convergence involved can vary from
problem to problem.

For parts (d) and (e), we recall the following theorem.

Theorem 1. Let f be a piecewise C1 function defined on [−L,L]. Then, for any x ∈ (−L,L),

F.S.{f}(x) =
1

2
(f(x+) + f(x−)).

For x = ±L, the series converges to 1
2(f(−L+) + f(L−)).

(d) No. Take the function

f(x) =

{
−1, x ≤ 0,

1, x > 0.

By the above theorem, F.S.{f}(0) = 0, but f(0) = −1.

(e) Using the above theorem, F.S.{f}(−2) = 0, F.S.{f}(−1) = −1, F.S.{f}(0) = 0, and F.S.{f}(3) =
3.
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Question 2. Consider the following initial-boundary value problem for the wave equation:

utt − c2uxx = 0 in (0, L)× (0,∞), (1a)

u(x, 0) = f(x) 0 ≤ x ≤ L, (1b)

ut(x, 0) = g(x) 0 ≤ x ≤ L, (1c)

u(0, t) = 0 t ≥ 0, (1d)

u(L, t) = 0 t ≥ 0. (1e)

(a) What compatibility conditions do f and g have to satisfy?

(b) Using separation of variables, write two ordinary differential equations that are consequence of
equation (1a).

(c) Find a formal solution to the initial-boundary value problem (1).

(d) State sufficient conditions on f and g that guarantee that the formal solution you found in (c)
is an actual solution to the problem.

Solution 2. (a) In order to have u well-defined, we need that f(0) = f(L) = 0 and g(0) = g(L) = 0.

(b) Set u(x, t) = X(x)T (t) and plug into (1a) to find

X ′′

X
=

T ′′

c2T
.

Since the left-hand side depends only on x and the right-hand side only on t, both sides need to be
equal to a constant λ. Thus

X ′′ = λX, and T ′′ = λc2T.

(c) This was done in class (see class notes from Oct 3). We find

u(x, t) =
∞∑
n=1

(an cos
cnπt

L
+ bn sin

cnπt

L
) sin

nπx

L
,

where

an =
2

L

∫ L

0
f(x) sin

nπx

L
dx and bn =

2

cnπ

∫ L

0
g(x) sin

nπx

L
dx.

(d) We begin recalling how to show that the formal solution found in (c) is an actual solution.

We make an odd extension of f and g to 2L-periodic functions f̃ and g̃ on R. It follows that

f̃(−L) = g̃(−L) = f̃(L) = g̃(L) = 0. Using D’Alembert’s formula, we write a solution ũ for the

wave equation on the real line with initial conditions f̃ and g̃. Next, we consider the Fourier series

of ũ, which amounts to consider the Fourier series of f̃ and g̃. Because f̃ is odd, the coefficients an
and bn of F.S.{ũ} agree with the expressions for an and bn in part (c). With trigonometric identities
for the sine and cosine of the sum of angles, we expand D’Alemberts formula for ũ, and observe
that the resulting expression agrees with the formal solution u found in (c), and also satisfies the
boundary conditions. Therefore, the formal solution in (c) will be an actual solution provided
that we can apply theorems for convergence of Fourier series and its derivatives. A theorem for
convergence of the Fourier series was stated above, and a theorem for differentiation of Fourier
series is the following.
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Theorem 2. Let f be continuous on [−L,L]. Suppose that f(−L) = f(L), and that f is piecewise
C2. Then, the Fourier series of f ′ can be obtained from that of f by differentiation term-by-term.
I.e., if

f(x) =
a0
2

+
∞∑
n=1

(an cos
nπx

L
+ bn sin

nπx

L
),

then

f ′(x) =

∞∑
n=1

(an(cos
nπx

L
)′ + bn(sin

nπx

L
)′),

whenever f ′(x) equals its Fourier series. Equivalently,

f ′(x) =
∞∑
n=1

(−an
nπ

L
sin

nπx

L
+ bn

nπ

L
cos

nπx

L
).

One simple condition guaranteeing the convergence of F.S.{ũ} and its derivatives on (0, L) is
that f and g be smooth.
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Question 3. The following questions are about the Fourier transform f̂ of a function f .

(a) State conditions that guarantee f̂ to be well-defined.

(b) Show that (
∂f

∂xj

)
ˆ

= ikj f̂ .

(c) Show that

F(f ∗ g) = (2π)
n
2 f̂ ĝ,

where f ∗ g is the convolution of two functions given by

f ∗ g(x) =

∫
Rn

f(y)g(x− y) dy.

Solution 3. (a) A sufficient condition is
∫
Rn |f | <∞. Indeed, using that |e−ik·x| = 1, we have∣∣∣∣ 1

(2π)
n
2

∫
Rn

e−ik·xf(x) dx

∣∣∣∣ ≤ 1

(2π)
n
2

∫
Rn

|f(x)| dx <∞.

(b) We use integration by parts, assuming that f(x) → 0 sufficiently fast when |x| → ∞ so that
there are no boundary integrals, to find(

∂f

∂xj

)
ˆ

=
1

(2π)
n
2

∫
Rn

e−ik·x
∂f

∂xj
dx

= − 1

(2π)
n
2

∫
Rn

∂e−ik·x

∂xj
f(x) dx

= ikj
1

(2π)
n
2

∫
Rn

e−ik·xf(x) dx

= ikj f̂(k).

(c) Write

F(f ∗ g) =
1

(2π)
n
2

∫
Rn

e−ik·x(f ∗ g)(x) dx

=
1

(2π)
n
2

∫
Rn

e−ik·x
∫
Rn

f(y)g(x− y) dy dx

=
1

(2π)
n
2

∫
Rn

∫
Rn

e−ik·xf(y)g(x− y) dx dy.

Make the change of variables z = x− y to find

F(f ∗ g) =
1

(2π)
n
2

∫
Rn

e−ik·yf(y)

∫
Rn

e−ik·zg(z) dz dy

=
1

(2π)
n
2

∫
Rn

e−ik·yf(y) dy

∫
Rn

e−ik·zg(z) dz

= (2π)
n
2 f̂ ĝ.
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Question 4. Consider the following initial-value problem:

utt + 2dut − uxx = 0 in R× (0,∞), (2a)

u= g on R× {t = 0}, (2b)

ut = h on R× {t = 0}, (2c)

where d > 0 is a constant.

(a) Applying the Fourier transform in the spatial variable only, show that û solves the following
problem:

ûtt + 2dût + |y|2û= 0 in R× (0,∞), (3a)

û= ĝ on R× {t = 0}, (3b)

ût = ĥ on R× {t = 0}. (3c)

(b) Problem (3) is an ODE for û for each fixed y. Its solution is (you do not have to show this)

û(y, t) =

{
e−dt(β1(y)eγ(y)t + β2(y)e−γ(y)t) if |y| ≤ d,
e−dt(β1(y)eiδ(y)t + β2(y)e−iδ(y)t) if |y| ≥ d,

(4)

where γ(y) =
√
d2 − |y|2 with |y| ≤ d, δ(y) =

√
|y|2 − d2 with |y| ≥ d, and β1 and β2 are selected

such that

ĝ(y) = β1(y) + β2(y),

and

ĥ(y) =

{
β1(y)(γ(y)− d) + β2(y)(−γ(y)− d) if |y| ≤ d,
β1(y)(iδ(y)− d) + β2(y)(−iδ − d) if |y| ≥ d.

Using (4), show that the solution to (2) is given by

u(x, t) =
e−dt√

2π

∫
|y|≤d

(β1(y)eixy+γ(y)t + β2(y)eixy−γ(y)t) dy

+
e−dt√

2π

∫
|y|≥d

(β1(y)ei(xy+δ(y)t) + β2(y)ei(xy−δ(y)t)) dy.

Solution 4. This was a homework problem. See the solutions to HW 5.


