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MATH 3120 – INTRO DO PDES

The Schrödinger equation

1. Introduction

Our goal is to investigate solutions to the Schrödinger equation,

i~
∂Ψ

∂t
= − ~2

2µ
∆Ψ + VΨ, (1.1)

where i is the imaginary number i2 = −1; ~ = 1.51 × 10−27 erg s is Planck’s constant; µ is a
positive constant called the mass; V = V (t, x) : R × R3 → R is called the potential function; and
the unknown is the complex-valued function Ψ = Ψ(t, x) : R × R3 → C called the wave-function.
The variables t and x represent, respectively, the time and space variables.

The Schrödinger equation describes the dynamics of a particle of mass µ interacting with a
potential V , according to the laws of Quantum Mechanics. The physical interpretation of Ψ is as
follows. If U ⊆ R3, then ∫

U
|Ψ(t, x)|2 dx

represents the probability of finding the particle in the region U at a time t. In particular, one
must have ∫

R3

|Ψ(t, x)|2 dx = 1. (1.2)

Notice that, upon multiplying Ψ by a suitable constant, condition (1.2) can always be fulfilled as
long as ∫

R3

|Ψ(t, x)|2 dx <∞. (1.3)

Our treatment will be based on [FY, T, W], to which the student is referred for more details.

2. Separation of variables for a time-independent potential

We shall assume that V does not depend on time, i.e., V (t, x) = V (x). We will have to divide
several expressions by Ψ. In order to make this sensible, it will be assumed that Ψ does not vanish
(or, at least, does not vanish on an open set). Look for solutions of the form

Ψ(t, x) = T (t)ψ(x), (2.1)

Plugging (2.1) into (1.1) gives

i~
T ′

T
= − ~2

2µ

1

ψ
∆ψ + V,

The left-hand side depends only on t, whereas the right-hand side depends only on x. Thus, both
sides have to be equal to a constant, which we denote be E. Therefore

i~T ′ = ET, (2.2)
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and

− ~2

2µ
∆ψ + V ψ = Eψ. (2.3)

Equation (2.2) is easily solved. Its solution is

T (t) = e−
iE
~ t, (2.4)

where we ignored an arbitrary constant of integration (such constants will be neglected throughout,
as an overall constant of integration can be fixed at the very end via condition (1.2)).

2.1. The time-independent Schrödinger equation. We now focus on (2.3), known as the time-
independent Schrödinger equation. To solve it, we assume further that V is radially symmetric,
i.e., that V (x) = V (

√
x21 + x22 + x23) or, in spherical coordinates, that V = V (r). This assumption

suffices to treat many physical systems of interest.
Recall the expression for the Laplacian in spherical coordinates,

∆ = ∂2r +
2

r
∂r +

1

r2
∆S2 , (2.5)

where

∆S2 = ∂2φ +
cosφ

sinφ
∂φ +

1

sin2 φ
∂2θ (2.6)

is the Laplacian on the unit sphere, r ∈ [0,∞), φ ∈ [0, π], and θ ∈ [0, 2π). From now on we shall
work in spherical coordinates.

We suppose that

ψ(r, φ, θ) = R(r)Y (φ, θ). (2.7)

Plugging (2.7) into (2.3), and using (2.5),

− ~2

2µ

r2

R

(
R′′ +

2

r
R′
)

+ (V − E)r2 =
~2

2µ

1

Y
∆S2Y.

Since the left-hand side depends only on r and the right-hand side only on (φ, θ), both sides must
be equal to a constant, which we denote by −a. Thus,

− ~2

2µ

(
R′′ +

2

r
R′
)

+
(
V +

a

r2

)
R = ER, (2.8)

and

~2

2µ
∆S2Y = −aY. (2.9)

2.2. The angular equation. We first investigate (2.9), which, in light of (2.6), becomes

∂2φY +
cosφ

sinφ
∂φY +

1

sin2 φ
∂2θY = −2aµ

~2
Y.

Supposing

Y (φ, θ) = Φ(φ)Θ(θ), (2.10)

one gets

−Θ′′

Θ
=

sin2 φ

Φ
Φ′′ +

sinφ cosφ

Φ
Φ′ +

2aµ sin2 φ

~2
. (2.11)
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Once more, both sides ought to be equal to a constant, which we denote by b. One equation
becomes

Θ′′ = −bΘ. (2.12)

To solve (2.12), we need to analyze the cases b > 0, b = 0, and b < 0. Notice the following boundary
condition: the points with coordinates θ and θ + 2π must be identified as they correspond to the
same point in R3. Thus,

Θ(θ + 2π) = Θ(θ). (2.13)

We immediately see that the case b < 0 does not yield a solution satisfying (2.13); b = 0 and (2.13)

give Θ =constant; and b > 0 along with (2.13) give that Θ is a linear combination of cos(
√
bθ) and

sin(
√
bθ). All these cases can be summarized by setting

b = m2, m ∈ Z, (2.14)

and writing

Θ(θ) = eimθ. (2.15)

Next, we move to the Φ-equation. From (2.11) and (2.14), one has

sinφ

Φ

d

dφ

(
sinφ

dΦ

dφ

)
−m2 = −λ sin2 φ, (2.16)

where

λ =
2µ

~2
a, (2.17)

and we used the product rule to rewrite the terms involving derivatives. In order to solve (2.16),
let us make the following change of variables,

x = cosφ, 0 ≤ φ ≤ π.

Notice that this change of variables is well-defined since cos is one-to-one for 0 ≤ φ ≤ π. The chain
rule gives

sinφ
d

dφ
= sinφ

dx

dφ

d

dx
= − sin2 φ

d

dx
= (cos2 φ− 1)

d

dx
= (x2 − 1)

d

dx
,

so that (2.16) becomes

d

dx

(
(1− x2)dΦ

dx

)
+

(
λ− m2

1− x2

)
Φ = 0. (2.18)

To solve (2.18), we seek for a solution of the form

Φ(x) = (1− x2)
|m|
2
d|m|P (x)

dx|m|
, (2.19)

where P solves

(1− x2)d
2P

dx2
− 2x

dP

dx
+ λP = 0. (2.20)

To see that this works, differentiate (2.20) |m| times, obtaining

(1− x2)d
|m|+2P

dx|m|+2
− 2(|m|+ 1)x

d|m|+1P

dx|m|+1
+ (λ− |m|(|m|+ 1))

d|m|P

dx|m|
= 0. (2.21)
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Students are encouraged to verify (2.21) (compute the first few derivatives to see that a pattern as

(2.21) emerges). On the other hand, let Φ̃ be defined by

Φ(x) = (1− x2)
|m|
2 Φ̃(x) (2.22)

and plug this into (2.18). Computing the derivative terms,

d

dx

(
(1− x2) d

dx

(
(1− x2)

|m|
2 Φ̃
))

=
d

dx

(
|m|
2

(−2x)(1− x2)
|m|
2 Φ̃ + (1− x2)

|m|
2

+1dΦ̃

dx

)

= (1− x2)
|m|
2

+1d
2Φ̃

dx2
+ (1− x2)

|m|
2
dΦ

dx

((
|m|
2

+ 1

)
(−2x) +

|m|
2

(−2x)

)
+
|m|
2

(
(−2x)

|m|
2

(1− x2)
|m|
2
−1(−2x)− 2(1− x2)

|m|
2

)
Φ̃

= (1− x2)
|m|
2

+1d
2Φ̃

dx2
− 2x(1− x2)

|m|
2 (|m|+ 1)

dΦ̃

dx
+
|m|
2

(1− x2)
|m|
2

(
2|m|x2

1− x2
− 2

)
Φ̃

= (1− x2)
|m|
2

(
(1− x2)d

2Φ̃

dx2
− 2x (|m|+ 1)

dΦ̃

dx
+ |m|

(
|m|x2

1− x2
− 1

)
Φ̃

)
.

By (2.18), this has to equal

−
(
λ− m2

1− x2

)
Φ =

(
λ− m2

1− x2

)
(1− x2)

|m|
2 Φ̃(x),

what gives, after canceling (1− x2)
|m|
2 ,

(1− x2)d
2Φ̃

dx2
− 2x (|m|+ 1)

dΦ̃

dx
+ λΦ̃ +

(
|m|2x2

1− x2
− |m| − |m|2

1− x2

)
Φ̃ = 0.

But

|m|2x2

1− x2
− |m| − |m|2

1− x2
=
|m|(|m|+ 1)x2 − |m|(|m|+ 1)

1− x2
= −|m|(|m|+ 1),

and therefore

(1− x2)d
2Φ̃

dx2
− 2x (|m|+ 1)

dΦ̃

dx
+ (λ− |m|(|m|+ 1)) Φ̃ = 0. (2.23)

Comparing (2.23) with (2.21), we see that if P solves (2.20), then (2.22) solves (2.18), as claimed.
Therefore, it suffices to solve (2.20). We seek a power series solution of the form

P (x) =
∞∑
k=0

akx
k. (2.24)

Plugging (2.24) into (2.20) gives

(1− x2)
∞∑
k=0

k(k − 1)akx
k−2 − 2x

∞∑
k=0

kakx
k−1 + λ

∞∑
k=0

akx
k = 0,

or yet, after rearranging some terms,
∞∑
k=0

((k + 2)(k + 1)ak+2 − (k(k + 1)− λ)ak)x
k = 0,
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which implies the following recurrence relation,

ak+2 =
k(k + 1)− λ

(k + 1)(k + 2)
ak, k = 0, 1, 2, . . . . (2.25)

Relation (2.25) determines all coefficients ak except for a0 and a1, which remain arbitrary (this
is consistent with the fact that we are solving a second order ODE). Furthermore, a0 determines
all even coefficients, giving rise to an even power series, while while a1 determines all odd coeffi-
cients, giving rise to an odd power series. These two power series, even and odd, are two linearly
independent solutions of (2.20).

Next, we investigate the convergence of (2.24). Since it suffices to investigate the convergence of
the even and odd expansions separately, as these are two linearly independent solutions, the ratio
between two consecutive terms in the expansion is obtained from (2.25), yielding

lim
k→∞

∣∣∣∣ak+2x
x+2

akxk

∣∣∣∣ = |x|2,

and thus (2.24) converges for |x| < 1 by the ratio test. We need to investigate the case |x| = 1
(which corresponds to φ = 0 or φ = π). Plugging x = ±1 into (2.24) gives

P (±1) = ±
∞∑
k=0

ak. (2.26)

From (2.25) we have

ak+2 =
k2 +O(k)

k2 +O(k)
ak =

k2 +O(k)

k2 +O(k)

k2 +O(k)

k2 +O(k)
ak−2 = · · · =


kk+2+O(kk+1)
kk+2+O(kk+1)

a0, k even,
kk+1+O(kk)
kk+1+O(kk)

a1, k odd.

It follows that

lim
k→∞

ak 6= 0,

and therefore (2.26) diverges by the divergence test, unless (2.24) is in fact a finite sum; i.e., unless
ak = 0 for all k greater than a certain `. Hence, we must have, form some non-negative integer `,

a`+2 = 0 =
`(`+ 1)− λ

(`+ 1)(`+ 2)
a`,

which implies

λ = `(`+ 1), (2.27)

provided that a` 6= 0. Relation (2.27) determines λ, and hence the separation constant a in view
of (2.17). The conclusion is that there is a family {P`} of solutions to (2.20) parametrized by
` = 0, 1, 2, . . . . After conveniently choosing a0 and a1 to obtain integer coefficients, the first few
P ’s are

P0(x) = 1, P1(x) = x, P2(x) = 1− 3x2, P3(x) = 3x− 5x3.

Since P` is a polynomial of degree `, from (2.19) it follows that Φ = 0 for |m| > `. Thus, the values
of m are restricted to |m| ≤ `, i.e., the allowed m-values depend on ` and satisfy

m ∈
{
− `,−`+ 1, . . . ,−1, 0, 1, . . . , `− 1, `

}
. (2.28)
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We write m = m` when we want to stress this dependence of m on `. One obtains a family of
solutions {Φ`m`} to (2.18) parametrized by ` and m`, where ` = 0, 1, 2, . . . and m` satisfies (2.28).
The first few Φ’s are

Φ00(x) = 1,

Φ10(x) = x, Φ1,±1(x) = (1− x2)
1
2 ,

Φ20(x) = 1− 3x2, Φ2±1(x) = (1− x2)
1
2x, Φ2±2(x) = 1− x2,

Φ30(x) = 3x− 5x3, Φ3±1(x) = (1− x2)
3
2 (1− 5x2), Φ3±2(x) = (1− x2)x, Φ3±3(1− x2)

3
2 .

Finally, it is necessary to rewrite our solutions in terms of the φ variable. Denoting

F`m` = Φ̃`m` ,

and using 1− x2 = sin2 φ,

Φ`m`(φ) = sin|m`| F`m`(cosφ), ` = 0, 1, 2, . . . , |m`| ≤ `. (2.29)

Combining (2.10), (2.15), and (2.29) gives

Y`m`(φ, θ) = eim`θ sin|m`| φF`m`(cosφ), ` = 0, 1, 2, . . . , |m`| ≤ `. (2.30)

Notice that, in view of (2.9) and (2.17), Y`,m` solves

∆S2Y`m` = −`(`+ 1)Y`m` .

We finish this section with some terminology. Equation (2.20) is known as Legendre equation, and
its solutions P` are known as Legendre polynomials. The functions F`m` are known as associated
Legendre functions. The functions Y`m` are called spherical harmonics. Legendre functions and
spherical harmonics have many important applications in Physics. The interested reader is referred
to [B] for details.

2.3. The radial equation. We now turn our attention to equation (2.8). Using (2.17) and (2.27),
equation (2.8) can be written as

1

r2
d

dr

(
r2
dR

dr

)
+

2µ

~2
(E − V (r))R = `(`+ 1)

R

r2
. (2.31)

It is important to stress that the results of section 2.2 are general, i.e., they apply to separation
of variables to any radially symmetric potential V = V (r). To solve (2.31), on the other hand,
we need to specify the function V (r). We shall assume that V is the potential describing the
electromagnetic interaction of an electron with a nucleus. This covers the important case when one
is solving the Schrödinger equation describing the evolution of an electron on a hydrogen atom. In
this situation, V takes the form

V (r) = − Ze2

4πε0r
, (2.32)

where Z is the nuclear charge (for example, Z = 1 for the hydrogen and Z = 2 for an ionized
helium atom), −e is the electron charge, where e = 1.6×10−19C, and ε0 is the vacuum permitivity
whose values is ε0 = 8.85 × 10−12 F/m (farads per meters). In order to investigate solutions to
(2.31) with V given by (2.32), one needs more information about the separation constant E.

We claim that E must be real and negative. To see this, multiply equation (2.31) by r2R∗, where
R∗ is the complex conjugate of R, and integrate from 0 to ∞:∫ ∞

0
R∗

d

dr

(
r2
dR

dr

)
dr − 2µ

~2

∫ ∞
0

V |R|2r2 dr − `(`+ 1)

∫ ∞
0
|R|2 dr = −2µ

~2
E

∫ ∞
0
|R|2r2 dr, (2.33)
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where we used that |R|2 = R∗R. Integrating by parts the first term,∫ ∞
0

R∗
d

dr

(
r2
dR

dr

)
dr = −

∫ ∞
0

dR∗

dr

dR

dr
r2 dr +R∗r2

dR

dr

∣∣∣∞
0

= −
∫ ∞
0

dR∗

dr

dR

dr
r2 dr (2.34)

where it has been assumed that R∗ and dR
dr vanish sufficiently fast at ∞. Writing

R = RR + iRC ,

where RR and RC are real-valued, it comes

dR∗

dr

dR

dr
= (

dRR
dr
− idRC

dr
)(
dRR
dr

+ i
dRC
dr

) =

(
dRR
dr

)2

+

(
dRC
dr

)2

,

and we conclude that dR∗

dr
dR
dr is real-valued. But from (2.33) and (2.34) we have

E =

∫∞
0

dR∗

dr
dR
dr r

2 dr + 2µ
~2
∫∞
0 V |R|2r2 dr + `(`+ 1)

∫∞
0 |R|

2 dr
2µ
~2
∫∞
0 |R|2r2 dr

. (2.35)

Therefore, since all terms on the right-hand side are real, we conclude that E is real as well.
Students should notice that (2.35) gives an explicit expression for E in terms of (the integral of)
R and other data of the problem (although we shall derive a much more explicit expression for E,
see below).

Now that we know that E is real, let us show that it is negative1. Let us investigate the behavior
of (2.31) for large values of r, i.e., r � 1. Then we can neglect the terms that contain 1

r and (2.31)

gives, after expanding the terms in d
dr ,

d2R

dr2
≈ −2µE

~2
R. (2.36)

But for r � 1 we also have the approximation

r
d2R

dr2
+
dR

dr
≈ rd

2R

dr2
,

so that

d2(rR)

dr2
= r

d2R

dr2
+ 2

dR

dr
≈ rd

2R

dr2
. (2.37)

Hence, multiplying (2.36) by r and using (2.37),

d2(rR)

dr2
≈ −2µE

~2
(rR).

This approximate equation can be easily solved, producing

rR ≈ e±
√
−2µE
~ r.

If E ≥ 0, then R is a complex function which satisfies

|rR| ≈ 1 for r � 1.

Then the integral∫
R3

|Ψ(t, x)|2 dx =

(∫ 2π

0

∫ π

0
|Y (φ, θ)|2 sinφdφdθ

)(∫ ∞
0
|R(r)|2r2 dr

)
diverges since |R(r)|2r2 ≈ 1 for large r. Consequently, condition (1.3) fails, and this does not
produce a physically sensible solution.

1It is possible to obtain E < 0 by a more delicate analysis of (2.35), but here we employ a simpler argument.
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In light of the above arguments, we assume, once and for all, that E < 0. In this case, we can
define the real constants

β2 = −2µE

~2
, (2.38)

and

γ =
µZe2

4πε0~2β
, (2.39)

and make the real change of variables

% = 2βr.

With these definitions, equation (2.31), with V given by (2.32), becomes

1

%2
d

d%

(
%2
dR

d%

)
+

(
−1

4
− `(`+ 1)

%2
+
γ

%

)
R = 0. (2.40)

Equation (2.40) will be solved using a power series expansion, but direct application of the method
does not work. To see this, try plugging

R(%) =

∞∑
k=0

ak%
k

into (2.40), obtaining
∞∑
k=0

k(k + 1)ak%
k−2 − 1

4

∞∑
k=0

ak%
k − `(`+ 1)

∞∑
k=0

ak%
k−2 + γ

∞∑
k=0

ak%
k−1 = 0.

This can be rewritten as

−`(`+ 1)a0%
−2 + ((2− `(`+ 1))a1 + γa0) %

−1

+

∞∑
k=0

(
((k + 3)(k + 2)− `(`+ 1)) ak+2 + γak+1 −

1

4
ak

)
%k = 0. (2.41)

Vanishing of each term order by order implies that a0 = 0, then a1 = 0, and subsequently ak = 0
for any k, so R = 0. We need, therefore, to try a different approach.

We shall focus on the behavior of (2.40) when %� 1, in which case the equation simplifies to

1

%2
d

d%

(
%2
dR

d%

)
≈ R

4
. (2.42)

This (approximate) equation can be solved as follows. Look for a solution of the form eA%. Plugging

into the equation we find A = −1
2 , i.e., e−

%
2 is a (approximate) solution of (2.42). This suggests2

looking for solutions of (2.40) in the form

R(%) = e−
%
2G(%). (2.43)

Plugging (2.43) into (2.40) gives an equation for G,

d2G

d%2
+

(
2

%
− 1

)
∂G

∂%
+

(
γ − 1

%
− `(`+ 1)

%2

)
G = 0. (2.44)

2The reader may remember that when one solves second order ODEs with constant coefficients, sometimes we
have to multiply a solution by a suitable power of the variable in order to produce a particular solution or a second
linearly independent solution. What it is being done here resembles that: we have some information about solutions,

i.e., that e−
%
2 solves the equation (in an approximate sense) for large values of %. Thus, we try multiplying by e−

%
2

to construct the full, exact solution.
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We seek a solution of the form

G(%) = %s
∞∑
k=0

ak%
k =

∞∑
k=0

ak%
k+s, (2.45)

where s is to be determined. The term %s has been included due to the 1
% terms in the equation, as

these may lead to singular terms that do not fit into a general recurrence relation, as it occurred in
(2.41). Notice that the traditional procedure is included in this approach by simply setting s = 0.

Plugging (2.45) into (2.44) gives, after some algebra,

(s(s+ 1)− `(`+ 1)) a0%
s−2

+
∞∑
k=0

(
((s+ k + 1)(s+ k + 2)− `(`+ 1))ak+1 − (s+ k + 1− γ)ak

)
%s+k−1 = 0.

(2.46)

The vanishing of the term in %s−2 requires

s(s+ 1)− `(`+ 1) = 0,

which has roots s = ` and s = −(` + 1). This latter root is rejected on the basis that it does not
yield a finite solution when %→ 0+, i.e., G(%) blows up at the origin when s = −(`+ 1) (recall that
` is non-negative).

Using s = `, one finds from (2.46) the following recurrence relation,

ak+1 =
k + `+ 1− γ

(k + `+ 1)(k + `+ 2)− `(`+ 1)
ak. (2.47)

From (2.47) and the ratio test, we see at once that (2.45), with s = `, converges for all values of %.
In order for (2.45) to be an acceptable solution, we also must verify (1.3). From (2.47), it follows

that

ak+1 =
k + · · ·
k2 + · · ·

ak =
1 + · · ·
k + · · ·

ak,

and

ak =
k − 1 + · · ·

(k − 1)2 + · · ·
ak−1 =

1 + · · ·
(k − 1) + · · ·

ak−1,

so that

ak+1 =
1 + · · ·
k + · · ·

ak =
1 + · · ·
k + · · ·

1 + · · ·
(k − 1) + · · ·

ak−1

=
1 + · · ·

k(k − 1) + · · ·
ak−1.

Continuing this way,

ak+1 =
1 + · · ·

k(k − 1)(k − 2) · · · (k − j) + · · ·
ak−j .

Remembering that

e% =

∞∑
k=0

1

k!
%k,

we see that G(%) is asymptotic to %se%, i.e., its series expansion behaves very much like the series
of %`e% (recall that s = `):

G(%) ∼ %`e%,
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which implies, upon recalling (2.43),

R(%) = e−
%
2G(%) ∼ e−

%
2 %`e% = %`e

%
2 ,

which diverges when %→∞. As a consequence, (1.3) is not satisfied. This will be the case, unless
the series (2.45) terminates, i.e., unless ak = 0 for all k greater than a certain n. From (2.47), this
means

k + `+ 1− γ = 0,

i.e.,

γ = k + `+ 1.

In particular, γ has to be an integer,

γ = n, n = `+ 1, `+ 2, . . . .

With this, the series terminates at the (n− (`+ 1))th term, and G is a polynomial of degree n− 1.
Recalling (2.38) and (2.39), we have found the possible values for the separation constant E = En,
namely,

En = − µZ2e4

2(4πε0)2~2n2
, n = 1, 2, 3, . . . (2.48)

We write Rn` to indicate that R is parametrized by the integers n and `, with n = `, `+ 1, . . . . We
can now write, for each n, the corresponding Rn` by using (2.47) to find the polynomial G = Gn`,
and then Rn` via (2.43). Unwrapping all our definitions,

Rn`(r) = e
− Zr
nα0

(
Zr

nα0

)`
Gn`

(
Zr

nα0

)
,

where

α0 =
4πε0~2

µe2
.

In light of (2.7), we see that ψ is also parametrized by n, `, and m`. Instead of thinking of n varying
according to n = `, ` + 1, . . . , we can equivalently think of ` as constrained by ` = 0, 1, . . . , n − 1,
for each given n = 1, 2, . . . , what is more convenient in order to organize the parameters n, `,m`.
We obtain, therefore, a family of solutions to (2.3),

ψn`m` = Rn`Y`m` , (2.49)

where

n = 1, 2, 3, . . . ,

` = 0, 1, 2, . . . , n− 1,

m` = −`,−`+ 1, . . . , 0, . . . , `− 1, `.

(2.50)

Our final solution is then given, in view of (2.1) and (2.4), by

Ψ(t, x) = An`m`e
− iEn~ tψn`m` ,

where n, `, and m` satisfy (2.50), En and ψn`m` are given by (2.48) and (2.49), respectively, and
An`m` is a constant (depending on n, `, and m`) that ensures (1.2), i.e., An`m` is given by

An`m` =

(∫
R3

|ψn`m` |
2

)− 1
2

.
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The term e−
iEn
~ t does not contribute to |Ψ|2 (since (e−

iEn
~ t)∗(e−

iEn
~ t) = (e+

iEn
~ t)(e−

iEn
~ t) = 1). It

is customary to absorb the constant An`m` into ψn`m` , in which case∫
R3

|ψn`m` |
2 = 1.

Or course, (1.2) is automatically satisfied in this case.

3. Final comments

We close with some remarks about the physical meaning of the problem we just described.
Readers are referred to [W] for a more thorough physical discussion. Below, we list some the first
few ψn`m` .

n ` m` ψn`m`

1 0 0 ψ100 = 1√
π

(
Z
a0

) 3
2
e
−Zr
a0

2 0 0 ψ200 = 1
4
√
2π

(
Z
a0

) 3
2
(

2− Zr
a0

)
e
− Zr

2a0

2 1 0 ψ210 = 1
4
√
2π

(
Z
a0

) 3
2 Zr
a0
e
− Zr

2a0 cosφ

2 1 ± 1 ψ21±1 = 1
8
√
2π

(
Z
a0

) 3
2 Zr
a0
e
− Zr

2a0 sinφe±iθ

3 0 0 ψ300 = 1
81
√
3π

(
Z
a0

) 3
2
(

27− 18Zra0 + 2Z
2r2

z20

)
e
− Zr

3a0

3 1 0 ψ310 =
√
2

81
√
π

(
Z
a0

) 3
2
(

6− Zr
a0

)
Zr
a0
e
− Zr

3a0 cosφ

3 1 ± 1 ψ31±1 =
√
2

81
√
π

(
Z
a0

) 3
2
(

6− Zr
a0

)
Zr
a0
e
− Zr

3a0 cosφe±iθ

3 2 0 ψ320 = 1
81
√
6π

(
Z
a0

) 3
2 Z2r2

a20
e
− Zr

3a0 (3 cos2 φ− 1)

3 2 ± 1 ψ32±1 = 1
81
√
π

(
Z
a0

) 3
2 Z2r2

a20
e
− Zr

3a0 sinφ cosφe±iθ

3 2 ± 2 ψ32±2 = 1
262
√
π

(
Z
a0

) 3
2 Z2r2

a20
e
− Zr

3a0 sin2 φe±2iθ

It is possible to show that the constants En, `(`+1), and m` have important physical interpretation:
En corresponds to the electron energy, `(`+ 1) to the magnitude of its orbital angular momentum,
and m` to the projection of the orbital angular momentum onto the z-axis. The reader should notice
that these quantities cannot be arbitrary, being allowed to take values only on a countable set of
multiples of integers. This is a distinctive feature of Quantum Mechanics (we say that the energy
and orbital angular momentum are “quantized”). The indices n, `, and m` are called quantum
numbers.

One-electron atoms with ` = 0, 1, 2, 3 are labeled s, p, d, f . In hydrogen and hydrogen-like atoms,
this letter is preceded by a number giving the energy level n. Thus, the lowest energy state of the
hydrogen atom is 1s; the next to the lowest are 2s and 2p; the next 3s, 3p, 3d and so on. These are
the so-called “atomic orbitals” that the student is likely to have learned in Chemistry. Remem-
bering that |Ψ|2 is a probability density, what these orbitals represent are “clouds of probability,”
highlighting the regions of three-dimensional space where it is more likely to find the electron. A
few illustrations of the atomic orbitals are given in Figures 1, 2, and 3. These figures were generated
with the Mathematica package Visualizing Atomic Orbitals that can be found at

http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/

http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
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Figure 1. An illustration of the
orbital 1s (n = 1, ` = 0,m` = 0).

Figure 2. An illustration of the
orbital 2p (n = 2, ` = 1,m` = 0).

Figure 3. An illustration of the orbital 3d (n = 3, ` = 2,m` = 0).

We finish mentioning that in a more detailed treatment of the problem, µ is not exactly the
mass of the particle being described, but rather the reduced mass of the system. This is because,
strictly speaking, the electron does not orbit the nucleus, but both orbit the center of mass of the
system electron–nucleus. This is very much like the situation of the Earth orbiting the Sun: both
bodies move due to their reciprocal gravitational attraction, although the Sun, begin much more
massive, barely feels the pull caused by Earth’s gravitational field, and that is why one usually
thinks of the Earth orbiting an standing-still Sun. A similar situation occurs for the nucleus and
the electron. We remark, however, that the calculations we presented apply, with no change, to
this more accurate situation: we only have to change the value of µ to be the reduced mass.
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