
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

HW 4 - Solutions

Recall that in class we solved the the wave equation with Dirichlet boundary conditions by
supposing that u(x, t) = X(x)T (t). This is called the method of separation of variables. Below,
you are asked to employ this method for solving other problems.

Question 1. Use separation of variables to solve the following initial-boundary value problem for
the wave equation (the only difference from what was done in class is the boundary condition):

utt − c2uxx = 0 in (0, L)× (0,∞),

u(x, 0) = f(x) 0 ≤ x ≤ L,
ut(x, 0) = g(x) 0 ≤ x ≤ L,
ux(0, t) = 0 t ≥ 0,

ux(L, t) = 0 t ≥ 0.

Solution 1. The separation of variables is done as in class. The difference is that now for the
equation

X ′′ + λX = 0,

we use the boundary conditions

X ′(0) = X ′(L) = 0.

We then find λn =
(
nπ
L

)2
, n = 0, 1, 2, . . . and

Xn(x) = cos
(nπx
L

)
, n = 0, 1, 2, . . . .

Differently than what was done in class, here n = 0 is included. Using λn in the T equation now
produces

T0(t) = a0 + b0t,

Tn(t) = an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)
, n = 1, 2, 3, . . .

The solution T0 corresponds to using λ0 in the equation for T . We obtain, after redefining the
coefficients a0 and b0,

u(x, t) =
a0 + b0t

2
+
∞∑
n=1

(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
cos
(nπx
L

)
,

where an and bn are given by the familiar formulas for Fourier coefficients on [0, L].

Question 2. Show that the solution you found in problem 1 can be written as a superposition of
a forward and a backward wave.
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Solution 2. We will write u as u = u1 +u2 + a0
2 , where u1 is a forward wave, u2 a backward wave,

and a0
2 , being a constant, can be thought of as either a forward or backward wave.

Using the trigonometric identities

sin(α± β) = sinα cosβ ± sinβ cosα

and

cos(α± β) = cosα cosβ ∓ sinα sinβ

we find

u1(x, t) = − b0
4c

(x− ct) +

∞∑
n=1

(
an
2

cos

(
nπ(x− ct)

L

)
− bn

2
sin

(
nπ(x− ct)

L

))
,

and

u2(x, t) =
b0
4c

(x+ ct) +
∞∑
n=1

(
an
2

cos

(
nπ(x+ ct)

L

)
+
bn
2

sin

(
nπ(x+ ct)

L

))
.

Question 3. Solve problem 1 with c = 1, L = π, f(x) = sin3 x, and g(x) = sin(2x).

Solution 3. Using the formulas for an and bn we find

an =
12(1 + cos(nπ))

π(9− 10n2 + n4)
for n ≥ 0, b0 = 0, and bn =

4(−1 + cos(nπ))

n(n2 − 4)π
for n ≥ 1.

These formulas are well defined because the values of n that vanish the denominators (n = 1, 3 for
an and n = 2 for bn) correspond to vanishing coefficients.

Question 4. Use separation of variables to solve the following initial-boundary value problem for
the heat equation:

ut − kuxx = 0 in (0, L)× (0,∞),

u(x, 0) = f(x) 0 ≤ x ≤ L,
u(0, t) = 0 t ≥ 0,

u(L, t) = 0 t ≥ 0.

Interpret your result.

Solution 4. Separating variables u(x, t) = X(x)T (t) we find

X ′′ + λX = 0,

and

T ′ + λkT = 0.

Using the boundary conditions X(0) = X(L) = 0 we find λn = (nπ/L)2 and

Xn(x) = sin
(nπx
L

)
, n = 1, 2, 3, . . .

Using λn in the equation for T gives

Tn(t) = e−
n2π2

L2 kt, n = 1, 2, 3, . . . .

Hence

u(x, t) =

∞∑
n=1

bn sin
(nπx
L

)
e−

n2π2

L2 kt,
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where

bn =
2

L

∫ L

0
sin
(nπx
L

)
f(x) dx.

Since e−
n2π2

L2 kt → 0 as t→∞, we see that u→ 0 as t→∞. This means that the temperature will
eventually reach zero, as it should be for an insulated rod kept at zero temperature at its endpoints.

Question 5. Solve problem 4 with k = 17, L = π, and

f(x) =

{
0, 0 ≤ x ≤ π

2 ,

2, π
2 < x ≤ π.

Discuss the convergence of the solution you found.

Solution 5. Computing

bn =
2

L

∫ L

0
sin
(nπx
L

)
f(x) dx

=
4

πn

(
cos
(nπ

2

)
− (−1)n

)
.

Thus

u(x, t) =
4

π

∞∑
n=1

1

n

(
cos
(nπ

2

)
− (−1)n

)
sin (nx) e−17n

2t.

Since ∣∣∣∣ 1n (cos
(nπ

2

)
− (−1)n

)
e−17n

2t

∣∣∣∣ ≤ 2

n
e−17n

2t

and the series
∞∑
n=1

2

n
e−17n

2t

converges for each t > 0, we conclude that the series for u does converge for each t > 0.


