
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

HW 2 Solutions

Question 1. Solve the following problems. In each case, sketch the characteristic curves, and
indicate the region in the xy-plane where the solution is defined.

(a) xuy − yux = u,

with the condition u(x, 0) = g(x), where g is a given function.

(b) ux + uy = u2,

for (x, y) in the region {y ≥ 0}, with the condition u(x, 0) = g(x), where g is a given function. Find
the solution in the case g(x) = x2.

(c) ux + uy + u = 1,

with the condition u = sinx on y = x + x2, x > 0.

Solution 1. (a) Parametrize the initial condition by

x0(s) = s, y0(s) = 0, u0(s) = g(s).

The characteristic equations are

ẋ = −y, (1a)

ẏ = x, (1b)

u̇ = u. (1c)

Differentiating (1a) with respect to t and using (1b) we find ẍ+x = 0, which has solution x(t, s) =
s cos t, where we used the initial condition. Similarly we find y(t, x) = s sin t. Equation (1c) can be
solved directly and gives, after using the initial condition, u(t, s) = g(s)et.

Since y/x = tan t and x2 + y2 = s2, we can solve for t and s as functions of x and y, finding

u(x, y) = g(
√
x2 + y2)etan

−1 y
x .

From x(t, s) = s cos t and y(t, x) = s sin t, we have that the characteristics are circles centered at
the origin. The solution is defined for x > 0 since we have chosen the positive square root when
solving for s. Indeed, notice that

J = det

[
∂tx ∂sx
∂ty ∂sy

]
= ∂tx∂sy − ∂sx∂ty

= −s sin t sin t− (cos t)s cos t = −s,

So that J(t, 0) = 0, indicating a potential problem at s = 0. (What would happen if we had chosen
the negative root?)

(b) We parametrize the initial condition as in (a). The characteristic equations are

ẋ = 1,

ẏ = 1,
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u̇ = u2.

The solutions are x(t, s) = s + t, y(t, s) = t, and u(t, s) = g(s)
1−tg(s) . But s = x− t = x− y, hence

u(x, y) =
g(x− y)

1− yg(x− y)
.

The characteristics are straight lines: y = x−s. This solution is defined as long as 1−yg(x−y) 6= 0.
For g(x) = x2, we obtain

u(x, y) =
(x− y)2

1− y(x− y)2
.

(c) Parametrize the initial condition as x0(s) = s, y0(s) = s + s2, u0(s) = sin s, s > 0. The
characteristic equations are

ẋ = 1,

ẏ = 1,

u̇ = 1− u.

We readily find

x(t, s) = t + s, y(t, s) = t + s + s2, u(t, s) = 1− (1− sin s)e−t.

Using the equation for x into the equation for y gives s =
√
y − x, where we chose the positive root

according to x > 0. Then t = x−
√
y − x, thus

u(t, x) = 1− (1− sin
√
y − x)e−x+

√
y−x.

The solution is defined in the region

{(x, y) | 0 < x < y}

The characteristic curves are lines y = x + s2. Notice that the derivatives of u are not defined at
(0, 0). Computing the Jacobian, we find

J(0, s) = 2s,

and we see that the transversality conditions fails at s = 0 (which corresponds to (0, 0)). The
geometric interpretation of this, discussed in class, can be easily seen here. The characteristic
curve for s = 0, y = x, is tangent to Γ(s) at s = 0. Thus, the theorem of existence and uniqueness
of solutions does not guarantee a solution valid for x = y = 0.

Question 2. Derive the system of characteristic equations for the quasilinear equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u).

You can follow closely what was done in class for the linear case.

Solution 2. This is essentially as done in class. In class, we had c(x, y, u) = c(x, y)u + f(x, y).
But if you look closely at the derivation, we never used this particular form of c. Thus, the same
argument as in class, replacing c(x, y)u + f(x, y) by c(x, y, u), works here.

Question 3. Solve

uux − uuy = u2 + (x + y)2,

with initial condition u(x, 0) = 1. (Hint: after writing the characteristic equations, identify an
equation satisfied by x + y.)
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Solution 3. Parametrize the initial condition by x0(s) = s, y0(s) = 0, u0(s) = −1. The character-
istic equations are

ẋ = u, (2a)

ẏ = −u, (2b)

u̇ = u2 + (x + y)2, (2c)

Adding (2a) and (2b), we obtain

∂t(x + y) = 0,

which, in light of the initial condition, gives

x + y = s. (3)

Using (3) into (2c) produces u̇ = u2 + s2, which can be integrated to

1

s
tan−1

(u
s

)
= t + g(s).

Using the initial condition we find g(s) = 1
s tan−1

(
1
s

)
, thus

u(t, s) = s tan

(
st + tan−1

(
1

s

))
. (4)

Using (4) into (2a) gives

ẋ = s tan

(
st + tan−1

(
1

s

))
.

Integrating with respect to t and using the initial condition,

x(t, s) = − ln

∣∣∣∣∣cos(st + tan−1
(
1
s

)
)

cos tan−1
(
1
s

) ∣∣∣∣∣+ s. (5)

Using (3) into the last term of (5) gives

y(t, s) = ln

∣∣∣∣∣cos(st + tan−1
(
1
s

)
)

cos tan−1
(
1
s

) ∣∣∣∣∣ . (6)

From (6) we get

st = cos−1
(

sey√
1 + s2

)
− tan−1

(
1

s

)
, (7)

where we used the identity cos tan−1 z = 1√
1+z2

. Using (7) so replace st and (3) to replace s in (4)

finally gives

u(x, y) = e−y
√

1 + (x + y)2 − (x + y)2e2y,

where we used the identity tan cos−1 z =
√
1−z2
z .

Question 4. As we discussed in class, the method of characteristics requires solving a system of
ODEs, the characteristic equations. Therefore, it is important to know when the characteristic
equations admit solutions and when such solutions are unique. Review your notes/textbook from
ODEs and identify important theorems that guarantee when solutions to systems of ODEs exist
and are unique. State at least one such theorem. You can consult, for instance:

• Fundamentals of differential equations and boundary value problems, by Nagle, Saff, and
Sinder, chapter 13.
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• Ordinary differential equations, by Hartman, chapters II and III.

Solution 4. Check the above references.


