
VANDERBILT UNIVERSITY

MATH 2420 – METHODS OF ORDINARY DIFFERENTIAL EQUATIONS

Test 2 – Solutions

NAME: Solutions.

Directions. This exam contains six questions and an extra credit question. Make sure you
clearly indicate the pages where your solutions are written. Answers without justification will re-
ceive little or no credit. Write clearly, legibly, and in a logical fashion. Make precise statements (for
instance, write an equal sign if two expressions are equal; say that one expression is a consequence
of another when this is the case, etc.).

If you need to use a theorem that was stated in class, you do not need to prove it, unless a
question explicitly says so. You do need, however, to state the theorems you invoke.

If you do not understand a question, or think that some problem is ambiguous, missing informa-
tion, or incorrectly stated, write how you interpret the problem and solve it accordingly.

Question Points
1 (10 pts)
2 (15 pts)
3 (15 pts)
4 (25 pts)
5 (15 pts)
6 (20 pts)

Extra Credit (05 pts)
TOTAL (100 pts)
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The table below indicates the Laplace transform F (s) of the given function f(t).

f(t) F (s)

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

tneat n!
(s−a)n+1

cos(kt) s
s2+k2

sin(kt) k
s2+k2

eat cos(kt) s−a
(s−a)2+k2

eat sin(kt) k
(s−a)2+k2

The following are the main properties of the Laplace transform.

Function Laplace transform
af(t) + bg(t) aF (s) + bG(s)
f ′(t) sF (s)− f(0)
f ′′(t) s2F (s)− sf(0)− f ′(0)

f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)
eatf(t) F (s− a)

tnf(t) (−1)n dn

dsnF (s)
(f ∗ g)(t) F (s)G(s)

u(t− a) e−as

s
f(t− a)u(t− a) e−asF (s)

Above, f ∗ g is the convolution of f and g, given by

(f ∗ g)(t) =

∫ t

0
f(t− τ)g(τ) dτ,

and u(t− a) is given by

u(t− a) =

{
0, t < a,

1, t > a.
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Question 1. (10 pts) Below, all roots of the characteristic equation for a constant coefficient
homogeneous linear differential equation are given. State the order of the differential equation and
find its general solution.

(a) λ = 2, λ = 1, λ = −1 (twice).

(b) λ = −1 + 2i (twice), λ = −1− 2i (twice), λ = 0 (three times).

Solution 1. (a) Order 4. x(t) = c1e
2t + c2e

t + c3e
−t + c4te

−t. (b) Order 7. x(t) = c1e
−t cos(2t) +

c2e
−t sin(2t) + c3te

−t cos(2t) + c4te
−t sin(2t) + c5 + c6t+ c7t

2.
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Question 2. (15 pts)

(a) State the definition of a function of exponential order α > 0.

(b) Determine whether the given function is of exponential order α > 0.

(b1) f(t) = et
2
.

(b2) f(t) =
1

t
.

(c) What is the relation between a function of exponential order α and the Laplace transform?

Solution 2. (a) f is said to be of exponential order α > 0 if there exist positive constants T and
M such that

|f(t)| ≤Meαt, for all t ≥ T.

(b1) For any α > 0, we find

lim
t→∞

et
2

eαt
= lim

t→∞
et

2−αt =∞,

hence et
2

is not of exponential order α.

(b2) For t ≥ 1 we have 1
t ≤ 1 and et ≥ 1 thus∣∣∣∣1t

∣∣∣∣ ≤ et for t ≥ 1

and we conclude that 1
t is of exponential order α.

(c) A function that is piecewise continuous and of exponential order α > 0 on [0,∞) admits a
Laplace transform.
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Question 3. (15 pts) Find L −1{F}. You do not need to determine the constants of the partial
fractions.

(a) F (s) =
s2 + 9s+ 2

(s2 − 2s+ 1)(s+ 3)
.

(b) F (s) = ln((s2 + 4)(s+ 1)).

Solution 3. (a) Write

s2 + 9s+ 2

(s2 − 2s+ 1)(s+ 3)
=

s2 + 9s+ 2

(s− 1)2(s+ 3)

=
A

s− 1
+

B

(s− 1)2
+

C

s+ 3
,

so that

L −1{ s2 + 9s+ 2

(s2 − 2s+ 1)(s+ 3)
} = AL −1{ 1

s− 1
}+BL −1{ 1

(s− 1)2
}+ CL −1{ 1

s+ 3
}

= Aet +Btet + Ce−3t.

(b) Write F (s) = ln((s2 + 4)(s+ 1)) = ln(s2 + 4) + ln(s+ 1) and compute

dF (s)

ds
=

d

ds
ln(s2 + 4) +

d

ds
ln(s+ 1)

=
2s

s2 + 4
+

1

s+ 1
.

Then

L −1{dF (s)

ds
} = 2L −1{ s

s2 + 4
}+ L −1{ 1

s+ 1
}

= 2 cos(2t) + e−t.

Since tf(t) = −L −1{dFds }, we find

L −1{ln((s2 + 4)(s+ 1))} = −1

t
(2 cos(2t) + e−t).
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Question 4. (25 pts) Solve the given initial value problem using the method of Laplace transforms.
You do not need to determine the constants of the partial fractions.

(a) x′′ − 4x′ + 5x = 4e3t, x(0) = 2, x′(0) = 7.

(b) x′′ − 2x′ + x = 6t− 2, x(−1) = 3, x′(−1) = 7.

(c) x′′ + x = δ(t− π

2
), x(0) = 0, x′(0) = 1.

(d) x′′ − x = f(t), x(0) = 1, x′(0) = 2,

where f(t) is given by

f(t) =

{
1, t < 3,

t, t > 3.

Solution 4. (a) Taking the Laplace transform,

s2X(s)− 2s− 7− 4(sX(s)− 2) + 5X(s) =
4

s− 3
,

thus

X(s) =
2s2 − 7s+ 7

(s2 − 4s+ 5)(s− 3)
=

2s2 − 7s+ 7

((s− 2)2 + 1)(s− 3)

=
A

s− 3
+
B(s− 2) + C

(s− 2)2 + 1

=
A

s− 3
+

B(s− 2)

(s− 2)2 + 1
+

C

(s− 2)2 + 1
.

Thus, taking the inverse Laplace transform,

x(t) = Ae3t +Be2t cos t+ Ce2t sin t.

(b) Define w(t) by w(t) = x(t − 1), so that w′(t) = x′(t − 1), w′′(t) = x′′(t − 1), w(0) = 3, and
w′(0) = 7. Plugging t− 1 for t into the equation gives

x′′(t− 1)− 2x′(t− 1) + x(t− 1) = 6(t− 1)− 2 = 6t− 8,

thus

w′′(t)− 2w′(t) + w(t− 1) = 6t− 8.

Taking the Laplace transform gives

s2W (s)− 3s− 7− 2(W (s)− 3) +W (s) =
6

s2
− 8

s
,

or

W (s) =
3s3 + s2 − 8s+ 6

s2(s2 − 2s+ 1)
=

3s3 + s2 − 8s+ 6

s2(s− 1)2

=
A

s
+
B

s2
+

C

s− 1
+

D

(s− 1)2
.
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The inverse Laplace transform gives

w(t) = A+Bt+ Cet +Dtet.

Since x(t) = w(t+ 1):

x(t) = A+B(t+ 1) + Cet+1 +D(t+ 1)et+1.

(c) Taking the Laplace transform

s2X(s)− s0− 1 +X(s) = e−
π
2
s,

or

X(s) =
1

s2 + 1
+ e−

π
2
s 1

s2 + 1
.

Taking the inverse Laplace transform gives

y(t) = sin t+ sin(t− π

2
)u(t− π

2
).

(d) Write f(t) as f(t) = Π0,3(t) + tu(t − 3). Taking the Laplace transform and recalling that
Pi0,3(t) = u(t)− u(t− 3), we find

s2X(s)− s− 2−X(s) =
1

s
− e−3ts+ L {tu(t− 3)}.

To compute the last term, write L {tu(t− 3)} = L {(t− 3 + 3)u(t− 3)} = L {z(t− 3)u(t− 3)} =
e−3sZ(s), where z(t) = t+ 3, so that Z(s) = (3s+ 1)/s2. Hence

X(s) =
s2 + 2s+ 1

s(s− 1)(s+ 1)
+ e−3s

2s+ 1

s(s− 1)(s+ 1)
=

s+ 1

s(s− 1)
+ e−3s

2s+ 1

s2(s− 1)(s+ 1)

=
A

s
+

B

s− 1
+ e−3s(

C

s
+
D

s2
+

E

s− 1
+

F

s+ 1
).

The inverse Laplace transform gives

x(t) = A+Bet + Cu(t− 3) +D(t− 3)u(t− 3) + Eet−3u(t− 3) + Fe−(t−3)u(t− 3).
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Question 5. (15 pts) Solve the following integro-differential equation. You do not need to deter-
mine the constants of the partial fractions.

y′(t) = 1−
∫ t

0
y(t− τ)e−2τ dτ,

y(0) = 1.

Solution 5. Write the equation as

y′(t) = 1− y(t) ∗ e−2t.
Taking the Laplace transform

sY (s)− 1 =
1

s
− 1

s+ 2
Y (s),

thus

Y (s) =
s+ 2

s(s+ 1)
=
A

s
+

B

s+ 1
.

Taking the inverse Laplace transform,

y(t) = A+Be−t.
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Question 6. (20 pts)

(a) State the properties that characterize δ(t− a).

(b) Compute the Laplace transform of δ(t− a), a > 0.

(c) For ε > 0, consider the functions fε(t) defined by

fε(t) =

{
1
ε , −

ε
2 < t < ε

2 ,

0, otherwise.

What is the relation between fε(t) and δ(t)?

(d) Using the functions fε(t) from part (c), show that∫ ∞
−∞

f(t)δ(t) dt = f(0),

for any continuous function f(t).

Solution 6. (a) The properties are

δ(t− a) =

{
∞, t = a,

0, t 6= a,
and

∫ ∞
−∞

f(t)δ(t− a)f(t) = f(a),

for any continuous function f(t).
(b) Using the properties stated in (a):

L {δ(t− a)} =

∫ ∞
0

e−stδ(t− a) dt = e−as.

(c) Taking the limit ε→ 0+ we find

lim
ε→0+

fε(t) =

{
∞, t = 0,

0, t 6= 0,

which is agrees with the first property stated in (a) (for a = 0). Thus, we think of δ(t) as the limit
of fε(t) when ε→ 0+, although this limit is not a function.

(d) Note that
∫∞
−∞ fε(t) dt =

∫ ε
2

− ε
2

1
ε dt = 1 for any ε > 0. Write∫ ∞

−∞
δ(t)f(t) dt = lim

ε→0+

∫ ∞
−∞

fε(t)f(t) dt = lim
ε→0+

1

ε

∫ ε
2

− ε
2

f(t) dt.

Because f(t) is continuous, it attains a maximum and a minimum on the closed interval [− ε
2 ,

ε
2 ] at

some points tM and tm, respectively. Thus

f(tm) =
1

ε

∫ ε
2

− ε
2

f(tm) dt ≤ 1

ε

∫ ε
2

− ε
2

f(t) dt ≤ 1

ε

∫ ε
2

− ε
2

f(tM ) dt = f(tM ).

Since tm → 0 and tM → 0 as ε→ 0+ and f is continuous, we have limε→0+ f(tm) = limε→0+ f(tM ) =
f(0), and we obtain the result by the squeeze theorem.
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Extra credit. (05 pts) If L {f} = F and L {g} = G, prove that

L {f ∗ g} = FG.

Solution 7. Done in class. See the class notes.


