HOMEWORK 5

MATH 3120

Unless stated otherwise, the notation below is as in class. You can assume that all functions are C^{∞} unless stated otherwise.

Question 1. Prove the differentiation of moving regions formula stated in class:

$$\frac{d}{d\tau} \int_{\Omega(\tau)} f \, dx = \int_{\Omega(\tau)} \partial_{\tau} f \, dx + \int_{\partial\Omega(\tau)} f v \cdot \nu \, dS. \tag{1}$$

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1) in the following particular case. Assume that n = 3 and that the domains $\Omega(\tau)$ are given by a one-parameter family of one-to-one and onto maps $\varphi = \varphi(\tau, x) : \Omega \to \Omega(\tau) = \varphi(\tau, \Omega)$, where $\Omega := \Omega(0)$ and $\varphi(0, \cdot) = \mathrm{id}_{\Omega}$, where id_{Ω} is the identity map on Ω , i.e., $\mathrm{id}_{\Omega}(x) = x, x \in \Omega$.

(a) For each fixed τ , consider the change of variables $x = \varphi(\tau, y)$, so that

$$\int_{\Omega(\tau)} f(\tau, x) \, dx = \int_{\Omega} f(\tau, \varphi(\tau, y)) J(\tau, y) \, dy, \tag{2}$$

where $J(\tau, y)$ is the Jacobian of the transformation $x = \varphi(\tau, y)$ for fixed τ .

(b) Show that there exists a on parameter family of vector fields $u(\tau, \cdot)$ such that

$$\partial_{\tau}\varphi(\tau, x) = u(\tau, \varphi(\tau, x)).$$

- (c) Explain why u = v on $\partial \Omega(\tau)$.
- (d) Show that

$$\partial_{\tau} J(\tau, x) = (\operatorname{div} u)(\tau, \varphi(\tau, x)) J(\tau, x).$$

(e) Use (2) and the above to compute $\frac{d}{d\tau} \int_{\Omega(\tau)} f$, and do an integration by parts to obtain the result.

Question 2. Let u be a solution to the Cauchy problem for the wave equation in \mathbb{R}^n . Assume that u_0 and u_1 have their supports in the ball $B_R(0)$ for some R > 0. Show that u = 0 in the exterior of the region

$$I := \{ (t, x) \in (0, \infty) \times \mathbb{R}^n \, | \, x \in B_{R+t}(0) \, \}.$$

I is called a domain of influence for that data on $B_R(0)$ (compare with the 1d case).

Question 3. Let u be a solution to the Cauchy problem for the wave equation and assume that u_0 and u_1 have compact support.

(a) Show that the energy

$$E(t) := \frac{1}{2} \int_{\mathbb{R}^n} \left[(\partial_t u)^2 + |\nabla u|^2 \right] dx$$

is well-defined.

(b) Show that

$$E(t) = E(0),$$

i.e., the energy is conserved.

Question 4. Let u be a solution to the Cauchy problem for the wave equation in \mathbb{R}^3 with compactly supported data (i.e., u_0 and u_1 have compact support).

(a) Show that there exists a constant C > 0, depending on u_0 and u_1 , such that

$$|u(t,x)| \le \frac{C}{t},\tag{3}$$

for $t \ge 1$ and $x \in \mathbb{R}^3$. Thus, for each fixed x, u approaches zero as $t \to \infty$, i.e., solutions decay in time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes outside $B_R(0)$ for some R > 0. This implies an estimate for the area of the largest region within $B_t(x)$ where the data is non-trivial.

(b) Is the estimate (3) sharp? (I.e., can it be improved to show that solutions decay faster in time than $\frac{1}{t}$?)

(c) Do we still get decay if the data does not have compact support?