HOMEWORK 6

MATH 3120

Unless stated otherwise, the notation below is as in class. You can assume that all functions
are C* unless stated otherwise.

Question 1. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave
equation in 1d with zero data and source term f is give by
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To do so, first use D’Alembert’s formula to conclude that
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Use the definition of w in terms of us and change variables to conclude (1).

Question 2. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave
equation in 3d with zero data and source term f is give by
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(The integrand in (2) is known as the retarded potential.) To do so, first use Kirchhoft’s
formula for solutions in n = 3 to conclude that
t—s
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Use the definition of w in terms of us and change variables to conclude (2).

Question 3. Show that there exists a constant C' > 0 such that for any solution u to the
3d wave equation it holds that
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for ¢t > 1.
Hint: Use Kirchhoff’s formula, note that for any function f we have
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on 0B(z), and use one of Green’s identities.



