
VANDERBILT UNIVERSITY

MATH 2610 – ORDINARY DIFFERENTIAL EQUATIONS

Test 1 – Solutions

NAME: Solutions.

Directions. This exam contains seven questions and an extra credit question. Make sure you
clearly indicate the pages where your solutions are written. Answers without justification will re-
ceive little or no credit. Write clearly, legibly, and in a logical fashion. Make precise statements (for
instance, write an equal sign if two expressions are equal; say that one expression is a consequence
of another when this is the case, etc.).

If you need to use a theorem that was stated in class, you do not need to prove it, unless a
question explicitly says so. You do need, however, to state the theorems you invoke.

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (10 pts)
2 (10 pts)
3 (15 pts)
4 (20 pts)
5 (20 pts)
6 (20 pts)
7 (05 pts)

Extra Credit (10 pts)
TOTAL (100 pts)
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Question 1. (10 pts) For each equation below, identify the unknown function, classify the equation
as linear or non-linear, and state its order.

(a)
√
y
dy

dx
+ x2y = 0.

(b) u′′ + u = cosx

(c) x′′′ = − sinxx′.

Solution 1. (a) Unknown: y. Non-linear. First order.
(b) Unknown: u. Linear. Second order.
(c) Unknown: x. Non-linear. Third order.
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Question 2. (10 pts) Consider a tank holding 100 gal of brine with a concentration of 2 lb of salt
per gallon. A solution of salt begins to flow at a constant rate of 5 gal/min. The solution inside the
tank is kept well stirred and is flowing out of the tank at a rate of 5 gal/min. The concentration of
salt in the brine entering the tank is 3 lb per gal.

(a) Find an initial value problem whose solution gives the amount of salt in the tank at time t.

(b) What is the maximum concentration that can be reached inside the tank?

Solution 2. (a) Denote by x(t) the amount of salt in the tank at time t. We have

dx

dt
= in − out

= 5
gal

min
3
lb

gal
− 5

gal

min

x

100

lb

gal

= 15
lb

min
− 5

100
x

lb

min.

Since x(0) = 2(lb/gal) 100gal, we have

dx

dt
+

5

100
x = 15,

x(0) = 200.

(b) The equation is a first order linear differential equation with P (t) = 5/100 and Q(t) = 15. We
will use the formula

x(t) = e−
∫
P (t) dt(

∫
Q(t)e

∫
P (t) dt dt+ C),

where C is an arbitrary constant.

We find

x(t) = e−
∫

5
100

dt(

∫
15e

∫
5

100
dt dt+ C)

= e−
5

100
t(15

∫
e

5
100

t dt+ C)

= e−
5

100
t(

15× 100

5
e

5
100

t + C)

= 300 + Ce−
5

100
t.

To determine C, we use the initial condition

x(0) = 200 = 300 + Ce0 ⇒ C = −100.

Thus

x(t) = 300− 100e−
5

100
t.

Because e−
5

100
t is a decreasing function, x(t) increases with t and is asymptotic to

lim
t→∞

x(t) = 300.

Thus the maximum concentration is 300lb/(100gal) = 3lb/gal.
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Question 3. (15 pts) Find the general solution of the given differential equation.

(a) x′ − x2 = 0.

(b) x′′ + 5x′ + 6x = e2t.

(c) y′ = −4x3 + y

4y3 + x
.

Solution 3. (a) This is a separable equation. For x 6= 0

dx

x2
= dt⇒ 1

x
= −t+ C ⇒ x =

1

C − t
,

where C is an arbitrary constant. We immediately verify that x = 0 is also a solution, hence the
general solution is x = 1/(C − t) or x = 0.

(b) This is a linear second order inhomogeneous equation. The characteristic equation is λ2 +
5λ+ 6 = (λ+ 2)(λ+ 3) = 0. Hence xh = c1e

−2t + c2e
−3t, where c1 and c2 are arbitrary constants,

is the general solution of the associated homogeneous equation. Since this does not contain e2t, we
seek a particular solution in the form xp = Ae2t, A constant. Plugging in produces

4A+ 10A+ 6A = 1⇒ A =
1

20
.

The general solution is x = c1e
−2t + c2e

−3t + 1
20e

2t.
(c) Write the equation as

(4x3 + y) dx+ (4y3 + x) dy = M dx+N dy = 0.

Then, ∂yM = 1 = ∂xN and this is an exact equation. Set

F (x, y) =

∫
(4x3 + y) dx = x4 + xy + g(y).

Next,

∂yF = x+ g′(y) = N = x+ 4y3 ⇒ g′(t) = 4y3 ⇒ g(y) = y4.

The general solution is thus

x4 + xy + y4 = C,

where C is an arbitrary constant.
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Question 4. (20 pts) Give the form of the particular solution for the given differential equations.
You do not have to find the values of the constants of the particular solution.

(a) x′′ − 3x′ + 2x = e2t.

(b) x′′ + 9x = sin t.

(c) x′′ − x = 3t2 + 1.

(d) x′′ + x′ − 2x = e−2t + et.

Solution 4. (a) The characteristic equation is (λ − 1)(λ − 2) = 0, so et and e2t are two linearly
independent solutions of the associated homogeneous equation. Since the inhomogeneous term
repeats one of these solutions, we have

xp = Ate2t,

where A is a constant.
(b) The characteristic equation is λ2 + 9 = 0, so cos(3t) and sin(3t) are two linearly independent

solutions of the associated homogeneous equation. Since the inhomogeneous term does not repeat
either of these solutions, we have

xp = A cos t+B sin t,

where A and B are constants.
(c) The characteristic equation is λ2−1 = 0, so et and e−t are two linearly independent solutions

of the associated homogeneous equation. Since the inhomogeneous term does not repeat either of
these solutions, we have

xp = At2 +Bt+ C,

where A, B, and C are constants.
(d) The characteristic equation is (λ+ 2)(λ− 1) = 0, so e−2t and et are two linearly independent

solutions of the associated homogeneous equation. Each inhomogeneous term repeats one of these
solutions. Thus, we have

xp = Ate−2t +Btet,

where A and B are constants.
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Question 5. (20 pts) Consider the following initial value problem:

y′ −√y − xy2 = 0,

y(1) = a.

Determine for which values of a this problem admits a unique solution.

Solution 5. Write the equations as y′ = f(x, y), with f(x, y) =
√
y+ xy2. Note that this problem

is not defined for y < 0.
By the the existence and uniqueness theorem for first order equations seen in class, a solution

satisfying y(x0) = y0 will exist and be unique in a neighborhood of x = x0 if ∂yf exists and is
continuous in a neighborhood of (x0, y0).

In our case, ∂yf(x, y) = 1
2

1√
y + 2xy, which is continuous and well-defined for all x and all y > 0.

Hence, the given initial value problem admits a unique solution if a > 0.
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Question 6. (20 pts) True or false? Justify your answers.

(a) If p(x) and q(x) are continuous functions on the interval (a, b), then the initial value problem

y′(x) + p(x)y(x) = q(x),

y(x0) = y0,

always admits a unique solution for any given x0 ∈ (a, b) and y0 ∈ R.

(b) Given the equation

M(x, y) dx+N(x, y) dy = 0,

it is always possible to find a function F = F (x, y) such that ∂F
∂x = M , ∂F

∂y = N , and the general

solution of the differential equation is given by F (x, y) = C, where C is an arbitrary constant.

(c) If a, b, and c are constants and a 6= 0, the equation

ax′′ + bx′ + cx = 0,

always admits two linearly independent solutions x1(t) and x2(t) that are defined for all t ∈ R.

(d) If x1 and x2 are two functions such that their Wronskian vanishes, then they are linearly
dependent.

Solution 6. (a) True. This follows from the existence and uniqueness theorem for linear first order
equations seen in class.

(b) False. According to the study of such equations developed in class, the statement is true if
∂yM = ∂xN .

(c) True. In class, we established that if λ1 and λ2 are the two roots of the characteristic equation,
then the two linearly independent solutions are given by eλ1t and eλ2t if λ1 6= λ2 are real, eλt and
teλt if λ1 = λ2 = λ, and eαt cos(βt) and eαt sin(βt) if λ1 = α+ iβ, β 6= 0.

(d) False. This is true if x1 and x2 are also solutions to a second order linear differential equation.
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Question 7. (05 pts) State and prove the superposition principle for second order linear differential
equations with constant coefficients.

Solution 7. Statement: if x1 and x2 are solutions to ax′′ + bx′ + cx = f1 and ax′′ + bx′ + cx = f2,
respectively, where a, b, c are constants and a 6= 0, then x1+x2 is a solution to ax′′+bx′+cx = f1+f2.

Proof: Plug x1 + x2 into ax′′ + bx′ + cx to find

a(x1 + x2)
′′ + b(x1 + x2)

′ + c(x1 + x2) = ax′′1 + bx′1 + cx1 + ax′′2 + bx′2 + cx2

= f1 + f2.
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Extra credit question. (10 pts) Let M = M(x, y) and N = N(x, y) be two functions such that
their partial derivatives exist and are continuous in a rectangle R ⊆ R2. Prove that the differential
equation

M(x, y) dx+N(x, y) dy = 0

is exact if and only if the compatibility condition

∂M(x, y)

∂y
=
∂N(x, y)

∂x

holds for every (x, y) ∈ R.

Solution to the extra credit. See the class notes.


