
MATH 2610 - TEST 3 SOLUTIONS

VANDERBILT UNIVERSITY

NAME:

Directions:

• Unless stated otherwise, the notation and conventions used in class apply to this test.
• Provide full justifications for your answer. Answers without justification will receive little
or no credit.

• Write clearly and legibly.

Question Points Score
1 10
2 20
3 10
4 20
5 20
6 20

TOTAL 100
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List of formulas

Below are formulas you are allowed to use. Note that it is not said for which kind of equation or
in which context each formula applies. You need to recognize them from class and the homework.

If

(x, y) = c1u+ c2v,

where u = (u1, u2) and v = (v1, v2) are linearly independent vectors, then

c1 =
v2x0 − v1y0
u1v2 − v1u2

, c2 =
−u2x0 + u1y0
u1v2 − v1u2

.
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Question 1. (10 points) The questions that follow refer to the system

ẋ = f(x, y),

ẏ = g(x, y).

(a) (2 points) What is a critical point for this system and how is it related to solutions of the
system?

(b) (2 points) What is an isolated critical point?

(c) (3 points) Define what it means to say that a critical point is stable, asymptotically stable, and
unstable. Illustrate the definitions with pictures.

(d) (3 points) Define an almost linear system near the origin.

Solution 1. (a) A point (x0, y0) is a critical point if it satisfies f(x0, y0) = 0 = g(x0, y0). In this
case, the constant functions x(t) = x0, y(t) = y0 are a solution to the system.

(b) A critical point (x0, y0) is isolated if there exists a neighborhood D of (x0, y0) such that (x0, y0)
is the only critical point in D.

(c) A critical point (x0, y0) is stable if, given ε > 0, there exists a δ > 0 such that every solution
(x(t), y(t)) satisfying √

(x(0)− x0)2 + (y(0)− y0)2 < δ

also satisfies √
(x(t)− x0)2 + (y(t)− y0)2 < ε

for all t ≥ 0. If (x0, y0) is stable and there exists a η > 0 such that any solution (x(t), y(t))
satisfying √

(x(0)− x0)2 + (y(0)− y0)2 < η

converges to (x0, y0) as t → ∞, then the critical point is called asymptotically stable. If a critical
point is not stable then it is called unstable.

ε

δ

(x(0), y(0))
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δ
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(x(0), y(0))

unstable

Figure 1. Illustration of stability/instability.

(d) Consider the system

ẋ = ax+ by + F (x, y),

ẏ = cx+ dy +G(x, y),

where a, b, c, d are constant, F and G are continuous in a neighborhood of the origin, and assume
that the origin is a critical point. Suppose that ad− bc ̸= 0. The system is almost linear near the
origin if

F (x, y)√
x2 + y2

→ 0 and
G(x, y)√
x2 + y2

→ 0 as (x, y) → (0, 0).
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Question 2. (20 points) Consider the linear system

ẋ = ax+ by,

ẏ = cx+ dy,

and suppose that ad − bc ̸= 0. Let λ1 and λ2 be the eigenvalues of the system. Based on the
definition of stability/instability you gave in question 1, show that:

(a) (10 points) The system is asymptotically stable if λ1, λ2 < 0, λ1 ̸= λ2.

(b) (10 points) The system is stable if the eigenvalues are purely imaginary, i.e., λ1 = iβ, λ2 = −iβ,
β ∈ R, β ̸= 0.

Solution 2. (a) Solutions take the form

(x(t), y(t)) = c1e
λ1tu+ c2e

λ2tv,

where u and v are linearly independent eigenvectors. Writing c1, c2 in terms of (x0, y0) = (x(0), y(0)),
we find

(x(t), y(t)) =
v2x0 − v1y0
u1v2 − v1u2

eλ1tu+
−u2x0 + u1y0
u1v2 − v1u2

eλ2tv.

We have

∥(x(t), y(t))∥ ≤ 4

|u1v2 − v1u2|
∥v∥∥u∥e−min{|λ1|,|λ2|}t∥(x0, y0)∥.

Thus, given ε > 0, we have ∥(x(t), y(t))∥ < ε for t ≥ 0 whenever ∥(x0, y0)∥ < δ, with

4

|u1v2 − v1u2|
∥v∥∥u∥δ < ε.

Asymptotic stability then follows from e−min{|λ1|,|λ2|}t → 0 as t → ∞.

(b) Solutions take the form

(x(t), y(t)) = c1(cos(βt)u− sin(βt)v) + c2(sin(βt)u+ cos(βt)v),

where u and v are linearly independent. Writing c1, c2 in terms of (x0, y0) = (x(0), y(0)), we find

(x(t), y(t)) =
v2x0 − v1y0
u1v2 − v1u2

(cos(βt)u− sin(βt)v) +
−u2x0 + u1y0
u1v2 − v1u2

(sin(βt)u+ cos(βt)v).

Then

∥(x(t), y(t))∥ ≤ 2

|u1v2 − v1u2|
∥v∥∥(x0, y0)∥(∥u∥+ ∥v∥) + 2

|u1v2 − v1u2|
∥u∥∥(x0, y0)∥(∥u∥+ ∥v∥)

≤ 2

|u1v2 − v1u2|
∥(x0, y0)∥(∥u∥+ ∥v∥)2,

where we used that | cos(βt)| ≤ 1 and | sin(βt)| ≤ 1. Thus, given ε > 0, we have ∥(x(t), y(t))∥ < ε
for t ≥ 0 whenever ∥(x0, y0)∥ < δ, with

2

|u1v2 − v1u2|
(∥u∥+ ∥v∥)2δ < ε.



Vanderbilt University 5

Question 3. (10 points) Show that the system

ẋ = sin(y − 3x)

ẏ = cosx− ey,

is almost linear near the origin and discuss its stability.

Solution 3. With f(x, y) = sin(y−3x) and g(x, y) = cosx−ey, we find fx(0, 0) = −3, fy(0, 0) = 1,
gx(0, 0) = 0, and gy(0, 0) = −1, and write the system as

ẋ = −3x+ y + F (x, y),

ẏ = −y +G(x, y),

with F (x, y) = 3x− y + sin(y − 3x) and G(x, y) = y + cosx− ey. We have

F (x, y) = 3x− y + sin(y − 3x) = 3x− y + y − 3x+O((y − 3x)3)

= O(x2 + y2),

G(x, y) = y + cosx− ey = y + 1− x2

2!
+O(x4)− (1 + y +

y2

2!
+O(y3))

= O(x2 + y2)

which gives F (x,y)
∥(x,y)∥ → 0 and G(x,y)

∥(x,y)∥ → 0 as (x, y) → 0, showing that the system is almost linear.

The linear part of the system has eigenvalues −1 and −3, thus the origin is asymptotically stable.
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Question 4. (20 points) Consider a conservative system whose potential function is given by the
graph below. Sketch the phase portrait of the system.

x

y

Solution 4. The solution is:

x

x

y

y

Critical
points

Level sets of the energy
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Question 5. (20 points) Consider the conservative system

ẍ+ g(x) = 0.

Assume that g is continuous, that g(0) = 0, g(x) ̸= 0 for x ̸= 0, and that there exists a constant
k > 0 such that xg(x) < 0 for 0 < |x| < k. Show that the origin is an unstable critical point for
this system. Hint: You do not need to do ϵ − δ arguments here. Rather, consider the potential
function and use the given information to understand its behavior in a neighborhood of x = 0.

Solution 5. The potential function is G(x) =
∫
g(x) dx+ C, where C is a constant chosen to set

the zero of the energy function. The critical points are given by (x0, 0) where G′(x0) = g(x0) = 0,
thus the origin is the only critical point. xg(x) < 0 for 0 < |x| < k means that, for x near 0,
g(x) > 0 for x < 0 and g(x) < 0 for x > 0. Thus, for x near 0, G′(x) > 0 for x < 0 and G′(x) < 0
for x > 0. Therefore, 0 is a local maximum of G. This means that, qualitatively, near the origin
trajectories behave like the red and gray curves in the solution of the previous question, giving that
the origin is unstable.
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Question 6. Prove that the equation

ẍ+ (x4 + (ẋ)2 − 1)ẋ+ x = 0

has a non-constant periodic solution.

Solution 6. Write the system as

ẋ = y

ẏ = −(x4 + y2 − 1)y − x.

We see that (0, 0) is the only critical point of this system. Consider V (x, y) = axm + byn. Then

d

dt
V (x, y) = amxm−1ẋ+ bnyn−1ẏ

= amxm−1y − bnyn−1((x4 + y2 − 1)y + x).

If we choose m = n = 2 and a = b = 1 we find
d

dt
V (x, y) = 2xy − 2y((x4 + y2 − 1)y + x) = −2y2(x4 + y2 − 1) = y2(1− (x4 + y2)).

Consider the curve γ given by x4 + y2 = 1. Then, d
dtV (x(t), y(t)) is ≥ 0 inside γ and ≤ 0 outside

γ. The curve γ lies between the circle x2 + y2 = 1 and the square {(x, y) ∈ R2 | max(|x|, |y|) = 1},
touching them at the points (±1, 0) and (0,±1). We can choose as the region R of the Poincaré-
Bendixson theorem any annulus rA ≤ x2 + y2 ≤ rB with 0 < rA < 1 and rB >

√
2. Applying this

theorem then gives the result.


