
VANDERBILT UNIVERSITY

MATH 4110 – PARTIAL DIFFERENTIAL EQUATIONS

HW 1 Solutions

Question 1. Review multivariable calculus, especially the chain rule in several variables.

Solution 1. Done!

Question 2. Verify whether the given function is a solution of the given PDE:

(a) u(x, y) = y cosx+ sin y sinx, uxx + u = 0.

(b) u(x, y) = cosx sin y, (uxx)2 + (uyy)
2 = 0.

Solution 2. (a) Compute uxx(x, y) = −y cosx− sinx sin y = −u(x, y), thus u is a solution.
(b) Compute uxx(x, y) = − cosx sin y, uyy(x, y) = − cosx sin y, thus (uxx(x, y))2 + (uyy(x, y))2 =

2 cos2 x sin2 y 6= 0, hence u is not a solution.

Question 3. For each PDE below, identify the unknown function and state the independent
variables. State the order of the PDE. Write the PDE in the form F (x, u,Du, . . . ,Dmu) = 0, i.e.,
identify the function F . State if the PDE is homogeneous or non-homogeneous, linear or non-linear.

(a) utt − uxx = f.

(b) uy + uux = 0.

(c)

n∑
i,j,k=1

aijk∂3ijkv + v = 0,

where i, j, k range from 1 to 3.

(d) uxx + x2y2uyy = (x+ y)2.

(e) uxy + cos(u) = sin(xy).

Solution 3. (a) Unknown: u. Independent variables: x, t. Order: second. We have

F (p1, . . . , p9) = p9 − p6 − f(p1, p2).

The equation is linear and non-homogeneous.
(b) Unknown: u. Independent variables: x, y. Order: first. We have

F (p1, . . . , p5) = p5 + p3p4.

The equation is non-linear (because of the term uux) and homogeneous.
(c) It is instructive to consider a slightly more general case, with i, j, k ranging from 1 to n.

Unknown: v. Independent variables: x1, . . . , xn. Order: third. We have

F (x1, . . . , xn, p, p1, . . . , pn, p11, . . . , pnn, . . . , p111, . . . , pnnn) =
n∑

i,j,k=1

aijkpijk + p.

The equation is linear and homogeneous.
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(d) Unknown: u. Independent variables: x, y. Order: second. We have

F (p1, . . . , p9) = p6 + p21p
2
2p9 − (p1 + p2)

2.

The equation is linear and non-homogeneous.
(e) Unknown: u. Independent variables: x, y. Order: second. We have

F (p1, . . . , p9) = p7 + cos p3 − sin(p1p2).

The equation is non-linear (because of cosu) and non-homogeneous.

Question 4. Consider a PDE F (x, u,Du, . . . ,Dmu) = 0 and let P be the operator associated with
it. Prove that the PDE is linear if and only if P is a linear operator.

Solution 4. Suppose the PDE is linear. Thus,

FH(x, u,Du, . . . ,Dmu) =

m∑
k=0

Fk(x,D
ku), (1)

where each Fk is a sum of linear functions on derivatives of u of order k, i.e.,

Fk(x,D
ku) =

nk∑
`=1

Fk`(x, u
(`)), (2)

where each u(`) represents one of the nk possible derivatives of u of order k. Let u and v be
two functions for which F (x, u,Du, . . . ,Dmu) and F (x, v,Dv, . . . ,Dmv) are well-defined, but are
otherwise arbitrary, and let a and b be two arbitrary constants. Then

Fk(x, aD
ku+ bDkv) = a

nk∑
`=1

Fk`(x, u
(`)) + b

nk∑
`=1

Fk`(x, v
(`))

by the linearity of Fk`. Hence

FH(x, au+ bv, aDu+ bv, . . . , aDmu+ bDmv) = aFH(x, u,Du, . . . ,Dmu) + bFH(x, v,Dv, . . . ,Dmv).

Since by definition Pu = FH(x, u,Du, . . . ,Dmu), we conclude

P (au+ bv) = aFH(x, u,Du, . . . ,Dmu) + bFH(x, v,Dv, . . . ,Dmv) = aPu+ bPv,

as desired.
Reciprocally, suppose that P is a linear operator. Then it can be written as

Pu =
∑

i1i2···im

ai1i2···im∂mi1i2···imu+
∑

i1i2···im−1

ai1i2···im−1∂m−1i1i2···im1
u

+
∑

i1i2···im−2

ai1i2···im−2∂m−1i1i2···im2
u+ · · ·+

∑
i1i2

ai1i2∂2i1i2u+
∑
i

ai∂iu+ au.

This implies that FH has the decomposition (1) with each Fk satisfying (2).

Question 5. Consider Maxwell’s equations:

divE =
%

ε0
,

divB = 0,

∂B

∂t
+ curlE = 0,

∂E

∂t
− 1

µ0ε0
curlB = − 1

ε0
J,
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where div is the divergence and curl is the curl, also written

div f = ∇ · f, and curl f = ∇× f.
Assume that % and J vanish. Show that Maxwell’s equations then imply that E and B satisfy the
wave equation:

∂2E

∂t2
− 1

ε0µ0
∆E = 0,

and

∂2B

∂t2
− 1

ε0µ0
∆B = 0.

Interpret your result. Can you guess what the constant 1
ε0µ0

must equal to?

Solution 5. Under the assumptions, the equations become

divE = 0, (3)

divB = 0, (4)

∂B

∂t
+ curlE = 0, (5)

∂E

∂t
− 1

µ0ε0
curlB = 0. (6)

Take the curl of (5) and note that curl ∂∂t = ∂
∂t curl to get

∂

∂t
curlB + curl curlE = 0.

But curlB = µ0ε0
∂E
∂t by (6), thus

µ0ε0
∂2E

∂t2
+ curl curlE = 0.

Recalling the following identity from multivariable calculus

curl curl f = ∇(div f)−∆f,

and using (3), we obtain the wave equation for E. The wave equation for B is similarly obtained.
The interpretation is that the electric and magnetic fields propagate in vacuum as waves. From

the discussion about the wave equation in class, we conclude that 1√
µ0ε0

is the speed of propagation

of the electromagnetic waves, which, from physics, we know to be equal to the speed of light (in
vacuum).


