
HOMEWORK 3

MATH 3120

Unless stated otherwise, the notation and terminology below is the same used in class.

Question 1. The goal of this problem is to prove the following theorem stated in class: Let
g, h ∈ C2([0, L]) satisfy g(0) = g(L) = 0 = h(0) = h(L) and g′′(0) = g′′(L) = 0 = h′′(0) =
h′′(L). Then, the formal solution

u(t, x) =
∞∑
n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
,

where an and bn are given by

an =
2

L

∫ L

0

g(x) sin
nπx

L
dx,

bn =
2

nπc

∫ L

0

h(x) sin
nπx

L
dx,

is a C2 solution of the initial-boundary value problem

utt − c2uxx = 0, in (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ≥ 0,

u(0, x) = g(x), 0 ≤ x ≤ L,

∂tu(0, x) = h(x), 0 ≤ x ≤ L,

To prove the theorem, proceed as follows.

(a) Show that g and h can be extended to 2L-periodic C2 odd functions on R. Call these

extensions g̃ and h̃.

(b) Use D’Alembert’s formula to solve the initial value problem for the wave equation on R
with data g̃ and h̃. (In class we derived D’Alembert’s formula with c = 1; here you need the
formula for a general c.)

(c) Consider the Fourier series for g̃ and h̃. Plug these into D’Alembert’s formula and using
trigonometric identities arrive at the expression given by the formal solution for x ∈ [0, L].
Observe that the boundary conditions are satisfied.

(d) In all the above, make sure that you have the correct assumptions to guarantee the
convergence of the Fourier series you employ and whatever other theorem you may need to
invoke.

Question 2. In class we saw that if u0 ∈ C2(R) and u1 ∈ C1(R), then the Cauchy problem
for the 1d wave equation with data (u0, u1) admits a unique C2 solution. What can you say
if u0 ∈ Ck(R) and u0 ∈ Ck−1(R), k > 2?
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Question 3. In class we solved the 1d wave equation for t ≥ 0. Making a change of variables
t 7→ −t, show that we can also solve the wave equation for negative times. Conclude that
D’Alembert’s formula is valid for −∞ < t <∞.

Question 4. Consider the Cauchy problem for the 1d wave equation with data (u0, u1) and
then with data (ũ0, ũ1). Let u and ũ be the corresponding solutions. Assume that on [a, b]
we have u0 = ũ0 and u1 = ũ1 Prove that u = ũ in the domain of dependence with base [a, b].

Question 5. In the first question, drop the hypothesis g′′(0) = g′′(L) = 0 = h′′(0) = h′′(L).
What can you say about the formal solution in this case (will it be an actual solution in any
sense? Classical, generalized?)

The next questions are optional, i.e., they will not be graded. They are intended to help
students who may have some difficulties with the section “Some general tools, definitions,
and conventions for the study of PDEs.” The notation is the same used in that section.

Question 6. In class we said Ω has a Ck boundary if ∂Ω can be written locally as the graph
of a Ck function. Make this definition more precise upon using mathematical quantifiers.

Question 7. Show that if aij is symmetric in i and j, then ai j = aji so that we can write

simply aij, but that this is not the case otherwise.

Question 8. Let a be a n × n matrix with entries ai j, where i the row and j the column.

Show that the trace of a is given by ai i. If a is invertible with entries (a−1)i j, show that

ai j(a
−1)j` = δi`.

Show that the determinant of a is given by

det(a) =
1

n!
εi1i2···inε

j1j2···jnai1j1a
i2
j2
· · · ainjn .

Above, εi1i2···in is the n-dimensional totally anti-symmetric symbol, defined as εi1i2···in = 1
if i1, i2, · · · , in is an even permutation of 1, 2, · · · , n, εi1i2···in = −1 if i1, i2, · · · , in is an odd
permutation of 1, 2, · · · , n, and εi1i2···in = 0 otherwise.
Hint: Show the determinant formula only for n = 2 and, perhaps, n = 3. The general case
is too lengthy for you to spend time on this. You can, however, see the general proofs in
textbooks if you are interested.

Question 9. Assuming the integration by parts formula, prove the Green identities stated
in class.


