VANDERBILT UNIVERSITY

MATH 4110 - PARTIAL DIFFERENTIAL EQUATIONS
HW 2 Solutions

Question 1. Solve the following problems. In each case, sketch the characteristic curves, and
indicate the region in the xy-plane where the solution is defined.

(a) zuy — Yuz = u,
with the condition u(z,0) = g(x), where ¢ is a given function.
(b) uy + uy = u?,

for (x,y) in the region {y > 0}, with the condition u(x,0) = g(z), where g is a given function. Find
the solution in the case g(z) = 2.

(c) ug +uy +u =1,
with the condition v = sinz on y = = + 22, z > 0.
Solution 1. (a) Parametrize the initial condition by
z0(s) = ,90(s) = 0,u0(s) = g(s).

The characteristic equations are

T = —y, (1a)
y=u, (1b)
U= u. (1c)

Differentiating (1a) with respect to ¢ and using (1b) we find # 4+ = = 0, which has solution x(t,s) =
scost, where we used the initial condition. Similarly we find y(¢,x) = ssint. Equation (1c) can be
solved directly and gives, after using the initial condition, u(t, s) = g(s)el.

Since y/x = tant and 22 + y? = 52, we can solve for ¢ and s as functions of z and y, finding

-1y
u(z,y) = g(vVa? +y?)e™ .

From z(t,s) = scost and y(t,z) = ssint, we have that the characteristics are circles centered at
the origin. The solution is defined for = > 0 since we have chosen the positive square root when
solving for s. Indeed, notice that

o (9tx 8590 .
J = det [@y agy] = 0yx0sy — 050y
= —ssintsint — (cost)scost = —s,

So that J(t,0) = 0, indicating a potential problem at s = 0. (What would happen if we had chosen
the negative root?)

(b) We parametrize the initial condition as in (a). The characteristic equations are
i=1,
y=1,
1
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U= u-.

The solutions are x(t,s) = s +t, y(t,s) = t, and u(t, s) = 1_952’28), But s =2 —t =z — v, hence

9(z —y)
1—yglz—y)
The characteristics are straight lines: y = 2 —s. This solution is defined as long as 1 —yg(x—y) # 0.
For g(x) = 22, we obtain

U(:L‘,y) =

(z —y)*

D= T

(c) Parametrize the initial condition as zo(s) = s, yo(s) = s + 5%, ug(s) = sins, s > 0. The
characteristic equations are

=1,
y=1,
u=1—u.

We readily find
z(t,s) =t+s,yt,s) =t+s+s° u(t,s)=1— (1 —sins)e "

Using the equation for x into the equation for y gives s = \/y — x, where we chose the positive root
according to x > 0. Then t = ¢ — \/y — z, thus

u(t,r) =1 — (1 —sin/y — x)e” “TVv=7,
The solution is defined in the region

{(z,y)[0 <z <y}

The characteristic curves are lines y = = + s2. Notice that the derivatives of u are not defined at
(0,0). Computing the Jacobian, we find

J(0,s) = 2s,

and we see that the transversality conditions fails at s = 0 (which corresponds to (0,0)). The
geometric interpretation of this, discussed in class, can be easily seen here. The characteristic
curve for s =0, y = x, is tangent to I'(s) at s = 0. Thus, the theorem of existence and uniqueness
of solutions does not guarantee a solution valid for x = y = 0.

Question 2. Derive the system of characteristic equations for the quasilinear equation
a(z,y, u)uy + bz, y, u)uy = c(z,y,u).
You can follow closely what was done in class for the linear case.

Solution 2. This is essentially as done in class. In class, we had c(z,y,u) = c(z,y)u + f(z,y).
But if you look closely at the derivation, we never used this particular form of ¢. Thus, the same
argument as in class, replacing c(x,y)u + f(z,y) by c¢(x,y, u), works here.

Question 3. Solve
wy — uuy = u? + (z +y)?,

with initial condition u(xz,0) = 1. (Hint: after writing the characteristic equations, identify an
equation satisfied by x + y.)
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Solution 3. Parametrize the initial condition by z¢(s) = s, yo(s) = 0, ug(s) = —1. The character-
istic equations are
T = u, (2a)
= —u, (2b)
o= u?+ (z +y)? (2¢)
Adding (2a) and (2b), we obtain
dh(z+y) =0,
which, in light of the initial condition, gives
T+y=s. (3)

Using (3) into (2c) produces 1 = u? + s%, which can be integrated to

1
~ tan™! (9) =t + g(s).
S S

Using the initial condition we find g(s) = % tan~! (1), thus

s

u(t, s) = stan (st + tan ™! (i)) : (4)
i = stan (st + tan ™! C)) :

Integrating with respect to ¢ and using the initial condition,

Using (4) into (2a) gives

cos(st +tan~! (1))

S
costan—! (%)

+ 5. (5)

x(t,s) = —In

Using (3) into the last term of (5) gives

y(t,s) =In

cos(st + tan! (1))
costan™! (1) '

From (6) we get

seY 1
st = cos < ﬁ+32> an (S), (7)

where we used the identity costan™! z = \/ﬁ Using (7) so replace st and (3) to replace s in (4)

finally gives

u(z,y) = e /1 + (2 +y)? — (x +y)2e,

where we used the identity tancos™! z = 1%22

Question 4. As we discussed in class, the method of characteristics requires solving a system of
ODEs, the characteristic equations. Therefore, it is important to know when the characteristic
equations admit solutions and when such solutions are unique. Review your notes/textbook from
ODEs and identify important theorems that guarantee when solutions to systems of ODEs exist
and are unique. State at least one such theorem. You can consult, for instance:

e Fundamentals of differential equations and boundary value problems, by Nagle, Saff, and
Sinder, chapter 13.
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e Ordinary differential equations, by Hartman, chapters II and III.

Solution 4. Check the above references.



