
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

Test 1

NAME: Solutions.

Directions. This exam contains four questions. Make sure you clearly indicate the pages where
your solutions are written. Answers without justification will receive little or no credit. Write
clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an equal sign
if two expressions are equal; say that one expression is a consequence of another when this is the
case, etc.).

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (25 pts)
2 (25 pts)
3 (25 pts)
4 (25 pts)
TOTAL
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Question 1. (25 pts) For each PDE below, identify the unknown function and state the indepen-
dent variables. State the order of the PDE. State if the PDE is homogeneous or non-homogeneous,
linear or non-linear. (You are asked to state whether the PDE is homogeneous/non-homogeneous
and linear/non-linear, not to prove your statement. In particular, you need not to write the PDE
in the form F (x, u, . . . , Dmu) = 0 or identify the function F .)

(a) utt − uxx = f.

(b) cos(t)ut + x2ux + y2uy = e−x
2−y2 sin(t).

(c) uxx + uyy = eu.

(d)

n∑
i,j=1

aij(x1, . . . , xn)
∂2u

∂xi∂xj
= 0.

(e) ∆u = u4.

Solution 1. (a) Unknown: u. Independent variables: x, t. Order: second. Non-homogeneous
PDE. Linear PDE.

(b) Unknown: u. Independent variables: x, y, t. Order: first. Non-homogeneous PDE. Linear
PDE.

(c) Unknown: u. Independent variables: x, y. Order: second. Homogeneous PDE. Non-linear
PDE.

(d) Unknown: u. Independent variables: xi, i = 1, . . . , n. Order: second. Homogeneous PDE.
Linear PDE.

(e) Unknown: u. Independent variables: xi, i = 1, . . . , n. Order: second. Homogeneous PDE.
Non-linear PDE.
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Question 2. (25 pts) Consider the initial-value problem:

xux + yuy = 4u, −∞ < x <∞, −∞ < y <∞,
u = 1 on the circle x2 + y2 = 1.

(a) Identify the PDE and the initial condition.

(b) Find a solution u = u(x, y) for the initial-value problem.

(c) Sketch the projection of the characteristic curves on the xy-plane (i.e., sketch the projected
characteristics).

(d) Is the solution you found in (b) unique?

Solution 2. (a) PDE: xux + yuy = 4u. Initial condition: u = 1 on the circle x2 + y2 = 1.

(b) Parametrize the initial condition as

Γ(s) = (x0(s), y0(s), u0(s)) = (cos s, sin s, 1), 0 ≤ s < 2π.

The system of characteristic equations is

ẋ = x,

ẏ = y,

u̇ = 4u.

The solution is

x(t, s) = et cos s, y(t, x) = et sin s, u(t, s) = e4t.

Compute

x2 + y2 = (et cos s)2 + (et sin s)2 = e2t,

hence

u(x, y) = (x2 + y2)2.

(c) We have y/x = tan s, hence the characteristics are straight lines through the origin, see
Figure 1.

x2 + y2 = 1 characteristic
curves

x

y

Figure 1. Projected characteristics of problem 2c.

(d) Compute

J(0, s) = det

[
∂tx(0, s) ∂sx(0, s)
∂ty(0, s) ∂sy(0, s)

]
= det

[
cos s − sin s
sin s cos s

]
= 1.

Thus, the transversality condition holds and the solution is unique in a neighborhood of Γ.
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Question 3. (25 pts) Consider the following initial-value problem:

ut + uux = 0 in (−∞,∞)× (0,∞)

u(x, 0) = h(x), −∞ < x <∞,
where h is a given function.

(a) Verify that

u(x, t) = h(x− tu(x, t))

gives an implicit solution for the initial-value problem.

(b) Show that there exist initial conditions h for which the solution u blows-up (i.e., forms a shock)
at a certain finite time t∗, and find a formula for t∗.

(c) Do there exist initial conditions h for which no shock occurs?

Solution 3. (a) Clearly u(x, 0) = h(x). Differentiating u(x, t) = h(x − tu(x, t)) with respect to t
gives

ut = h′(x− tu)(−u− tut),
and differentiating with respect to x produces.

ux = h′(x− tu)(1− tux).

Hence

ut + uux = −th′(x− tu)(ut + uux),

or

(1 + th′(x− tu))(ut + uux) = 0.

Hence ut + uux = 0 as long as 1 + th′(x − tu) 6= 0. Since 1 + th′(x − tu) = 0 is the condition for
shocks, we have shown that the given formula defines an implicit solution as long as shocks do not
occur.

(b) From the formula ux = h′(x− tu)(1− tux) computed above we obtain

ux =
h′

1 + th′
.

Hence, for h such that h′(s) < 0 for some s ∈ R, we obtain that ux blows-up at time

t∗ = − 1

h′(s)
.

(c) If h′(s) > 0 for all s, then no blow-up occurs (recall that t ≥ 0). From the formula (1 +
th′(x− tu))(ut + uux) = 0 derived in (a), we also see that u remains a solution for all t ≥ 0.
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Question 4. (25 pts) Consider the following initial-value problem for the wave equation in one
dimension:

utt − c2uxx = 0 in (−∞,∞)× (0,∞),

u(x, 0) = f(x),

ut(x, 0) = g(x),

(1)

(a) Solve (1) when f(x) = x2 and g(x) = 0.

(b) Assume now that c = 1 and

f(x) =

{
1, −2 ≤ x ≤ 0

0, otherwise,

and

g(x) =

{
−1, −1 ≤ x ≤ 1

0, otherwise.

Draw a diagram in the (x, t)-plane indicating the different regions where the solution is influenced
by the initial condition f and g and the regions where the solution is identically zero. (This is
similar to what was done in class. You do not have to find u.)

Solution 4. (a) By D’Alembert’s formula:

u(x, t) =
(x+ ct)2 + (x− ct)2

2
.

(b) The regions are summarized in Figure 2.

x− t = −2

x− t = 0

x− t = −1

x+ t = −1

x+ t = 0

x+ t = −2

x

t

x− t = 1

x+ t = 1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 2. Problem 4b.


