CONVERGENCE OF FOURIER SERIES

MATH 3120

Here we collect some useful results about convergence of Fourier series. Their proofs can be found in many textbooks, e.g., [1,2].

We will denote by $f(x^+)$ and $f(x^-)$ the right and left values of a function f at x, defined by

$$f(x^+) = \lim_{h \to 0^+} f(x+h),$$

and

$$f(x^{-}) = \lim_{h \to 0^{-}} f(x+h).$$

If f is continuous at x, we have that $f(x^+) = f(x^-)$, but in general these values need not to be equal. For instance, let

$$f(x) = \begin{cases} -1, & x < 0, \\ 1, & x \ge 0. \end{cases}$$

Then $f(0^+) = 1$ and $f(0^-) = -1$.

As done in class, the Fourier series of a function f will be written as

$$F.S.\{f\}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}).$$

Theorem 1. Let f be a piecewise C^1 function defined on [-L, L]. Then, for any $x \in (-L, L)$,

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}) = \frac{1}{2} (f(x^+) + f(x^-))$$

For $x = \pm L$, the series converges to $\frac{1}{2}(f(-L^+) + f(L^-))$.

Thus, the Fourier series of (a piecewise C^1 function) f at x converges to f(x) if f is continuous at x.

Next, we consider differentiation and integration of Fourier series.

Theorem 2. Let f be continuous on [-L, L]. Suppose that f(-L) = f(L), and that f is piecewise C^2 . Then, the Fourier series of f' can be obtained from that of f by differentiation term-by-term. I.e., writing

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}),$$

then

$$F.S.\{f'\}(x) = \sum_{n=1}^{\infty} (a_n (\cos \frac{n\pi x}{L})' + b_n (\sin \frac{n\pi x}{L})'),$$

In particular, if $f'(x) = F.S.\{f'\}(x)$, then

$$f'(x) = \sum_{n=1}^{\infty} \left(-a_n \frac{n\pi}{L} \sin \frac{n\pi x}{L} + b_n \frac{n\pi}{L} \cos \frac{n\pi x}{L}\right)$$

The assumption that f(-L) = f(L) means that we could think of f as the restriction to [-L, L] of a continuous 2L-periodic function. Finally,

Theorem 3. Let f be a continuous function on [-L, L] with Fourier series

$$F.S.\{f\}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}).$$

Then, for any $x \in (-L, L)$, we have

$$\int_{-L}^{x} f(s) \, ds = \int_{-L}^{x} \frac{a_0}{2} \, ds + \sum_{n=1}^{\infty} (a_n \int_{-L}^{x} \cos \frac{n\pi s}{L} \, ds + b_n \int_{-L}^{x} \sin \frac{n\pi s}{L} \, ds).$$

We now illustrate how one can use finitely many terms of the Fourier series to approximate a function. I.e., instead of taking an infinite sum in the Fourier series, we consider only the first N terms:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L})$$

Figure 1 shows the function |x| for $-\pi \le x \le \pi$ and its Fourier series with N = 2 and N = 4 terms.

FIGURE 1. Graph of the function |x| and its corresponding Fourier series consisting only of the first two and four terms.

Figure 2 shows the function

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x \le 0. \end{cases}$$

and its Fourier series with N = 6 and N = 18 terms.

Figure 3 shows the function $\frac{x}{2}$ for $-\pi \leq x \leq \pi$ and extended to a 2π -periodic function, and its Fourier series with N = 4 and N = 8 terms.

In all these cases, the larger the N, the better the approximation, as expected.

FIGURE 2. Graph of the function f and its corresponding Fourier series consisting only of the first six and 18 terms.

FIGURE 3. Graph of the function $\frac{x}{2}$ (2 π -periodic), and its corresponding Fourier series consisting only of the first four and eight terms.

References

- [1] T. Myint-U, Partial differential equations of mathematical physics, Elsevier Science Ltd, 1980.
- [2] W. A. Strauss, Partial differential equations: An introduction 2nd edition, Wiley, 2007.