
VANDERBILT UNIVERSITY

MATH 3120 – INTRO DO PDES

Test 1

NAME: Solutions.

Directions. This exam contains five questions. Make sure you clearly indicate the pages where
your solutions are written. Answers without justification will receive little or no credit. Write
clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an equal sign
if two expressions are equal; say that one expression is a consequence of another when this is the
case, etc). Notice that different questions may be worth different amounts of points.

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (15 pts)
2 (20 pts)
3 (20 pts)
4 (25 pts)
5 (20 pts)
TOTAL

1
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Question 1. (15 pts) For each PDE below, identify the unknown function and state the indepen-
dent variables. State the order of the PDE. State if the PDE is homogeneous or non-homogeneous,
linear or non-linear. (You are asked to state whether the PDE is homogeneous/non-homogeneous
and linear/non-linear, not to prove your statement. In particular, you need not to write the PDE
in the form F (x, u, . . . , Dmu) = 0 or identify the function F .)

(a) utt − uxx = f.

(b) cos(t)ut + x2ux + y2uy = e−x
2−y2 sin(t).

(c) uxx + uyy = eu.

Solution 1. (a) Unknown: u. Independent variables: x, t. Order: second. Non-homogeneous
PDE. Linear PDE.

(b) Unknown: u. Independent variables: x, y, t. Order: first. Non-homogeneous PDE. Linear
PDE.

(c) Unknown: u. Independent variables: x, y. Order: second. Homogeneous PDE. Non-linear
PDE.
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Question 2. (20 pts) Consider the initial-value problem:

xux + yuy = 4u, −∞ < x <∞, −∞ < y <∞,
u = 1 on the circle x2 + y2 = 1.

(a) Identify the PDE and the initial condition.

(b) Find a solution u = u(x, y) for the initial-value problem.

(c) Sketch the projection of the characteristic curves on the xy-plane (i.e., sketch the projected
characteristics).

(d) Is the solution you found in (b) a local or global solution. Is it unique?

Solution 2. (a) PDE: xux + yuy = 4u. Initial condition: u = 1 on the circle x2 + y2 = 1.

(b) Parametrize the initial condition as

Γ(s) = (x0(s), y0(s), u0(s)) = (cos s, sin s, 1), 0 ≤ s < 2π.

The system of characteristic equations is

ẋ = x,

ẏ = y,

u̇ = 4u.

The solution is

x(t, s) = et cos s, y(t, x) = et sin s, u(t, s) = e4t.

Compute

x2 + y2 = (et cos s)2 + (et sin s)2 = e2t,

hence

u(x, y) = (x2 + y2)2.

(c) We have y/x = tan s, hence the characteristics are straight lines through the origin, see
Figure 1.

x2 + y2 = 1 characteristic
curves

x

y

Figure 1. Projected characteristics of problem 2c.

(d) Compute

J(0, s) = det

[
∂tx(0, s) ∂sx(0, s)
∂ty(0, s) ∂sy(0, s)

]
= det

[
cos s − sin s
sin s cos s

]
= 1.

Thus, the transversality condition holds and the solution is unique in a neighborhood of Γ.
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Question 3. (20 pts) Consider the following initial-value problem:

ut + uux = 0 in (−∞,∞)× (0,∞)

u(x, 0) = h(x), −∞ < x <∞,
where h is a given function.

(a) Verify that

u(x, t) = h(x− tu(x, t))

gives an implicit solution for the initial-value problem.

(b) Show that there exist initial conditions h for which the solution u blows-up (i.e., forms a shock)
at a certain finite time t∗, and find a formula for t∗.

(c) Do there exist initial conditions h for which no shock occurs?

Solution 3. (a) Clearly u(x, 0) = h(x). Differentiating u(x, t) = h(x − tu(x, t)) with respect to t
gives

ut = h′(x− tu)(−u− tut),
and differentiating with respect to x produces.

ux = h′(x− tu)(1− tux).

Hence

ut + uux = −th′(x− tu)(ut + uux),

or

(1 + th′(x− tu))(ut + uux) = 0.

Hence ut + uux = 0 as long as 1 + th′(x − tu) 6= 0. Since 1 + th′(x − tu) = 0 is the condition for
shocks, we have shown that the given formula defines an implicit solution as long as shocks do not
occur.

(b) From the formula ux = h′(x− tu)(1− tux) computed above we obtain

ux =
h′

1 + th′
.

Hence, for h such that h′(s) < 0 for some s ∈ R, we obtain that ux blows-up at time

t∗ = − 1

h′(s)
.

(c) If h′(s) > 0 for all s, then no blow-up occurs (recall that t ≥ 0). From the formula (1 +
th′(x− tu))(ut + uux) = 0 derived in (a), we also see that u remains a solution for all t ≥ 0.
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Question 4. (25 pts) Consider the quasi-linear first order PDE:

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u), (1)

where a, b, and c are given functions. Assume that an initial condition u0 is given on a curve Γ in
R2, i.e.,

u = u0 on Γ. (2)

(a) Write the system of characteristic equations for (1). (You are not asked to derive the system
of characteristic equations, only to state it.)

(b) State conditions on a, b, c, and Γ that guarantee that equation (1) with initial condition (2)
has a unique solution in some neighborhood of Γ. Draw a picture illustrating the conditions you
stated and explain why they guarantee the existence and uniqueness of a solution. (You are not
asked to give a formal proof of your statement. Rather, you have to explain in words and with the
help of your picture why the stated result is true.)

(c) Explain why existence and/or uniqueness can fail when the conditions you stated in (b) are not
fulfilled. Draw a picture illustrating your argument. (Again, you are not asked to give a formal
proof, only to explain in words.)

Solution 4. (a) Parametrize the curve Γ by (x0(s), y0(s)), where s ∈ (α, β) (with possibly α = −∞
or β =∞). The system of characteristic equations is

ẋ = a(x, y, u),

ẏ = b(x, y, u),

u̇ = c(x, y, u),

with initial conditions

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s),

where u0(s) = u0(x0(s), y0(s)).

(b) Assume that Γ is a smooth curve and that a, b, and c are smooth functions in a neighborhood
of

Γ(s) = (x0(s), y0(s), u0(s)), s ∈ (α, β).

(As in class, we abuse the notation, denoting by Γ the initial curve in R2 and by Γ(s) the
parametrized curve in R3 that includes the initial condition u0, see Figure 2.) Suppose that
there exist a s0 ∈ (α, β) and a δ > 0 satisfying (s0 − 2δ, s0 + 2δ) ⊂ (α, β) and such that for
all s ∈ (s0 − 2δ, s0 + 2δ), it holds that

det

[
a(x0(s), y0(s), u0(s)) ∂sx0(s)
b(x0(s), y0(s), u0(s)) ∂sy0(s)

]
6= 0. (3)

Then, there exists a unique solution u to (1) satisfying (2) in a neighborhood of a portion of Γ
containing (x0(s), y0(s)) for s ∈ (s0 − δ, s0 + δ).

Condition (3) is the transversality condition. It guarantees that the (projected) characteristic
curves will be transversal to Γ for s ∈ (s0 − 2δ, s0 + 2δ). Hence, the characteristic curves starting
on Γ(s) will exist for a small time that is uniform in s ∈ (s0 − δ, s0 + δ). Furthermore, for such a
small time, the characteristic curves will be non-intersecting and their projection onto the xy-plane
will cover a neighborhood of (a portion of) Γ. Hence, their union will form a smooth parametrize
surface that yields the solution u.
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Geometrically, what is happening is illustrated in Figure 2. The meaning of (3) is that the
two-component vectors

(∂sx0(s), ∂sy0(s)) and (a(x0(s), y0(s), u0(s)), b(x0(s), y0(s), u0(s)))

are linearly independent, thus they are not a multiple of each other. This implies that the charac-
teristic curve tangent to the three-component vector

(a(x0(s), y0(s), u0(s)), b(x0(s), y0(s), u0(s)), c(x0(s), y0(s), u0(s)))

must be transverse to Γ(s), and leave Γ(s) in the x and y directions (note that (∂sx0(s), ∂sy0(s), ∂su0(s))
is tangent to curve Γ(s)). Therefore, the union of the characteristic curves forms a surface that
corresponds to u.

x

y

z
characteristic
curves

surface u(t, s)

(∂sx0(s), ∂sy0(s), ∂su0(s))
(a, b, c)

(a, b)

(∂sx0(s), ∂sy0(s))

Γ(s)

projected characteristic
curves

Γ

Figure 2. Geometric interpretation of the existence and uniqueness result when
the transversality condition holds.

(c) If the transversality condition fails for an interval of s values, then either the characteristic
curves starting at that interval coincide with the initial curve or they do not. In the latter case, this
means that the tangent vectors to the characteristic curves cannot be tangent to any parametrized
surface representing a solution u, as the union of the characteristic curves do not form the portion
of a graph in the x, y variables.

In the second case, we can choose any curve Γ̃ transversal to Γ and prescribe initial data on Γ̃.
We obtain a solution that also satisfy (2) since now Γ is a (projected) characteristic for the system,

hence contained in the solution constructed for the initial condition Γ̃.
The cases when the transversality condition fails are illustrated in Figures 3 and 4. The failure

of (3) means that the vectors

(∂sx0(s), ∂sy0(s)) and (a(x0(s), y0(s), u0(s)), b(x0(s), y0(s), u0(s)))

are linearly dependent, thus they are a multiple of each other. Hence, the vectors

(∂sx0(s), ∂sy0(s), ∂su0(s))
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and

(a(x0(s), y0(s), u0(s)), b(x0(s), y0(s), u0(s)), c(x0(s), y0(s), u0(s))),

are either a multiple of each other (Figure 4) or fail to be a multiple of each other only with
respect to the third component (Figure 3). In the later case, the characteristic curves are “above”
or “below” Γ(s). Hence, their union forms a surface containing Γ(s) that is “vertical.” But such
a vertical surface cannot be the graph of a function, hence no solution exists. In the case when
the above three-component vectors are a multiple of each other (Figure 4), the chacteristic curves
coincide with Γ(s). In particular, they will be characteristic curves of the solution with initial

conditions on Γ̃, providing a solution ũ. But since we can make infinitely many choices for Γ̃,
solutions are not unique.

x

y

z

characteristic
curves

(∂sx0(s), ∂sy0(s), ∂su0(s))

(a, b, c)

(a, b)

(∂sx0(s), ∂sy0(s))

Γ(s)

Surface containing Γ(s)
and to which (a, b, c)

is tangent

Γ

projected characteristic
curves

Figure 3. Geometric interpretation of the non-existence of solutions.
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z
characteristic
curves

(∂sx0(s), ∂sy0(s), ∂su0(s))

(a, b, c)

(a, b)

(∂sx0(s), ∂sy0(s))

Γ(s)

Γ

projected characteristic
curves

Γ̃

Γ̃(s)

solution ũ(t, s)

Figure 4. Geometric interpretation of the non-uniqueness of solutions.

Question 5. (20 pts) Consider the following initial-value problem for the wave equation in one
dimension:

utt − c2uxx = 0 in (−∞,∞)× (0,∞),

u(x, 0) = f(x),

ut(x, 0) = g(x),

(4)

(a) Solve (4) when f(x) = x2 and g(x) = 0.

(b) Assume now that c = 1 and

f(x) =

{
1, −2 ≤ x ≤ 0

0, otherwise,

and

g(x) =

{
−1, −1 ≤ x ≤ 1

0, otherwise.

Draw a diagram in the (x, t)-plane indicating the different regions where the solution is influenced
by the initial condition f and g and the regions where the solution is identically zero. (This is
similar to what was done in class. You do not have to find u.)

Solution 5. (a) By D’Alembert’s formula:

u(x, t) =
(x+ ct)2 + (x− ct)2

2
.
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(b) The regions are summarized in the Figure 5.

x− t = −2

x− t = 0

x− t = −1

x+ t = −1

x+ t = 0

x+ t = −2

x

t

x− t = 1

x+ t = 1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 5. Problem 5b.


