
VANDERBILT UNIVERSITY

MATH 2610 – ORDINARY DIFFERENTIAL EQUATIONS

Practice for test 2

The second test will cover all material discussed from (including) section 4.6 to (including) section
9.8, with the exception of the Cauchy-Euler equation (i.e., Cauchy-Euler will not be on the test),
plus sections 1.3 and 1.4.

Question 1. Consider the equation

x2y′′ − 2y = 0, x > 0.

The functions y1 = x2 and y2 = x−1 are solutions of the differential equation (you do not have to
show this). Are y1 and y2 linearly independent?

Solution 1. Because y1 and y2 are solutions to the equations, linear dependence/independence
can be decided by the Wronskian:

W (y1, y2)(x) = y1y
′
2 − y′1y2

= x2(−x−2)− 2xx−1

= −3 6= 0.

Therefore, y1 and y2 are linearly independent on (0,∞).
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Question 2. Match the direction fields with the given differential equations.

(a) y′ = −y
x

(b) y′ = cosx (c) y′ = y(1− 0.5y) (d) y′ = x
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Solution 2. (a) = D, (b) = A, (c) = C, (d) = B.
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Question 3. For the systems x′ = Ax+ f given below:

(a) Find the general solution if

A =

[
1 1
0 2

]
and f(t) = e−2t

[
t
3

]
.

(b) State the form of the particular solution if

A =

[
−1 0

2 2

]
and f(t) =

[
t2

t+ 1

]
.

Solution 3. (a) First we solve x′ = Ax. The eigenvalues of A are 1 and 2, and corresponding
eigenvectors are (1, 0) and (1, 1). Thus,

xh = c1e
t

[
1
0

]
+ c2e

2t

[
1
1

]
.

The non-homogeneous term does not repeat any term of xh, thus we seek a particular solution
of the same form as f , i.e., xp = e−2t(ta + b), where a and b are two-component vectors to be
determined. Plugging in and carrying out some calculations, we find

xp = e−2t
[
−(1/3)t+ 5/36

−3/4

]
.

and the general solution is x = xh + xp.

(b) The eigenvalues of A are −1 and 2. The non-homogeneous term will not repeat any term of
the associated homogeneous equation and therefore

xp = t2a+ tb+ c,

where a, b, and c are two-component vectors.
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Question 4. Determine eA if

A =

 5 −4 0
1 0 2
0 2 5

 .
Solution 4. To find eA, we first compute eAt and then plug t = 1. eAt, in turn, can be computed
by finding a fundamental matrix to the system x′ = Ax.

Compute

det

 5− λ −4 0
1 −λ 2
0 2 5− λ

 = −λ(λ− 5)2,

so λ1 = 0 and λ2 = 5 are the eigenvalues, with λ2 of multiplicity two.
To find an eigenvector associated with λ1, we solve

5 −4 0
... 0

1 0 2
... 0

0 2 5
... 0

 .
Applying Gauss-Jordan elimination we find u1 = (−4,−5, 2), and x1 = e0tu1 = (−4,−5, 2) is a
solution to x′ = Ax.

Next, we move to λ2, and consider: 
0 −4 0

... 0

1 −5 2
... 0

0 2 0
... 0

 .
Applying Gauss-Jordan elimination, we find

1 0 2
... 0

0 1 0
... 0

0 0 0
... 0

 .
Thus, this system has only one free variable, yielding only one linearly independent eigenvector
which we can take to be u2 = (−2, 0, 1). Hence x2 = e5t(−2, 0, 1) is a second linearly independent
solution to x′ = Ax. To find a third linearly independent solution, we need to find a generalized
eigenvector associated with λ2 = 5. Compute

(A− 5I)2 =

 0 −4 0
1 −5 2
0 2 0

2

=

 −4 20 −8
−5 25 −10

2 −10 4

 .
Now we solve 

−4 20 −8
... 0

−5 25 −10
... 0

2 −10 4
... 0

 .
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Applying Gauss-Jordan elimination gives
−1 5 −2

... 0

0 0 0
... 0

0 0 0
... 0

 ,
which has two free variables that yield two linearly independent generalized eigenvectors u2 =
(−2, 0, 1) and u3 = (5, 1, 0) (notice that we already knew from above that u2 is a solution since it
is an eigenvector). To find a third (linearly independent) solution to x′ = Ax, compute

x3 = eAtu3 = e5t(u3 + t(A− 5I)u3) = e5t

 5
1
0

+ te5t

 0 −4 0
1 −5 2
0 2 0

 5
1
0

 = e5t

 5− 4t
1
2t

 .
A fundamental matrix is now given by X = [x1 x2 x3], i.e.,

X(t) =

 −4 −2e5t e5t(5− 4t)
−5 0 e5t

2 e5t 2e5tt

 .
Recall that eAt = X(t)(X(0))−1. Plugging t = 0 into X(t) and calculating the inverse, we find

(X(0))−1 =
1

25

 1 −5 2
−2 10 21

5 0 10

 .
Thus,

eAt = X(t)(X(0))−1 =
1

25

 −4 −2e5t e5t(5− 4t)
−5 0 e5t

2 e5t 2e5tt

 1 −5 2
−2 10 21

5 0 10


=

1

25

 −4 + 29e5t − 20te5t 20− 20e5t −8 + 8e5t − 40te5t

−5 + 5e5t 25 −10 + 10e5t

2− 2e5t + 10te5t −10 + 10e5t 4 + 21e5t + 20te5t

 .
Plugging t = 1 yields the answer.
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Question 5. (a) Let x1, · · · , xk be vector functions defined on an interval I. State what it means
for x1, · · · , xk to be linearly independent on I.

(b) Are (et,−et) and (5et, et) linearly independent on (−∞,∞)?

(c) Give an example of vector functions that are linearly independent on (−∞,∞) but are linearly
dependent on (0,∞).

Solution 5. (a) x1, · · · , xk are linearly independent on I if the following condition holds. Let
c1, . . . , ck be constants such that c1x1(t) + · · ·+ ckxk(t) = 0 for all t ∈ I. Then c1 = · · · = ck = 0.

(b) If c1(e
t, e−t) + c2(5e

t, et) = 0 on (−∞,∞) then this holds in particular at t = 0, thus c1(1, 1) +
c2(5, 1) = 0, which implies c1 = c2 = 0.

(c) (t, |t|) and (|t|, t) (see the class notes).
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Question 6. (a) Let x1, · · · , xk be vector functions defined on an interval I. State the definition
of the Wronskian of x1, · · · , xk.

(b) Prove that if the Wronskian of x1, · · · , xk does not vanish at a point t0 ∈ I, then x1, · · · , xk are
linearly independent on I.

Solution 6. This was done in class, see the class notes.
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Question 7. Let A be a n× n continuous matrix function.

(a) What is a fundamental matrix for the system x′ = Ax?

(b) If X is a fundamental matrix for x′ = Ax, show that X ′ = AX.

(c) Let X and Y be two fundamental matrices for x′ = Ax. Show that there exists a constant
matrix M such that X = YM .

Solution 7. This was done in class, see the class notes.
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Question 8. Let A be a n× n continuous matrix function and f be a continuous vector function,
both defined on an interval I.

(a) State the variation of parameters formula for a particular solution to the system x′ = Ax+ f .

(b) Prove the formula you stated in (a).

Solution 8. This was done in class, see the class notes.
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Question 9. True or false?

(a) Every n× n matrix of real numbers has n linearly independent eigenvectors.

(b) If A is a n× n matrix of real numbers and x is a vector function that satisfies the initial value
problem x′ = Ax, x(0) = 0, then x(t) = 0 for all t.

(c) If A is a 3× 3 matrix of real numbers whose eigenvalues are 2 with multiplicity two and 1, then
A has two linearly independent generalized eigenvectors that correspond to the eigenvalue 2.

(d) The Wronskian of n linearly independent vector functions on an open interval I is never zero
on I.

(e) If a 3× 3 matrix of real numbers has eigenvalues 2 + 3i, 2− 3i, and 5, then the matrix has three
linearly independent eigenvectors.

Solution 9. (a) False. The matrix

A =

[
1 −1
4 −3

]
possess only (1, 2) as linearly independent eigenvector.
(b) True, by one of the existence and uniqueness theorems.
(c) True, a matrix always admits a complete set of generalized eigenvectors (see the class notes).
(d) False. The Wronskian of (1, t) and (1, 2t) vanishes at t = 0 but the two functions are linearly
independent on (−1, 1).
(e) True. Two linearly independent eigenvectors come from the complex conjugate roots 3 ±
3i. An eigenvector associated with 5 will be linearly independent from the previous two because
eigenvectors associated with distinct eigenvalues are linearly independent.
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Question 10. Know the theorems and definitions stated in class. Be prepared to state and use
any of the theorems discussed in class, and to prove any theorem that has been proved in class or
in an exercise. Also review the homework problems and posted examples.

Solution 10. N/A.


