
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

Practice problems for HW 6

In the questions below, we follow the notation employed in class.

Question 1. For each set Ω below: (i) describe Ω in words (e.g., the first quadrant, intersection of
the ball of radius one with the third quadrant, etc), drawing a picture when possible; (ii) identify
∂Ω, and Ω; (iii) identify the area element of the boundary, i.e., dS; (iv) identify the normal to the
boundary. The notation Br(z) is used for the (open) ball of radius r centered at z ∈ Rn.

(a)

Ω =
{
x ∈ R2

∣∣∣ |x| < 5
}
.

(b)

Ω =
{
x ∈ R2

∣∣∣ − 2 < x1 < 2,−1 < x2 < 1
}
.

(c)

Ω =
{
x ∈ R3

∣∣∣ − 1 < x1 < 1,−1 < x2 < 1,−1 < x3 < 1
}
.

(d)

Ω =
{
x ∈ R2

∣∣∣ − 1 < x1 < 1,−1 < x2 < 1
}⋂

B1(0).

(e)

Ω =
{
x ∈ R3

∣∣∣x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}
.

(f)

Ω =
{
x ∈ R3

∣∣∣x3 > 0
}⋂

Br(0).

(g)

Ω =
{
x ∈ R3

∣∣∣〈x, (1, 1, 1)〉 = 0
}⋂

B1(0).

Question 2. Recall the integration by parts formula in several dimensions:∫
Ω
f
∂g

∂xi
= −

∫
Ω

∂f

∂xi
g +

∫
∂Ω
fgνi. (1)

Use (1) to prove the following formulas:

(a) Green’s first identity: ∫
Ω
∇f · ∇g = −

∫
Ω
f∆g +

∫
∂Ω
f∇g · ν.

(b) Green’s second identity:∫
Ω

(f∆g − g∆f) =

∫
∂Ω

(f∇g · ν − g∇f · ν).
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(c) ∫
Ω

∆f =

∫
∂Ω
∇f · ν.

(d) Divergence theorem: ∫
Ω

divF =

∫
∂Ω
F · ν.

Question 3. Show that Laplace’s equation is invariant under rotations, i.e., let u solve ∆u = 0
and let M be an orthogonal matrix. Set

ũ(x) = u(Mx).

Show that ∆ũ = 0.

The next questions deal with some more advanced notions and provide some insight into some
mathematical concepts underlying the course content, but that have not been thoroughly empha-
sized in class. They require concepts that you you learned in previous courses (such as vector
spaces, etc). These problems are suggested only if you want to go a bit beyond the “mechanics” of
solving PDEs.

In all questions below, let Ω be a domain in Rn, i.e., Ω is an open and connected set contained
in Rn. For concreteness you can imagine that Ω is the ball of radius one centered at the origin.

Recall that we say that a function u is k-times continuously differentiable if all derivatives up to
order k of u exist and are continuous.

Remember that we defined the spaces

Ck(Ω) =
{
u : Ω→ R

∣∣u is k-times continuously differentiable
}
.

Question 4. To get a better understanding of the space Ck(Ω), consider the following function:

f(x) =

{
x2 sin(1/x), x 6= 0,

0, x = 0.

Show that (a) f is continuous, (b) f is differentiable, i.e., f ′(x) exists for all x ∈ R, but (c) f is not
C1, i.e., f ′(x) is not continuous. That is why in the definition of Ck we require not only that the
derivatives exists, but also that they are continuous.
Hint: You should focus on what happens for x = 0.

Question 5. Show that Ck(Ω) is a vector space.

Question 6. Show that the Laplacian ∆ is a linear map between Ck(Ω) and Ck−2(Ω), k ≥ 2.

Question 7. Recall that

C∞(Ω) =
{
u : Ω→ R

∣∣u ∈ Ck(Ω) for every k
}
.

Show that C∞(Ω) is a vector space and that the Laplacian ∆ is a linear map from C∞(Ω) to itself.

Question 8. Give a reasonable argument for why Ck(Ω) is an infinite-dimensional vector space.
You are not asked to provide a mathematical and rigorous proof. Instead, you should use your
knowledge of calculus and linear algebra, as well as the material we learned in class, to construct
a sensible explanation, even if only an intuitive one.


