
VANDERBILT UNIVERSITY

MATH 3120 – INTRO DO PDES

Test 2

NAME: Solutions

Directions. This exam contains four questions. Make sure you clearly indicate the pages where
your solutions are written. Answers without justification will receive little or no credit. Write
clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an equal sign
if two expressions are equal; say that one expression is a consequence of another when this is the
case, etc).

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (25 pts)
2 (25 pts)
3 (25 pts)
4 (25 pts)

TOTAL (100 pts)

1



2 VANDERBILT

Question 1. (25 pts) Answer the questions below. Justify your answers.

(a) What is the method of separation of variables? Is it guaranteed to always produce a solution
to a PDE?

(b) What is the difference between a formal solution and an actual solution to a PDE?

(c) Can a formal solution also be a classical solution? Can it be a generalized solution?

(d) Let f be a function defined on (−L,L), L > 0, and F.S.{f} its Fourier series. Is it true that
for any x ∈ (−L,L) we have that f(x) = F.S.{f}(x)?

(e) Let f : (−2, 2)→ R be defined by

f(x) =


−1, −2 < x ≤ −1,

2, −1 < x < 0,

1, 0 ≤ x ≤ 1

x, 1 < x < 2.

Let F.S.{f} be its Fourier series. Find F.S.{f}(−1), F.S.{f}(0), F.S.{f}(1), and F.S.{f}(1.5),
i.e., the values of the Fourier series of f at the points x = −1, 0, 1, 1.5. Hint: you do not need to
compute the Fourier series of f to solve this problem.

Solution 1. (a) The method of separation of variables consists in attempting to solve a PDE
by supposing that the unknown function is a product of functions of single variables, each of
which depends on one of the independent variables of the problem. Thus, if the unknown is
u = u(x1, . . . , xn), one tries a solution of the form u(x1, . . . , xn) = X1(x1) · · ·Xn(xn). The method
is not guaranteed to produce a solution.

(b) A formal solution is an expression that provides a candidate for a solution. It typically consists
of a formula involving a series, with no further information on the convergence of the series or other
information that makes the expression mathematically well-defined.

(c) Yes in both cases. If a formal solution given as a series converges to a Ck function (respectively
piece-wise Ck), with k greater or equal to the order of the equation, then the formal solution yields
a classical (respectively generalized) solution. The type of convergence involved can vary from
problem to problem.

For parts (d) and (e), we recall the following theorem.

Theorem 1. Let f be a piecewise C1 function defined on [−L,L]. Then, for any x ∈ (−L,L),

F.S.{f}(x) =
1

2
(f(x+) + f(x−)).

For x = ±L, the series converges to 1
2(f(−L+) + f(L−)).

(d) No. Take the function

f(x) =

{
−1, x ≤ 0,

1, x > 0.

By the above theorem, F.S.{f}(0) = 0, but f(0) = −1.

(e) Using the above theorem, F.S.{f}(−1) = (−1 + 2)/2 = 1/2, F.S.{f}(0) = (2 + 1)/2 = 3/2,
F.S.{f}(1) = (1 + 1)/2 = 1, and F.S.{f}(1.5) = 1.5.
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Question 2. (25 pts) Consider the following initial-boundary value problem for the wave equation:

utt − c2uxx = 0 in (0, L)× (0,∞), (1a)

u(x, 0) = f(x) 0 ≤ x ≤ L, (1b)

ut(x, 0) = g(x) 0 ≤ x ≤ L, (1c)

u(0, t) = 0 t ≥ 0, (1d)

u(L, t) = 0 t ≥ 0. (1e)

(a) What compatibility conditions do f and g have to satisfy?

(b) Using separation of variables, write two ordinary differential equations that are consequence of
equation (1a).

(c) Find a formal solution to the initial-boundary value problem (1).

(d) State sufficient conditions on f and g that guarantee that the formal solution you found in (c)
is an actual solution to the problem.

(e) Explain how a formal solution to (1) can be showed to be an actual solution under the conditions
you stated in (d). You are not required to provide a formal proof. Rather, outline the argument
and its main steps. In doing so, state any relevant theorems you need to invoke.

Solution 2. (a) In order to have u well-defined, we need that f(0) = f(L) = 0 and g(0) = g(L) = 0.

(b) Set u(x, t) = X(x)T (t) and plug into (1a) to find

X ′′

X
=

T ′′

c2T
.

Since the left-hand side depends only on x and the right-hand side only on t, both sides need to be
equal to a constant λ. Thus

X ′′ = λX, and T ′′ = λc2T.

(c) This was done in class (see class notes from February 6 and and February 14). We find

u(x, t) =

∞∑
n=1

(an cos
cnπt

L
+ bn sin

cnπt

L
) sin

nπx

L
,

where

an =
2

L

∫ L

0
f(x) sin

nπx

L
dx and bn =

2

cnπ

∫ L

0
g(x) sin

nπx

L
dx.

(d) and (e) We answer parts (d) and (e) together. We make an odd extension of f and g to

2L-periodic functions f̃ and g̃ on R. It follows that f̃(−L) = g̃(−L) = f̃(L) = g̃(L) = 0. Using
D’Alembert’s formula, we write a solution ũ for the wave equation on the real line with initial

conditions f̃ and g̃. Next, we consider the Fourier series of ũ, which amounts to consider the Fourier

series of f̃ and g̃. Because f̃ is odd, the coefficients an and bn of F.S.{ũ} agree with the expressions
for an and bn in part (c). With trigonometric identities for the sine and cosine of the sum of angles,
we expand D’Alemberts formula for ũ, and observe that the resulting expression agrees with the
formal solution u found in (c), and also satisfies the boundary conditions. Therefore, the formal
solution in (c) will be an actual solution provided that we can apply theorems for convergence of
Fourier series and its derivatives. A theorem for convergence of the Fourier series was stated above,
and a theorem for differentiation of Fourier series is the following.
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Theorem 2. Let f be continuous on [−L,L]. Suppose that f(−L) = f(L), and that f is piecewise
C2. Then, the Fourier series of f ′ can be obtained from that of f by differentiation term-by-term.
I.e., if

f(x) =
a0
2

+
∞∑
n=1

(an cos
nπx

L
+ bn sin

nπx

L
),

then

f ′(x) =

∞∑
n=1

(an(cos
nπx

L
)′ + bn(sin

nπx

L
)′),

whenever f ′(x) equals its Fourier series. Equivalently,

f ′(x) =
∞∑
n=1

(−an
nπ

L
sin

nπx

L
+ bn

nπ

L
cos

nπx

L
).

One simple condition guaranteeing the convergence of F.S.{ũ} and its derivatives on (0, L) is
that f and g be smooth.

See the class notes of February 21 for a detailed presentation of the above argument.
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Question 3. (25 pts) Consider the following initial-boundary value problem for the heat equation:

ut − kuxx = 0 in (0, L)× (0,∞), (2a)

u(x, 0) = f(x) 0 ≤ x ≤ L, (2b)

u(0, t) = 0 t ≥ 0, (2c)

u(L, t) = 0 t ≥ 0. (2d)

(a) The following expression is a formal solution to problem (2) (you do not need to establish this):

u(x, t) =

∞∑
n=1

bn sin
(nπx
L

)
e−

n2π2

L2 kt, (3)

where

bn =
2

L

∫ L

0
sin
(nπx
L

)
f(x) dx.

What happens to the formal solution when t→∞? How do you interpret this result?

(b) Determine the formal solution (3) when k = 1, L = π, and

f(x) =

{
0, 0 ≤ x ≤ π

2 ,

2, π
2 < x ≤ π.

(c) Prove that for any fixed t > 0, the formal solution you found in (b) converges for any x ∈ [0, π].

Solution 3. (a) When t → ∞, the formal expression gives that u(x, t) → 0, meaning that the
temperature of the rod goes to zero (recall the physical interpretation of the heat equations discussed
at the beginning of the course). This makes sense in light of the boundary conditions: we are
considering the case where the rod’s endpoints are kept at zero temperature and no other heat
exchange with the environment is allowed. Hence, the rod’s temperature will eventually becomes
zero.

(b) We find

bn =
2

L

∫ L

0
sin
(nπx
L

)
f(x) dx =

4

π

∫ π

π
2

sin(nx) dx =
4

nπ
((−1)n+1 + cos

nπ

2
),

and the solution is (3) with this expression for bn, L = π, and k = 1.

(c) Since the exponential increases faster than any polynomial, we have that, if t > 0 is fixed, then∣∣∣∣ 4

nπ
((−1)n+1 + cos

nπ

2
)e−n

2t

∣∣∣∣ ≤ C

n2
,

for some constant C > 0 and for all n sufficiently large. Since the series of 1
n2 converges, so does

the formal solution.
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Question 4. (25 pts) This question deals with the Schrödinger equation,

i~
∂Ψ

∂t
= − ~2

2µ
∆Ψ + VΨ, (4)

that was studied in class. Below, several results about the Schrödinger equation that have been
established in class are recalled before stating the questions. You do not need to establish such
results, only use them to answer the questions you are asked.

Assume that V is the Coulomb potential given by

V (r) = − Ze2

4πε0r
,

where r =
√
x21 + x22 + x23. Recall that solutions to (4) need to satisfy∫

R3

|Ψ(x, t)|2 dx = 1,

in order to be physically acceptable.
In class, we employed separation of variables to write

Ψ(x, t) = T (t)Θ(θ)Φ(ϕ)R(r),

where (r, θ, ϕ) are spherical coordinates, with 0 ≤ r <∞, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

(a) What is the correct boundary condition for Θ?

(b) In order to find Φ, in class we made the following change of variables

v = cosϕ, (5)

and obtained a power series solution

P (v) =

∞∑
k=0

akv
k, (6)

where the coefficients ak satisfy the following recurrence relation:

ak+2 =
k(k + 1)− λ

(k + 1)(k + 2)
ak, k = 0, 1, 2, . . . , (7)

where λ is a constant that comes from the separation of variables.
Explain how (5), (6), and (7) are used to determine that

λ = `(`+ 1),

for ` = 0, 1, 2, . . . .

(c) The function R satisfies the following equation:

1

r2
d

dr

(
r2
dR

dr

)
+

2µ

~2
(E − V (r))R = `(`+ 1)

R

r2
, (8)

where E is a constant that comes from the separation of variables.
Explain how (8) is used to show that E < 0.

Solution 4. (a) Since the spherical coordinates (r, θ, ϕ) and (r, θ+ 2π, ϕ) represent the same point
in space, we must have Θ(θ) = Θ(θ + 2π).
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(b) Since points with coordinates ϕ = 0 and ϕ = π must be included, we need to consider, in
view of (5), the solution (6) when v = ±1:

P (±1) = ±
∞∑
k=0

ak. (9)

From (7) we have

ak+2 =
k2 +O(k)

k2 +O(k)
ak =

k2 +O(k)

k2 +O(k)

k2 +O(k)

k2 +O(k)
ak−2 = · · · =


kk+2+O(kk+1)
kk+2+O(kk+1)

a0, k even,
kk+1+O(kk)
kk+1+O(kk)

a1, k odd.

It follows that

lim
k→∞

ak 6= 0,

and therefore (9) diverges by the divergence test, unless (6) is in fact a finite sum; i.e., unless
ak = 0 for all k greater than a certain `. Hence, we must have, form some non-negative integer `,

a`+2 = 0 =
`(`+ 1)− λ

(`+ 1)(`+ 2)
a`,

which implies

λ = `(`+ 1),

provided that a` 6= 0.

(c) First we show that E must be real. To see this, multiply equation (8) by r2R∗, where R∗ is
the complex conjugate of R, and integrate from 0 to ∞:∫ ∞

0
R∗

d

dr

(
r2
dR

dr

)
dr − 2µ

~2

∫ ∞
0

V |R|2r2 dr − `(`+ 1)

∫ ∞
0
|R|2 dr = −2µ

~2
E

∫ ∞
0
|R|2r2 dr, (10)

where we used that |R|2 = R∗R. Integrating by parts the first term,∫ ∞
0

R∗
d

dr

(
r2
dR

dr

)
dr = −

∫ ∞
0

dR∗

dr

dR

dr
r2 dr +R∗r2

dR

dr

∣∣∣∞
0

= −
∫ ∞
0

dR∗

dr

dR

dr
r2 dr (11)

where it has been assumed that R∗ and dR
dr vanish sufficiently fast at ∞. Writing

R = RR + iRC ,

where RR and RC are real-valued, it comes

dR∗

dr

dR

dr
= (

dRR
dr
− idRC

dr
)(
dRR
dr

+ i
dRC
dr

) =

(
dRR
dr

)2

+

(
dRC
dr

)2

,

and we conclude that dR∗

dr
dR
dr is real-valued. But from (10) and (11) we have

E =

∫∞
0

dR∗

dr
dR
dr r

2 dr + 2µ
~2
∫∞
0 V |R|2r2 dr + `(`+ 1)

∫∞
0 |R|

2 dr
2µ
~2
∫∞
0 |R|2r2 dr

. (12)

Therefore, since all terms on the right-hand side are real, we conclude that E is real as well.
Next, we show that E < 0. Let us investigate the behavior of (8) for large values of r, i.e., r � 1.

Then we can neglect the terms that contain 1
r and (8) gives, after expanding the terms in d

dr ,

d2R

dr2
≈ −2µE

~2
R. (13)
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But for r � 1 we also have the approximation

r
d2R

dr2
+
dR

dr
≈ rd

2R

dr2
,

so that

d2(rR)

dr2
= r

d2R

dr2
+ 2

dR

dr
≈ rd

2R

dr2
. (14)

Hence, multiplying (13) by r and using (14),

d2(rR)

dr2
≈ −2µE

~2
(rR).

This approximate equation can be easily solved, producing

rR ≈ e±
√
−2µE
~ r.

If E ≥ 0, then R is a complex function which satisfies

|rR| ≈ 1 for r � 1.

Then the integral∫
R3

|Ψ(t, x)|2 dx =

(∫ 2π

0

∫ π

0
|Y (φ, θ)|2 sinφdφdθ

)(∫ ∞
0
|R(r)|2r2 dr

)
diverges since |R(r)|2r2 ≈ 1 for large r. Consequently, condition∫

R3

|Ψ(x, t)|2 dx = 1,

fails, and this does not produce a physically sensible solution. Therefore, we must have E < 0.


