
MATH 2610 - PRACTICE FOR TEST 3, SOLUTIONS

VANDERBILT UNIVERSITY

Question 1. The questions that follow refer to the system

ẋ = f(x, y),

ẏ = g(x, y).

(a) What is a critical point for this system and how is it related to solutions of the system?

(b) What is an isolated critical point?

(c) Define what it means to say that a critical point is stable, asymptotically stable, and unstable.
Illustrate the definitions with pictures.

(d) Define an almost linear system near the origin.

Solution 1. (a) A point (x0, y0) is a critical point if it satisfies f(x0, y0) = 0 = g(x0, y0). In this
case, the constant functions x(t) = x0, y(t) = y0 are a solution to the system.

(b) A critical point (x0, y0) is isolated if there exists a neighborhood D of (x0, y0) such that (x0, y0)
is the only critical point in D.

(c) A critical point (x0, y0) is stable if, given ε > 0, there exists a δ > 0 such that every solution
(x(t), y(t)) satisfying √

(x(0)− x0)2 + (y(0)− y0)2 < δ

also satisfies √
(x(t)− x0)2 + (y(t)− y0)2 < ε

for all t ≥ 0. If (x0, y0) is stable and there exists a η > 0 such that any solution (x(t), y(t))
satisfying √

(x(0)− x0)2 + (y(0)− y0)2 < η

converges to (x0, y0) as t → ∞, then the critical point is called asymptotically stable. If a critical
point is not stable then it is called unstable.
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Figure 1. Illustration of stability/instability.

(d) Consider the system

ẋ = ax+ by + F (x, y),
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ẏ = cx+ dy +G(x, y),

where a, b, c, d are constant, F and G are continuous in a neighborhood of the origin, and assume
that the origin is a critical point. Suppose that ad− bc 6= 0. The system is almost linear near the
origin if

F (x, y)√
x2 + y2

→ 0 and
G(x, y)√
x2 + y2

→ 0

as (x, y)→ (0, 0).

Question 2. Consider the linear system

ẋ = ax+ by,

ẏ = cx+ dy,

and suppose that ad − bc 6= 0. Let λ1 and λ2 be the eigenvalues of the system. Based on the
definition of stability/instability you gave in question 1, show that:

(a) The system is asymptotically stable if λ1, λ2 < 0.

(b) The system is unstable if one of the eigenvalues is positive.

Solution 2. (a) Since λ1, λ2 < 0, solutions take the form

(x(t), y(t)) = c1e
λ1tu+ c2e

λ2tv,

where u and v are linearly independent eigenvectors, or

(x(t), y(t)) = (c1u+ c2v + c2tw)eλt,

where u is an eigenvector, v a generalized eigenvetor linearly independent from u, w = (A− λI)v,
and λ1 = λ2 = λ. Writing c1, c2 in terms of (x0, y0) = (x(0), y(0)), we find

(x(t), y(t)) =
v2x0 − v1y0
u1v2 − v1u2

eλ1tu+
−u2x0 + u1y0
u1v2 − v1u2

eλ2tv,

or

(x(t), y(t)) = (
v2x0 − v1y0
u1v2 − v1u2

u+
−u2x0 + u1y0
u1v2 − v1u2

v +
−u2x0 + u1y0
u1v2 − v1u2

tw)eλt.

In the first case, we have

‖(x(t), y(t))‖ ≤ 4

|u1v2 − v1u2|
‖v‖‖u‖e−min{|λ1|,|λ2|}t‖(x0, y0)‖.

Thus, given ε > 0, we have ‖(x(t), y(t))‖ < ε for t ≥ 0 whenever ‖(x0, y0)‖ < δ, with

4

|u1v2 − v1u2|
‖v‖‖u‖δ < ε.

Asymptotic stability then follows from e−min{|λ1|,|λ2|}t → 0 as t→∞.
In the second case, we have

‖(x(t), y(t))‖ ≤ 1

|u1v2 − v1u2|
(4‖v‖‖u‖+ 2‖u‖‖w‖t)e−|λ|t‖(x0, y0)‖

≤ 1

|u1v2 − v1u2|
(4‖v‖‖u‖+ 2‖u‖‖w‖ 1

|λ|e
)‖(x0, y0)‖,

where in the second step we used that te−|λ|t has a maximum at t = 1
|λ| and t ≥ 0. Thus, given

ε > 0, we have ‖(x(t), y(t))‖ < ε for t ≥ 0 whenever ‖(x0, y0)‖ < δ, with

1

|u1v2 − v1u2|
(4‖v‖‖u‖+ 2‖u‖‖w‖ 1

|λ|e
)δ < ε.
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Asymptotic stability then follows from e−|λ|t → 0 and te−|λ|t → 0 as t→∞.
(b) Let λ1 > 0. Then

(x(t), y(t)) = c1e
λ1tu

is a solution. Since ‖eλ1tu‖ → ∞ as t → ∞, if we take ε = 1, then for every δ > 0, if ‖(x0, y0)‖ =
|c1|‖u‖ < δ, we can find t0 > 0 such that ‖(x(t0), y(t0))‖ = |c1|eλ1t0‖u‖ > 1, showing that the
solution is unstable.

Question 3. Show that the system

ẋ = ex+y − cosx,

ẏ = cos y + x− 1,

is almost linear near the origin and discuss its stability.

Solution 3. Write, using Taylor’s series for the exponential and cosine,

ẋ = ex+y − cosx = 1 + x+ y +
(x+ y)2

2!
+O((x+ y)3)− (1− x2

2!
+O(x4))

= x+ y +O(x2 + y2),

ẏ = cos y + x− 1 = 1 +
y2

2!
+O(y4) + x− 1

= x+O(x2 + y2).

(Alternatively, we can use the linearization of the system to obtain the same result.) Thus the
system can be written as

ẋ = x+ y + F (x, y),

ẏ = x+ 0y +G(x, y),

with F (x, y), G(x, y) = O(x2 + y2) so that |F (x,y)|
‖(x,y)‖ ,

|G(x,y)|
‖(x,y)‖ → 0 as (x, y)→ (0, 0). Since ad− bc 6= 0,

the system is almost linear. The eigenvalues of the linear part are 1±
√
5

2 , which gives an unstable
critical point.

Question 4. Consider the DE

ẍ+ ex − 1 = 0.

(a) Explain why this is a conservative system.

(b) Find the potential function G.

(c) Find the energy function E(x, v). Select it so that E(0, 0) = 0.

(d) Write the DE as a first order system and determine its critical points.

(e) Determine the stability of the critical points.

Solution 4. (a) The system can be written as ẍ = F (x), thus this is a conservative system.

(b) We write ẍ+ g(x) = 0, with g(x) = ex − 1. Then G(x) =
∫
g(x) dx = ex − x+ C.

(c) The energy function is given by E(x, v) = 1
2v

2 + G(x). Choosing C = −1 we have E(x, v) =
1
2v

2 + ex − x− 1, so E(0, 0) = 0.

(d) We have ẋ = v, v̇ = −ex + 1.

(e) The only critical point is (0, 0). Since G′(0) = g(0) = 0 and G′′(0) = 1 > 0, x = 0 is a local
minimum of G and we conclude that the critical point is a center.
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Question 5. Consider a conservative system whose potential function is given by the graph below.
Sketch the phase portrait of the system.
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y

Solution 5. The solution is:

Critical points

Level sets of the energy

x

x

y

y

Question 6. Consider the system

ẋ = x3y + x2y3 − x5,
ẏ = −2x4 − 6x3y2 − 2y5.

(a) Show that the origin is a critical point.

(b) Explain why this system is not almost linear.



Vanderbilt University 5

(c) Determine the stability of the origin. To do so, you can use, without proving it, that the origin
is an isolated critical point. Hint: the function ax2 + by2 is useful.

Solution 6. (a) This follows by plugging (0, 0) into the right hand side and observing that the
resulting expressions vanish.

(b) The corresponding linear part has a = b = c = d = 0 thus it fails the condition ad− bc 6= 0.

(c) Let V (x, y) = ax2 + by2 and compute

d

dt
V (x, y) = Vx(x, y)ẋ+ Vy(x, y)ẏ

= 2ax(x3y + x2y3 − x5) + 2by(−2x4 − 6x3y2 − 2y5)

= 2a(x4y + x3y3 − x6) + 2b(−2x4y − 6x3y3 − 2y6).

If we choose a = 2, b = 1, we get

d

dt
V (x, y) = −8x3y3 − 4x6 − 4y6 = −4(x3 + y3)2,

which is negative semi-definite. By the Lyapunov stability theorem the critical point is stable.

Question 7. Determine the stability of the origin for the system

ẋ = 2x3,

ẏ = 2x2y − y3.

Hint: the function x2 − y2 is useful.

Solution 7. We note that the origin is an isolated critical point. Compute

W (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 4x4 − 4x2y2 + 2y4

= 2x4 + 2(x2 − y2)2.
We see that W is positive definite. Since V (0, 0) = 0 and for any disk centered at the origin we can
find (x0, 0) with V (x0, 0) > 0, the Lyapunov instability theorem gives that the origin is unstable.

Question 8. Prove that the equation

ẍ+ (x4 + (ẋ)2 − 1)ẋ+ x = 0

has a non-constant periodic solution.

Solution 8. Write the system as

ẋ = y

ẏ = −(x4 + y2 − 1)y − x.
We see that (0, 0) is the only critical point of this system. Consider V (x, y) = axm + byn. Then

d

dt
V (x, y) = amxm−1ẋ+ bnyn−1ẏ

= amxm−1y − bnyn−1((x4 + y2 − 1)y + x).

If we choose m = n = 2 and a = b = 1 we find
d

dt
V (x, y) = 2xy − 2y((x4 + y2 − 1)y + x) = −2y2(x4 + y2 − 1) = y2(1− (x4 + y2)).

Consider the curve γ given by x4 + y2 = 1. Then, d
dtV (x(t), y(t)) is ≥ 0 inside γ and ≤ 0 outside

γ. The curve γ lies between the circle x2 + y2 = 1 and the square {(x, y) ∈ R2 | max(|x|, |y|) = 1},
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touching them at the points (±1, 0) and (0,±1). We can choose as the region R of the Poincaré-
Bendixson theorem any annulus rA ≤ x2 + y2 ≤ rB with 0 < rA < 1 and rB >

√
2. Applying this

theorem then gives the result.


