MATH 2610 - PRACTICE FOR TEST 3, SOLUTIONS

VANDERBILT UNIVERSITY

Question 1. The questions that follow refer to the system

&= f(z,y),

y=y9(zy).
(a) What is a critical point for this system and how is it related to solutions of the system?
(b) What is an isolated critical point?
(

c¢) Define what it means to say that a critical point is stable, asymptotically stable, and unstable.
Illustrate the definitions with pictures.

(d) Define an almost linear system near the origin.

Solution 1. (a) A point (xg,yp) is a critical point if it satisfies f(zo,y0) = 0 = g(zo,y0). In this
case, the constant functions x(t) = x, y(t) = yo are a solution to the system.

(b) A critical point (z9,yo) is isolated if there exists a neighborhood D of (xg, yo) such that (zg, yo)
is the only critical point in D.

(c) A critical point (z,yp) is stable if, given € > 0, there exists a § > 0 such that every solution
(z(t), y(t)) satisfying

V((0) = 20)2 + (y(0) — yo)2 < &

also satisfies

V(@(t) = 0)? + (y(t) — yo)? < ¢
for all t > 0. If (zo,y0) is stable and there exists a n > 0 such that any solution (z(t), y(t))
satisfying

V(@(0) — 20)2 + (y(0) — y0)? < 7
converges to (xo,yo) as t — oo, then the critical point is called asymptotically stable. If a critical
point is not stable then it is called unstable.

(w(0),y(0)) ((0),y(0)) ((0),9(0))

asymptotically stable stable, but not asymptotically stable unstable

FIGURE 1. Tlustration of stability /instability.

(d) Consider the system
& =ax+ by + F(z,y),
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gy =cx+dy+ G(z,y),
where a, b, ¢,d are constant, F' and GG are continuous in a neighborhood of the origin, and assume
that the origin is a critical point. Suppose that ad — bc # 0. The system is almost linear near the
origin if
F G
/1'2 + yQ /.'E2 + y2
as (z,y) — (0,0).
Question 2. Consider the linear system
T = azx + by,
Y= cx + dy,

and suppose that ad — bc # 0. Let A\ and Ao be the eigenvalues of the system. Based on the
definition of stability/instability you gave in question 1, show that:

(a) The system is asymptotically stable if A1, Ay < 0.
(b) The system is unstable if one of the eigenvalues is positive.
Solution 2. (a) Since A1, A2 < 0, solutions take the form
(1), 4(t)) = c1eMtu + cre o,
where u and v are linearly independent eigenvectors, or
(z(t),y(t)) = (cru + c2v + catw)e,

where u is an eigenvector, v a generalized eigenvetor linearly independent from u, w = (A — A )v,
and A1 = Ay = A. Writing ¢1, ¢2 in terms of (xo,y0) = (z(0),y(0)), we find
VoXg — v —UaTo + U
(2(t), y(1)) = 220 — V1Yo e, I + 1y06/\2tv,
UV2 — V1U2 U1V2 — V1U2
or

Vo — U —UuU2xy + U —U2To + U
U1V — V11U U1V — V11U U1V — V11U
In the first case, we have

1z (8), y(®)Il <

Thus, given € > 0, we have |[(x(t),y(t))|| < e for ¢ > 0 whenever ||(zo,yo)|| <, with
4

|U11)2 —

min{|Ar],[A2|}t

4

[ —min{lx\ﬂ,lx\zl}tn(
|u1vg — viug|

[olll[ulle 0, %0)|I-

- [vll[ulld < e.
1U2]

Asymptotic stability then follows from e~ — 0 ast — oo.

In the second case, we have

1 p—
Ite) y O = o=y lleltell + 2l o, o)l
1 1
——— 4 2 -
= Turog — org) Ml + 2ellllll 52 (o, o)l

where in the second step we used that te~** has a maximum at ¢ = ‘—}\' and ¢ > 0. Thus, given
e > 0, we have ||(z(t),y(t))|| < € for ¢ > 0 whenever ||(xo,y0)| < 6, with
1

1
——(4||v]| ||| + 2||u||||w]|——)0 < e.
|ul02_vlu2|( [[wl[flell + 2{jl] Hwe)
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Asymptotic stability then follows from et — 0 and te= Mt — 0 as t — oco.
(b) Let Ay > 0. Then
((t), y(1)) = creMtu

is a solution. Since |leM*u|| — oo as t — oo, if we take ¢ = 1, then for every 6 > 0, if ||(zo, yo)|| =
lea||lul| < 6, we can find to > 0 such that ||(z(to),y(t0))|| = |c1|e’®|lu|| > 1, showing that the
solution is unstable.

At

Question 3. Show that the system

i =e"Y —cosz,

y=cosy+x—1,
is almost linear near the origin and discuss its stability.

Solution 3. Write, using Taylor’s series for the exponential and cosine,

2 2
j::ex+y—cosx:1+x—|—y+<$;y)+O((a:+y)3)—(1—3;+0(x4))
=z +y+ 0 +9?),

y2

o1 +0@yH +x—1

y=cosy+xr—1=1+
=+ 0(2* + ).

(Alternatively, we can use the linearization of the system to obtain the same result.) Thus the
system can be written as

t=x+y+ F(z,y),
=40y +G(z,y),

with F(z,y), G(z,y) = O(z% + y?) so that ||ﬁiz£‘)‘|, |”CEQ(CI£‘)‘| — 0 as (z,y) — (0,0). Since ad — be # 0,
145

the system is almost linear. The eigenvalues of the linear part are =52, which gives an unstable
critical point.

Question 4. Consider the DE

Z+e"—1=0.
(a) Explain why this is a conservative system.
(b) Find the potential function G.
(c) Find the energy function E(x,v). Select it so that F(0,0) = 0.
(d) Write the DE as a first order system and determine its critical points.
(e) Determine the stability of the critical points.
Solution 4. (a) The system can be written as & = F'(z), thus this is a conservative system.
(b) We write & + g(z) = 0, with g(z) = ¢* — 1. Then G(z) = [g(z)dz =" —z + C.

(c) The energy function is given by E(z,v) = $v® + G(z). Choosing C = —1 we have E(z,v) =
sv2+e® — 2 — 1, s0 E(0,0) = 0.

(d) We have & = v, 0 = —e® + 1.

(e) The only critical point is (0,0). Since G'(0) = g(0) = 0 and G”"(0) =1 > 0, x = 0 is a local
minimum of G and we conclude that the critical point is a center.



4 MATH 2610

Question 5. Consider a conservative system whose potential function is given by the graph below.
Sketch the phase portrait of the system.

- |

N N

Solution 5. The solution is:

P Y |
Level sets of the energy
[N
\ N /
L\ . , N /
! : ' x
~— .
| = oY L
x

Critical points

Question 6. Consider the system

& = 23y + a2y® — 25,

g = —2xt — 623y? — 2¢°.

(a) Show that the origin is a critical point.

(b) Explain why this system is not almost linear.
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(c) Determine the stability of the origin. To do so, you can use, without proving it, that the origin
is an isolated critical point. Hint: the function ax? + by? is useful.

Solution 6. (a) This follows by plugging (0,0) into the right hand side and observing that the
resulting expressions vanish.

(b) The corresponding linear part has a = b = ¢ = d = 0 thus it fails the condition ad — bc # 0.
(c) Let V(x,y) = ax?® + by? and compute

d . .
= 2ax(z3y + 2%y> — 25) + 2by(—22* — 623y — 2¢°)
= 2a(zty + 233 — 25) + 2b(—221y — 6233 — 249).
If we choose a =2, b =1, we get

d
£V(x,y) = —8x3y3 — 425 — 4y6 = —4(:63 + y3)2,

which is negative semi-definite. By the Lyapunov stability theorem the critical point is stable.
Question 7. Determine the stability of the origin for the system
i =223,
g =22y —y°.
Hint: the function 22 — y? is useful.
Solution 7. We note that the origin is an isolated critical point. Compute
Wz, y) = Va(z,y) f(2,y) + Vy(2,9)9(2, y)
= 4zt — 422y + 27
=2zt + 2(2% — y?)2

We see that W is positive definite. Since V(0,0) = 0 and for any disk centered at the origin we can
find (zg,0) with V(x0,0) > 0, the Lyapunov instability theorem gives that the origin is unstable.

Question 8. Prove that the equation
i4 (*+ (@) - 1D)i+x=0
has a non-constant periodic solution.
Solution 8. Write the system as
=y
g=—("+y" -y -
We see that (0,0) is the only critical point of this system. Consider V(x,y) = az™ + by™. Then

d
$V(m, y) = ama™ i + bny" "y

= ama™ Yy — bny"H((z + o - Dy + 2).

If we choose m=n=2and a =b=1 we find

d
V(@) =20y = 2y((@" + 97 = Dyt o) = =2 (2" + 3" = 1) =y*(1 - (2" +¢7)).
Consider the curve v given by 2* + y? = 1. Then, £V (2(t),y(t)) is > 0 inside v and < 0 outside

7. The curve 7 lies between the circle 22 + y? = 1 and the square {(z,y) € R? | max(|z|, |y|) = 1},
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touching them at the points (£1,0) and (0,41). We can choose as the region R of the Poincaré-
Bendixson theorem any annulus r4 < 22 + 32 < rp with 0 < 74 < 1 and rg > /2. Applying this
theorem then gives the result.



